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•Variational autoencoders can use importance weighting for better

likelihood bounds.

•But how to apply to “pure probabilistic” variational inference (VI)?

•We show that using importance-weighting is equivalent to tradi-

tional VI on augmented distributions. This informs test-time in-
ference and clarifies looseness of existing bounds.

• Investigate VI on elliptical distributions via an “inverse CDF trick”.

1. The ELBO Decomposition

log p(x) = E
z⇠q

log
p(z,x)

q(z)| {z }
ELBO(qkp)

+KL (q(z)kp(z|x))

•Any q gives ELBO  log p(x).
• Looseness is KL-divergence.

2. Importance Weighting

•For any R > 0 with ER = p(x) : log p(x) = E logR| {z }
bound

+E log
p(x)

R| {z }
looseness

.

•Traditional VI: R =
p(z,x)
q(z) , z ⇠ q.

•Better bound: Average i.i.d. samples: RM =
1

M

PM
m=1

p(zm,x)
q(zm)

, zm ⇠ q

IWAEs: [Burda et al., 2015]

• p(z,x) =
– Input x (dataset)
– Maximize E logRM w.r.t. p and q

– Use p

Importance Weighted VI (IWVI):
• p(z,x) = (Some model)

– Input x (evidence)
– Maximize E logRM w.r.t. q
– Use q

Good-old-fashioned VI:

log p(x) = ELBO (q(z)kp(z,x))
+KL (q(z)kp(z|x))

•Learning: ELBO  log p(x)

• Inference: Ep(z|x) t(z) ⇡ Eq(z) t(z)

IWVI:

log p(x) = E logRM + E log
p(x)

RM

•Learning: E logRM  log p(x)

• Inference: ???

3. Main Technical Results

Summary:

•Theorem 1: For augmented pM / qM , IWVI minimizes KL (qM(z1:M)kpM(z1:M |x)) .

•Theorem 2: That is exactly KL (qM(z1)kp(z1|x))| {z }
what we care about

+KL (qM(z2:M)kq(z2:M))| {z }
other stuff

.

•Theorem 3: When M is large that is approximately
1

M

V[R]

2p(x)
.

3.1 Theorem 1: IVWI is Normal VI on Augmented Distributions

Definition of qM(z1:M):
•Draw ẑ1, ẑ2, · · · , ẑM independently from q(z).

•Choose m 2 {1, · · · ,M} with prob P(m) / p(ẑm,x)
q(ẑm)

.

•Set z1 = ẑm and z2:M = ẑ�m

(Self-normalized importance
sampling for ẑm; also keep
and relabel unselected ẑi)

Definition of pM(z1:M) :

• pM (z1:M,x) = p(z1,x)q(z2) · · · q(zM).

(One sample from p and M � 1

“dummy” samples from q.)

Previously known [Bachman and Precup, 2015, Cremer et al., 2017, Naesseth
et al., 2018, Le et al., 2018]: log p(x) � ELBO(qM(z1)kpM(z1,x)) � E logRM.

Our Result: log p(x) = E logRM +KL (qM(z1:M)kpM(z1:M |x)) .

Thus, approximate test integrals as

E
p(z|x)

t(z) = E
pM(z1|x)

t(z1) ⇡ E
qM(z1)

t(z1).

3.2 Theorem 2: IVWI is Tightening an Upper Bound

Result:

KL (qM(z1:M)kpM(z1:M |x))| {z }
what IWVI minimizes

= KL (qM(z1)kp(z1|x))| {z }
what we care about

+KL (qM(z2:M)kq(z2:M))| {z }
other stuff

Proof: KL chain rule + definition of pM .

If you will use normalized importance sampling, IWVI truly optimizes a bound.

3.3 Theorem 3: Asymptotics

Result: If E |R� p(x)|2+↵ < 1 for ↵ > 0 and lim sup
M!1

E 1

RM
< 1,

lim
M!1

M (log p(x)� E logRM) =
V[R1]

2p(x)
.

(Maddison et al. [2017] showed for ↵ = 4)

Non-Proof: CLT + 2nd-order delta-method:

M (log p(x)� E logRM)
d! V[R1]

2p(x)
�2

1

Problem: XM
d! X does not imply E[XM ] ! E[X ].

Proof: Long. Broadly follows Maddison et al. [2017] to bound higher terms in a
Taylor expansion. Biggest technical innovation is using Marcinkiewicz–Zygmund
inequality to bound sample moments from true moments.

4. Elliptical Distributions

•For M = 1, IWVI minimizes KL.
– This is mode finding.

•For M large, IWVI minimizes V[R]

(Equiv. �2 divergence).
– This is mode spanning.

Suggests we want different tail behavior as M changes.
Given some spherically symmetric distribution g⌫, an “Elliptical” distribution is

q (z|µ,⌃, ⌫) = 1

|⌃|1/2
g⌫

⇣
(z � µ)>⌃

�1
(z � µ)

⌘
.

•Fit µ, ⌃ as “Normal”. (Reparameterization trick with g⌫(✏) as base density).
•Fit ⌫ by backpropagating through inverse CDF of k✏k , ✏ ⇠ g⌫.
•No inverse-CDF? Sample ✏ ⇠ g⌫, then “pretend”: (Same idea at this conference:

Implicit Reparameterization Gradients, Figurnov et al.)

r⌫F
�1

⌫ (u) = �r⌫F⌫(k✏k)
rrF⌫(k✏k)

, u = F⌫(k✏k).

5. Experiments

Variational Families:
• IWVI : Gaussians
•E-IWVI: Student-T with ⌫ deg. of freedom.

Error metrics:
•KL (q(z)kp(z))
•C[p(z)] vs. C[qM(z1)]

Clutter model: [Minka, 2001]
• p(z) = N (z, 0, 100I) - hidden location
•x = (x1, · · · ,xn) noisy observations

– p(xi|z) = 1

4
N (xi|zi, I)+ 3

4
N (xi|0, 10I)

Random Dirichlets:
•Sample ↵1, · · · ,↵K ⇠ Gamma(10)

• p(z) is density of StickBreak(✓), ✓ ⇠
Dirichlet(✓|↵)

Logistic Regression (Cauchy Prior)

j



