Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation Justin Domke and Daniel Sheldon, University of Massachusetts Amherst

- Recent work uses better estimators for better likelihood bounds.
- But how to apply to "pure probabilistic" variational inference (VI)?
- We show that for any unbiased estimator, an **augmented posterior** can be constructed using **couplings**.
- We give a framework of transforming "estimator-coupling-pairs" to easily construct couplings for many Monte Carlo Methods.

1. The Problem

Take some distribution $p(\boldsymbol{z}, \boldsymbol{x})$ with \boldsymbol{x} fixed.

---- p(z, x)**Observation**: If *R* is a random variable with $\mathbb{E} R = p(\boldsymbol{x})$ then $\mathbb{E} \log R \leq \log p(\boldsymbol{x})$. **Example**: Take $R = \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})}$ for $\boldsymbol{z} \sim q$ Gaussian, optimize q: $\mathbb{E}\log R = -0.237$ ---- p(z, x)---- q(z), naive **Decomposition**: $KL(q(\boldsymbol{z}) || p(\boldsymbol{z} | \boldsymbol{x})) = \log p(\boldsymbol{x}) - \mathbb{E} \log R.$ Likelihood bound: √ $(\mathbb{E}\log R \le \log p(\boldsymbol{x}))$ • Posterior approximation: \checkmark (q is close to p)

Recent work: Better Monte Carlo estimators *R*.

Second Example: Antithetic Sampling: Let T(z) "flip" z around mean of q.

 $R' = \frac{1}{2} \left(\frac{p(\boldsymbol{z}, \boldsymbol{x}) + p(T(\boldsymbol{z}), \boldsymbol{x})}{q(\boldsymbol{z})} \right)$

 $\mathbb{E}\log R' = -0.060$ ---- p(z, x)---- q(z), antithetic

Likelihood bound: √

 $(\mathbb{E}\log R \le \log p(\boldsymbol{x}))$ (q is not close to p)

Posterior approximation: ×

This paper: Is some *other* distribution close to *p*?

- Felix V. Agakov and David Barber. An Auxiliary Variational Method. NeurIPS, 2004.
- Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 72:269–342, 2010.
- Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders. ICLR, 2015. • Christian Andersson Naesseth. Machine Learning Using Approximate Inference: Variational and Sequential Monte
- Carlo Methods. PhD thesis, Linköping University, 2018.
- Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-Encoding Sequential Monte Carlo. ICLR, 2018.
- Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Teh. Filtering Variational Objectives. NeurIPS, 2017.

Contribution of this paper: Given estimator with $\mathbb{E} R = p(\boldsymbol{x})$, we show how to construct $Q(\boldsymbol{z})$ such that

2.1 Intuition

- An unbiased estimator $\mathbb{E}_{\omega} R(\omega) = p(\boldsymbol{x})$ is not enough!
- We suggest: Need a *coupling*: $\mathbb{E}_{\omega} R(\omega) a(\boldsymbol{z}|\boldsymbol{\omega}) = p(\boldsymbol{z}, \boldsymbol{x})$.
- Define *augmented* distributions in state space $(\boldsymbol{z}, \boldsymbol{\omega})$.
- Tightening $\log p(\boldsymbol{x}) \mathbb{E} \log R$ is equivalent to VI on the augmented distributions.

2.2 Divide

. Random variable R with underlying sample space ω

$$R(\boldsymbol{\omega}), \ \boldsymbol{\omega} \sim Q(\boldsymbol{\omega}).$$

2. Assume unbiased

$\mathop{\mathbb{E}}_{Q(\boldsymbol{\omega})}[R(\boldsymbol{\omega})]=p(\boldsymbol{x}).$

3. Define "extended target"

$$P^{\mathrm{MC}}(\omega, \boldsymbol{x}) = Q(\omega)R(\omega)$$
 (b) "e

4. Then

$$KL\left(Q(\boldsymbol{\omega}) \Big\| P^{\mathrm{MC}}(\boldsymbol{\omega}|x)
ight)$$

$$= \log p(\boldsymbol{x}) - \mathbb{E} \log R$$

Fine... But where is z?

2.4 Summary

- Tightening a bound $\log p(\mathbf{x}) \mathbb{E} \log R$ is equivalent to VI in an *augmented state* space $(\boldsymbol{\omega}, \boldsymbol{z})$.
- To sample from Q(z) draw $\omega \sim Q(\omega)$ then $z \sim a(z|\omega)$.
- We give couplings for:
- Antithetic sampling
- Stratified sampling
- Quasi Monte Carlo
- Latin hypercube sampling
- Arbitrary recursive combinations of above

2. Main Framework

- **2.3 Couple**
- 2. Assume coupling $a(\boldsymbol{z}|\boldsymbol{\omega})$

 - $Q(\boldsymbol{\omega})$
- 3. Define
- 4. Then

$$\mathbb{E}\left[R(\boldsymbol{\omega})a(\boldsymbol{z}|\boldsymbol{\omega})\right] = p(\boldsymbol{z},\boldsymbol{x}).$$

(a) "extended target"

 $P^{\mathrm{MC}}(\boldsymbol{z}, \boldsymbol{\omega}, \boldsymbol{x}) = Q(\boldsymbol{\omega})R(\boldsymbol{\omega})a(\boldsymbol{z}|\boldsymbol{\omega}, \boldsymbol{x})$

extended proposal"

 $Q^{
m MC}(oldsymbol{z},oldsymbol{\omega}) = Q(oldsymbol{\omega})a(oldsymbol{z}|oldsymbol{\omega},oldsymbol{x})$

 $KL\left(Q^{\mathrm{MC}}(\mathsf{z},\boldsymbol{\omega}) \| P^{\mathrm{MC}}(\mathsf{z},\boldsymbol{\omega}|\boldsymbol{x})\right)$ $= \log p(\boldsymbol{x}) - \mathbb{E} \log R.$

3. Transforming Couplings

Description

IID Mean $\boldsymbol{\omega}_1 \cdots \boldsymbol{\omega}_M \sim Q_0$ i.i.d.

Stratified Sampling $\Omega_1 \cdots \Omega_M$ partition Ω , $\boldsymbol{\omega}_1^m \cdots \boldsymbol{\omega}_{M_n}^1 \sim Q_0$ restricted to Ω_m , $\mu_m = Q_0(\boldsymbol{\omega} \in \Omega_m).$

Antithetic Sampling $\boldsymbol{\omega} \sim Q_0$. For all $m, T_m(\boldsymbol{\omega}) \stackrel{d}{=} \boldsymbol{\omega}$.

Randomized Quasi Monte Carlo $\boldsymbol{\omega} \sim \text{Unif}([0,1]^d), \, \bar{\omega}_1, \cdots \bar{\omega}_M \text{ fixed},$ $T_m(\omega) = F^{-1} \left(\bar{\omega}_m + \omega \pmod{1} \right)$ Latin Hypercube Sampling

 $\boldsymbol{\omega}_1, \cdots, \boldsymbol{\omega}_M$ jointly sampled from Latin hypercube [21, Ch. 10.3], $T = F^{-1}$.

4. Example Implementation

Generate "batches" of samples from [0, 1] hypercubes and then transform.

5. Example Results

Other estimators may be more sample-efficient than iid (IWAEs)

Take base estimator-coupling pair (R_0, a_0) transform to create new pair (R, a).

Better likelihood bounds \Leftrightarrow better posteriors \checkmark