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Introduction

Variational inference (VI):

minKL(q(ZIw)llp(Z))
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Minimizer of the bound

Thm: Choose p(w|z) = r(w)q(z|w)/r, where r, = |,
constant. Then, Dg minimized by

q"(w) =exp(s(w) - A)
s(w) =logr(w)—logr,
+Eq(ziw) [B 7 logp(Z) + (1= ") logq(ZIw)]

A= |ogj;ve><p (s(w))
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Furthermore, the divergence at g™ is Dﬁ = —

Toy 2-D Example

Toy 1-D Visualization
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Markov chain Monte Carlo (MCMOQ):
Sample from p(z)
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r(w)q(zlw) is

B =0.01

Algorithms

This paper:
Something in the middle

Intuition

VI and MCMC both seek high probability z.

Different coverage strategies.
m VI: include entropy H(w)

Langevin (MCMC): z — z +5V,logp(z) + \/E¢

noise

(Stochastic) Gradient VI: w — w -5V, KL (q(ZIw)l p(Z))
Hybrid (this paper): (Apply Langevin to g™ and scale €)
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-KL(q(ZIw)lIp(Z)) — pH(w) + Blog rg(w)

Becomes VI when p — 0 VI (easy)

Becomes Langevin (on z) when f — 1

m rglikes w where g(Z|w) concentrates.
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m MCMC inject randomness.

m “How random” the walk is

— |, q(zlw)log q(z|w) in objective.

Idea: Random walk over w. Trade off:

m “How much” H(w) is favored

Algorithmic details

m Use a diagonal Gaussian for q(z|w), with w = (u,v), v; =logy,0;.

Easy to imagine... but what are we doing?

m To estimate gradient, use standard tricks from SGVI:
m For Bayesian inference, estimate log p(z) using subsampling.
m Reparameterization trick: Vi Eg(74)[log p(£)] = Er[Vw log p(zr,w )], then
sample R and apply autodift.
m Use closed form for entropy H(w) = —E(z4)[log g(ZIw].

Divergence Bounds

Goal: Choose g(w) so q(z) = J,, g(w) q(zlw) = p(z).

q(2)

Impossible: minimize KL(q(Z)||p(Z2)) = [, q(z) Iogﬁ.

1st bound: (conditional divergence)

KL(q(Z)lp(2)) Sf
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2nd bound: (joint divergence) “Augment” with p(w|z).

KL(4(2)lIp(z) =

w

a(w) [ alziw)lo

p(z) -
q(zlw)
p)p(wlz) "

Use convex combination: Dg = (1- ) Dy + BD;

Ionosphere, 10* / 10° / 10° iterations

m Use (improper) rg(w) o< [T; A (Vvilug, 1) . Numerically optimize
ug to minimize D when p(z) is a standard Gaussian.
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