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•Recent work uses better estimators for better likelihood
bounds.
•But how to apply to “pure probabilistic” variational inference (VI)?
•We show that for any unbiased estimator, an augmented poste-

rior can be constructed using couplings.
•We give a framework of transforming “estimator-coupling-pairs” to

easily construct couplings for many Monte Carlo Methods.

1. The Problem

Take some distribution p(z,x) with x fixed.

p(z, x)

Observation: If R is a random variable with ER = p(x) then E logR ≤ log p(x).

Example: Take R = p(x,z)
q(z) for z ∼ q Gaussian, optimize q:

logR = 0.237
p(z, x)
q(z), naive

Decomposition: KL (q(z)‖p(z|x)) = log p(x)− E logR.

• Likelihood bound: X (E logR ≤ log p(x))
•Posterior approximation: X (q is close to p)

Recent work: Better Monte Carlo estimators R.

Second Example: Antithetic Sampling: Let T (z) “flip” z around mean of q.

R′ =
1

2

(
p(z,x) + p(T (z),x)

q(z)

)

logR ′ = 0.060
p(z, x)
q(z), antithetic

• Likelihood bound: X (E logR ≤ log p(x))
•Posterior approximation: × (q is not close to p)

This paper: Is some other distribution close to p?
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2. Main Framework

Contribution of this paper: Given estimator with ER = p(x), we show how to
construct Q(z) such that

KL (Q(z)‖p(z|x)) ≤ log p(x)− E logR.

logR ′ = 0.060
p(z, x)
q(z), antithetic

logR ′ = 0.060
p(z, x)
Q(z), antithetic

logR ′ = 0.063
p(z, x)
q(z), stratified

logR ′ = 0.063
p(z, x)
Q(z), stratified

logR ′ = 0.021
p(z, x)
q(z), antithetic within strata

logR ′ = 0.021
p(z, x)
Q(z), antithetic within strata

2.1 Intuition

•An unbiased estimator EωR(ω) = p(x) is not enough!
•We suggest: Need a coupling: EωR(ω)a(z|ω) = p(z,x).
•Define augmented distributions in state space (z,ω).
•Tightening log p(x)−E logR is equivalent to VI on the augmented distributions.

2.2 Divide

1. Random variable R with underlying
sample space ω

R(ω), ω ∼ Q(ω).

2. Assume unbiased

E
Q(ω)

[R(ω)] = p(x).

3. Define “extended target”

PMC(ω,x) = Q(ω)R(ω)

4. Then

KL
(
Q(ω)

∥∥PMC(ω|x)
)

= log p(x)− E logR.

Fine... But where is z?

2.3 Couple

2. Assume coupling a(z|ω)

E
Q(ω)

[R(ω)a(z|ω)] = p(z,x).

3. Define

(a) “extended target”

PMC(z,ω,x) = Q(ω)R(ω)a(z|ω,x)

(b) “extended proposal”

QMC(z,ω) = Q(ω)a(z|ω,x)

4. Then

KL
(
QMC(z,ω)

∥∥PMC(z,ω|x)
)

= log p(x)− E logR.

2.4 Summary

•Tightening a bound log p(x)−E logR is equivalent to VI in an augmented state
space (ω, z).
•To sample from Q(z) draw ω ∼ Q(ω) then z ∼ a(z|ω).
•We give couplings for:

– Antithetic sampling
– Stratified sampling
– Quasi Monte Carlo
– Latin hypercube sampling
– Arbitrary recursive combinations of above

3. Transforming Couplings

Take base estimator-coupling pair (R0, a0) transform to create new pair (R, a).

Table 1: Variance reduction methods jointly transform estimators and couplings. Take an estimator
R0(!) with coupling a0(z|!), valid under Q0(!). Each line shows a new estimator R(·) and coupling
a(z|·). The method to simulate Q(·) is described in the left column. Here, F�1 is a mapping so that
if ! is uniform on [0, 1]d, then F�1(!) has density Q0(!).

Description R(·) a(z|·)
IID Mean
!1 · · ·!M ⇠ Q0 i.i.d.

1

M

MX

m=1

R0(!m)

PM
m=1 R0(!m)a0(z|!m)
PM

m=1 R0(!m)

Stratified Sampling
⌦1 · · ·⌦M partition ⌦,
!m

1 · · ·!1
Mn

⇠ Q0 restricted to ⌦m,
µm = Q0(! 2 ⌦m).

MX

m=1

µm

Nm

NmX

n=1

R0 (!m
n )

PM
m=1

µm
Nm

PNm
n=1 R0 (!m

n ) a0(z|!m
n )

PM
m=1

µm
Nm

PNm
n=1 R0 (!m

n )

Antithetic Sampling
! ⇠ Q0. For all m, Tm(!)

d
= !.

1

M

MX

m=1

R0 (Tm(!))

PM
m=1 R0(Tm(!)) a0 (z|Tm(!))

PM
m=1 R(Tm(!))

Randomized Quasi Monte Carlo
! ⇠ Unif([0, 1]d), !̄1, · · · !̄M fixed,
Tm(!) = F�1 (!̄m + ! (mod 1))

1

M

MX

m=1

R0 (Tm(!))

PM
m=1 R0(Tm(!)) a0 (z|Tm(!))

PM
m=1 R0(Tm(!))

Latin Hypercube Sampling
!1, · · · ,!M jointly sampled from Latin
hypercube [21, Ch. 10.3], T = F�1.

