
A Divergence Bound for Hybrids of MCMC and VI and an application to Langevin Dynamics and SGVI
Justin Domke, UMass Amherst
Introduction

Variational inference (VI):
min
w
KL(q(Z |w)||p(Z ))
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Markov chain Monte Carlo (MCMC):
Sample from p(z)
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This paper:
Something in the middle
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Intuition

VI and MCMC both seek high probability z .

Different coverage strategies.
VI: include entropy H(w)=−∫

z q(z |w) logq(z |w) in objective.
MCMC inject randomness.

Idea: Random walk over w . Trade off:
“How random” the walk is
“How much” H(w) is favored

Easy to imagine... but what are we doing?

Divergence Bounds

Goal: Choose q(w) so q(z)= ∫
w q(w) q(z |w)≈ p(z).

Impossible: minimize KL(q(Z )
∥∥p(Z ))= ∫

z q(z) log q(z)
p(z)

.

1st bound: (conditional divergence)

KL(q(Z )‖p(z))≤
∫
w
q(w)

∫
z
q(z |w) log

q(z |w)
p(z)

=D0.

2nd bound: (joint divergence) “Augment” with p(w |z).
KL(q(Z )‖p(z))≤

∫
w
q(w)

∫
z
q(z |w) log

q(z |w)
p(z)p(w |z) =D1.

Use convex combination: Dβ= (1−β)D0+βD1

Minimizer of the bound

Thm: Choose p(w |z)= r(w)q(z |w)/rz where rz =
∫
w r(w)q(z |w) is

constant. Then, Dβ minimized by

q∗(w)= exp
(
s(w)−A)

s(w)= log r(w)− log rz
+Eq(Z |w)

[
β−1 logp(Z )+ (1−β−1) logq(Z |w)]

A= log
∫
w

exp(s(w))

Furthermore, the divergence at q∗ is D∗
β
=−βA.

Algorithms

Langevin (MCMC): z ← z + ε
2∇z logp(z)+p

ε η︸︷︷︸
noise

(Stochastic) Gradient VI: w ←w − ε
2∇wKL(q(Z |w)‖p(Z ))

Hybrid (this paper): (Apply Langevin to q∗ and scale ε)

w ←w + ε

2
∇w

−KL(q(Z |w)‖p(Z ))−βH(w)+β log rβ(w)

+
√
βεη

Becomes VI when β→ 0 VI (easy)

Becomes Langevin (on z) when β→ 1
rβ likes w where q(Z |w) concentrates.

Algorithmic details

Use a diagonal Gaussian for q(z |w), with w = (µ,ν), νi = log10σi .
To estimate gradient, use standard tricks from SGVI:

For Bayesian inference, estimate logp(z) using subsampling.
Reparameterization trick: ∇w Eq(Z |w)[logp(Z )]→ ER [∇w logp(zR ,w)], then
sample R and apply autodiff.
Use closed form for entropy H(w)=−Eq(Z |w)[logq(Z |w ].

Use (improper) rβ(w)∝
∏

i N
(
νi |uβ,1

)
. Numerically optimize

uβ to minimize D∗
β

when p(z) is a standard Gaussian.

Ionosphere, 104 / 105 / 106 iterations

Toy 2-D Example Toy 2-D Example Logistic Regression
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Toy 1-D Visualization

β= 0 (VI) β= 0.01 β= 0.05 β= 0.10 β= 0.25 β= 0.5 β= 0.75 β= 0.9 β= 1.0 (MCMC)
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