Importance Weighting and Variational Inference

Justin Domke and Daniel Sheldon, University of Massachusetts, Amherst

- Variational autoencoders can use **importance weighting** for **better likelihood bounds**.
- But how to apply to "pure probabilistic" variational inference (VI)?
- We show that using importance-weighting is equivalent to **traditional VI** on **augmented distributions**. This informs test-time inference and clarifies looseness of existing bounds.
- Investigate VI on elliptical distributions via an "inverse CDF trick".

1. The ELBO Decomposition

$$\log p(\boldsymbol{x}) = \underbrace{\mathbb{E}_{\boldsymbol{z} \sim q} \log \frac{p(\boldsymbol{z}, \boldsymbol{x})}{q(\boldsymbol{z})}}_{\text{ELBO}(q||p)} + KL\left(q(\boldsymbol{z}) || p(\boldsymbol{z} | \boldsymbol{x})\right)$$

- Any q gives $ELBO \le \log p(x)$.
- Looseness is KL-divergence.

2. Importance Weighting

- For any R>0 with $\mathbb{E}\,R=p({\bm x}): \log p({\bm x})=\underbrace{\mathbb{E}\log R}_{\text{bound}}+\underbrace{\mathbb{E}\log\frac{p({\bm x})}{R}}_{\text{looseness}}$
- ullet Traditional VI: $R=rac{p(oldsymbol{z},oldsymbol{x})}{q(oldsymbol{z})},\;oldsymbol{z}\sim q$.
- ullet Better bound: Average i.i.d. samples: $R_M = rac{1}{M} \sum_{m=1}^M rac{p(m{z}_m, m{x})}{g(m{z}_m)}, \; m{z}_m \sim q$

IWAEs: [Burda et al., 2015]

- ullet $p(oldsymbol{z},oldsymbol{x})=egin{minipage}{2cc} oldsymbol{p} & oldsymbol{p} &$
 - -Input x (dataset)
- -Maximize $\mathbb{E} \log R_M$ w.r.t. p and q
- –Use p

- Importance Weighted VI (IWVI):
- p(z, x) = (Some model)
- -Input x (evidence)
- Maximize $\mathbb{E} \log R_M$ w.r.t. q
- -Use q

Good-old-fashioned VI:

$$\log p(\boldsymbol{x}) = \text{ELBO}\left(q(\boldsymbol{z}) || p(\boldsymbol{z}, \boldsymbol{x})\right) + KL\left(q(\boldsymbol{z}) || p(\boldsymbol{z} | \boldsymbol{x})\right)$$

• Learning: ELBO $\leq \log p(\boldsymbol{x})$

ullet Inference: $\mathbb{E}_{p(oldsymbol{z}|oldsymbol{x})}\,t(oldsymbol{z})pprox \mathbb{E}_{q(oldsymbol{z})}\,t(oldsymbol{z})$

IWVI:

$$\log p(\boldsymbol{x}) = \mathbb{E} \log R_M + \mathbb{E} \log \frac{p(\boldsymbol{x})}{R_M}$$

• Learning: $\mathbb{E} \log R_M \leq \log p(\boldsymbol{x})$

• Inference: ???

3. Main Technical Results

Summary:

- Theorem 1: For augmented p_M / q_M , IWVI minimizes $KL\left(q_M(\boldsymbol{z}_{1:M})||p_M(\boldsymbol{z}_{1:M}|\boldsymbol{x})\right)$.
- Theorem 2: That is exactly $\underbrace{KL\left(q_M(\boldsymbol{z}_1)\|p(\boldsymbol{z}_1|\boldsymbol{x}\right)}_{\text{what we care about}} + \underbrace{KL\left(q_M(\boldsymbol{z}_{2:M})\|q(\boldsymbol{z}_{2:M})\right)}_{\text{other stuff}}$.
- Theorem 3: When M is large that is approximately $\frac{1}{M} \frac{\mathbb{V}[R]}{2p(\boldsymbol{x})}$.

3.1 Theorem 1: IVWI is Normal VI on Augmented Distributions

Definition of $q_M(\boldsymbol{z}_{1:M})$:

- Draw $\hat{\boldsymbol{z}}_{1,}$ $\hat{\boldsymbol{z}}_{2},\cdots,\hat{\boldsymbol{z}}_{M}$ independently from $q(\boldsymbol{z})$.
- Choose $m \in \{1, \cdots, M\}$ with prob $\mathbb{P}(m) \propto \frac{p(\hat{\boldsymbol{z}}_m, \boldsymbol{x})}{q(\hat{\boldsymbol{z}}_m)}$.
- ullet Set $oldsymbol{z}_1 = \hat{oldsymbol{z}}_m$ and $oldsymbol{z}_{2:M} = \hat{oldsymbol{z}}_{-m}$

Definition of $p_M(\boldsymbol{z}_{1:M})$:

sampling for $\hat{m{z}}_m$; also keep and relabel unselected $\hat{m{z}}_i$)

(Self-normalized importance

(One sample from p and M-1 "dummy" samples from q.)

Previously known [Bachman and Precup, 2015, Cremer et al., 2017, Naesseth et al., 2018, Le et al., 2018]: $\log p(\boldsymbol{x}) \geq \mathrm{ELBO}(q_M(\boldsymbol{z}_1) || p_M(\boldsymbol{z}_1, \boldsymbol{x})) \geq \mathbb{E} \log R_M$.