1

M

MX

m=1

R0 (T (!m))

PM
m=1 R0(T (!m)) a0 (z|T (!m))

PM
m=1 R0(T (!m))

4 Deriving Couplings

Thm. 2 says that if EQ(!) log R(!) is close to log p(x) and you have a tractable coupling a(z|!),
then drawing ! ⇠ Q(!) and then z ⇠ a(z|!) yields samples from a distribution Q(z) close to
p(z|x). But how can we find a tractable coupling?

Monte Carlo estimators are often created recursively using techniques that take some valid estimator
R and transform it into a new valid estimator R0. These techniques (e.g. change of measure, Rao-
Blackwellization, stratified sampling) are intended to reduce variance. Part of the power of Monte
Carlo methods is that these techniques can be easily combined. In this section, we extend some of
these techniques to transform valid estimator-coupling pairs into new valid estimator-coupling pairs.
The hope is that the standard toolbox of variance reduction techniques can be applied as usual, and
the coupling is derived “automatically”.

Table 1 shows corresponding transformations of estimators and couplings for several standard variance
reduction techniques. In the rest of this section, we will give two abstract tools that can be used to
create all the entries in this table. For concreteness, we begin with a trivial “base” estimator-coupling
pair. Take a distribution Q0(!) and let R0(!) = p(!, x)/Q0(!) and a0(z|!) = �(z � !) (the
deterministic coupling). It is easy to check that these satisfy Eq. (4).

4.1 Abstract Transformations of Estimators and Couplings

Our first abstract tool transforms an estimator-coupling pair on some space ⌦ into another estimator-
coupling pair on a space ⌦M ⇥ {1, · · · , M}. This can be thought of as having M “replicates” of
the ! in the original estimator, along with an extra integer-valued variable that selects one of them.
We emphasize that this result does not (by itself) reduce variance — in fact, R has exactly the same
distribution as R0.
Theorem 3. Suppose that R0(!) and a0(z|!) are a valid estimator-coupling pair under Q0(!). Let
Q(!1, · · · , wM , m) be any distribution such that if (!1, · · · ,!M , m) ⇠ Q, then !m ⇠ Q0. Then,

R(!1, · · · ,!M , m) = R0(!m) (8)
a(z|!1, · · · ,!M , m) = a0(z|!m) (9)

are a valid estimator-coupling pair under Q(!1, · · · , wM , m).

Rao-Blackwellization is a well-known way to transform an estimator to reduce variance; we want to
know how it affects couplings. Take an estimator R0(!, ⌫) with state space ⌦⇥ N and distribution

5

4. Example Implementation

Generate “batches” of samples from [0, 1] hypercubes and then transform.

Figure 5: Different sampling methods applied to Gaussian VI. Top row: Different methods to sample
from the unit cube. Middle row: these samples transformed using the “Cartesian” mapping. Bottom
row: Same samples transformed using the “Elliptical” mapping.

5 Implementation and Empirical Study

Our results are easy to put into practice, e.g. for variational inference with Gaussian approximating
distributions and the reparameterization trick to estimate gradients.. To illustrate this, we show a
simple but general approach. As shown in Fig. 5 the idea is to start with a batch of samples !1 · · ·!M

generated from the unit hypercube. Different sampling strategies can give more uniform coverage of
the cube than i.i.d. sampling. After transformation, one obtains samples z1 · · · zM that have more
uniform coverage of the Gaussian. This better coverage often manifests as a lower-variance estimator
R. Our coupling framework gives a corresponding approximate posterior Q(z).

Formally, take any distribution Q(!1, · · · ,!M ) such that each marginal Q(!m) is uniform over the
unit cube (but the different !m may be dependent). As shown in Fig. 5, there are various ways to
generate !1 · · ·!M and to map them to samples z1 · · · zM from a Gaussian q(zm). Then, Fig. 6 gives
algorithms to generate an estimator R and to generate z from a distribution Q(z) corresponding to a

valid coupling. We use mappings ! F�1

! u
T✓! z where t✓ = T✓ � F�1 maps ! ⇠ Unif([0, 1]d) to

t✓(!) ⇠ q✓ for some density q✓. The idea is to implement variance reduction to sample (batches of)
!, use F�1 to map ! to a “standard” distribution (typically in the same family as q✓), and then use
T✓ to map samples from the standard distribution to samples from q✓.

The algorithms are again derived from Thm. 3 and Thm. 4. Define Q0(!) uniform on [0, 1]d, R0(!) =
p(t✓(!), x)/q✓(t✓(!)) and a0(z|!) = �(z � t✓(!)). These define a valid estimator-coupling pair.
Let Q(!1, · · · ,!M ) be as described (uniform marginals) and m uniform on {1, · · · , M}. Then
Q(!1, · · · ,!M , m) satisfies the assumptions of Thm. 3, so we can use that theorem then Thm. 4 to
Rao-Blackwellize out m. This produces the estimator-coupling pair in Fig. 6.

Algorithm (Generate R)
• Generate !1, · · · ,!M from any distribution

where !m is marginally uniform over [0, 1]
d.

• Map to a standard dist. as um = F�1(!m).
• Map to q✓ as zm = T✓(um).

• Return R = 1
M

PM
m=1

p(zm,x)
q✓(zm)

Algorithm (Sample from Q(z))
• Generate z1, · · · zM as on the left.

• For all m compute weight wm = p(zm,x)
q✓(zm) .

• Select m with probability wmPM
m0=1

wm0
.

• Return zm

Figure 6: Generic methods to sample R (left) and Q(z) (right). Here, Q(!1, · · · ,!M ) is any
distribution where the marginals Q(!m) are uniform over the unit hypercube.
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5. Example Results

Other estimators may be more sample-efficient than iid (IWAEs)

Better likelihood bounds⇔ better posteriors X