Our Result: $\log p(\boldsymbol{x}) = \mathbb{E} \log R_M + KL\left(q_M(\boldsymbol{z}_{1:M}) \| p_M(\boldsymbol{z}_{1:M} | \boldsymbol{x})\right)$.

Thus, approximate test integrals as

$$\mathop{\mathbb{E}}_{p(oldsymbol{z}|oldsymbol{x})} t(oldsymbol{z}) = \mathop{\mathbb{E}}_{p_M(oldsymbol{z}_1|oldsymbol{x})} t(oldsymbol{z}_1) pprox \mathop{\mathbb{E}}_{q_M(oldsymbol{z}_1)} t(oldsymbol{z}_1).$$

3.2 Theorem 2: IVWI is Tightening an Upper Bound

Result:

$$\underbrace{KL\left(q_M(\boldsymbol{z}_{1:M}) \| p_M(\boldsymbol{z}_{1:M} | \boldsymbol{x}\right)}_{\text{what IWVI minimizes}} = \underbrace{KL\left(q_M(\boldsymbol{z}_1) \| p(\boldsymbol{z}_1 | \boldsymbol{x}\right)\right)}_{\text{what we care about}} + \underbrace{KL\left(q_M(\boldsymbol{z}_{2:M}) \| q(\boldsymbol{z}_{2:M})\right)}_{\text{other stuff}}$$

Proof: KL chain rule + definition of p_M .

If you will use normalized importance sampling, IWVI truly optimizes a bound.

3.3 Theorem 3: Asymptotics

Result: If $\mathbb{E} |R - p(\boldsymbol{x})|^{2+\alpha} < \infty$ for $\alpha > 0$ and $\limsup_{M \to \infty} \mathbb{E} \frac{1}{R_M} < \infty$,

$$\lim_{M\to\infty} M\left(\log p(\boldsymbol{x}) - \mathbb{E}\log R_M\right) = \frac{\mathbb{V}[R_1]}{2p(\boldsymbol{x})}.$$

(Maddison et al. [2017] showed for $\alpha = 4$)

Non-Proof: CLT + 2nd-order delta-method:

$$M\left(\log p(\boldsymbol{x}) - \mathbb{E}\log R_M\right) \stackrel{d}{\to} \frac{\mathbb{V}[R_1]}{2p(\boldsymbol{x})}\chi_1^2$$

Problem: $X_M \stackrel{d}{\to} X$ does not imply $\mathbb{E}[X_M] \to \mathbb{E}[X]$.

Proof: Long. Broadly follows Maddison et al. [2017] to bound higher terms in a Taylor expansion. Biggest technical innovation is using Marcinkiewicz–Zygmund inequality to bound sample moments from true moments.

4. Elliptical Distributions

- For M=1, IWVI minimizes KL.

 This is **mode finding**.
- ullet For M large, IWVI minimizes $\mathbb{V}[R]$ (Equiv. χ^2 divergence).
- This is mode spanning.

Suggests we want different tail behavior as M changes.

Given some spherically symmetric distribution g_{ν} , an "Elliptical" distribution is

$$q\left(\boldsymbol{z}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\nu}\right) = \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} g_{\boldsymbol{\nu}}\left(\left(\boldsymbol{z}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{z}-\boldsymbol{\mu}\right)\right).$$

- Fit μ , Σ as "Normal". (Reparameterization trick with $g_{\nu}(\epsilon)$ as base density).
- Fit ν by backpropagating through inverse CDF of $\|\epsilon\|$, $\epsilon \sim g_{\nu}$.
- No inverse-CDF? Sample $\epsilon \sim g_{\nu}$, then "pretend": (Same idea at this conference: Implicit Reparameterization Gradients, Figurnov et al.)

$$\nabla_{\nu} F_{\nu}^{-1}(u) = -\frac{\nabla_{\nu} F_{\nu}(\|\boldsymbol{\epsilon}\|)}{\nabla_{r} F_{\nu}(\|\boldsymbol{\epsilon}\|)}, \ u = F_{\nu}(\|\boldsymbol{\epsilon}\|).$$

5. Experiments

Variational Families:

Error metrics:

• IWVI : Gaussians

- ullet $KL\left(q(oldsymbol{z}) \middle\| p(oldsymbol{z})
 ight)$
- \bullet E-IWVI: Student-T with ν deg. of freedom.
- ullet $\mathbb{C}[p(oldsymbol{z})]$ vs. $\mathbb{C}[q_M(oldsymbol{z}_1)]$

Clutter model: [Minka, 2001]

Random Dirichlets:

- $p(z) = \mathcal{N}(z, 0, 100I)$ hidden location Sample $\alpha_1, \dots, \alpha_K \sim \text{Gamma}(10)$
- $\boldsymbol{x} = (\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)$ noisy observations $p(\boldsymbol{z})$ is density of StickBreak (θ) , $\theta \sim -p(\boldsymbol{x}_i|\boldsymbol{z}) = \frac{1}{4}\mathcal{N}(\boldsymbol{x}_i|\boldsymbol{z}_i, I) + \frac{3}{4}\mathcal{N}(\boldsymbol{x}_i|0, 10I)$ Dirichlet $(\theta|\boldsymbol{\alpha})$

