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Abstract

“Energy” models for continuous domains can
be applied to many problems, but often suffer
from high computational expense in training,
due to the need to repeatedly minimize the
energy function to high accuracy. This paper
considers a modified setting, where the model
is trained in terms of results after optimiza-
tion is truncated to a fixed number of itera-
tions. We derive “backpropagating” versions
of gradient descent, heavy-ball and LBFGS.
These are simple to use, as they require as
input only routines to compute the gradient
of the energy with respect to the domain and
parameters. Experimental results on denois-
ing and image labeling problems show that
learning with truncated optimization greatly
reduces computational expense compared to
“full” fitting.

1 Introduction

In supervised learning, one often wishes to fit a map-
ping from inputs x ∈ R

N to outputs y ∈ R
M . This

paper is inspired by the case where the mapping is
defined by the minimization of some energy function,
with

y∗(x;w) := argmin
y

E(y,x;w). (1)

Such mappings are common in structured prediction
tasks such as denoising (Samuel and Tappen, 2009,
Sun and Tappen, 2011, Barbu, 2009) or image la-
beling (Tappen et al., 2008, 2007). We are inter-
ested in setting the value of the weight vector w

to minimize the empirical risk R on some dataset
{(x1,y1), (x2,y2), ..., (xm,ym)}. We assume that the
optimization of the empirical risk will be done using
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some gradient-based optimization. So, the goal is to
calculate

d

dw
R(w) =

m
∑

n=1

d

dw
L(xn,yn;w) (2)

=

m
∑

n=1

d

dw
Q(y∗(xn;w),yn). (3)

Here, L is the loss function, which is implicitly defined
in terms of Q, which directly compares the predicted
value y∗(xn;w) to the true value yn.

This paper considers computing dL/dw on a given
training example. Implicit differentiation, the most
traditional approach, has two steps: First, minimize
the energy function to find y∗. Then, recover dL/dw
from the solution to a sparse linear system (Section
2). This approach can be problematic, as it is derived
assuming that both the energy minimization and lin-
ear system are solved exactly, which is expensive in
large problems. In practice, setting tolerances for these
steps often involves a delicate trade-off between accu-
racy and computational expense (Sections 5-6).

This paper considers the case where the energy mini-
mization is possibly incomplete. We let

y∗(x;w) = opt-alg
y

E(y,x;w), (4)

where opt-alg denotes the application of a fixed num-
ber of steps of some specific optimization algorithm.
We wish to fit the empirical risk, even in cases where
the energy optimization has not converged.

The contribution of this paper is to separate the
problems of differentiating the optimization algorithm
and the energy function, with no sacrifice in effi-
ciency. Specifically, we develop methods to compute
dL/dw, when opt-alg is gradient descent, heavy-ball,
or LBFGS. These methods require only routines to
compute dQ/dy, dE/dw and dE/dy. The loss gradi-
ent dL/dw is computed in time proportional to that of
computing y∗(x;w). Given these methods, it is easy
to address a range of problems, with varying energy
functions and optimization algorithms.

Related work includes Active Random Fields (Barbu,
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2009), where a Fields of Experts denoising model
(Roth and Black, 2009) is trained in the context of
a fixed number of iterations of gradient descent, using
a direct search technique. The drawback of this ap-
proach is high computational expense when there are
many parameters. Sun and Tappen (2011) consider
denoising with a model incorporating non-local inter-
actions. They derive an algorithm to compute dL/dw
for that particular energy, assuming that opt-alg is gra-
dient descent. Using back-GD (derived below) with
the same energy function yields a similar algorithm.
Other work similar in spirit includes fitting graphical
model parameters in terms of the marginals produced
after a few message passing iterations (Domke, 2011,
Stoyanov et al., 2011), fitting a sparse coding model in
terms of a few iterations of coordinate descent (Gre-
gor and LeCun, 2010), and approximating inference in
restricted Boltzmann machines using a single iteration
of mean-field (Larochelle and Murray, 2011).

In Sections 2-4, we concentrate on calculating dL/dw
on some specific datum (xn,yn), and so suppress it for
simplicity. Thus, we use the shorthand notation of

L(w) := L(xn,yn;w) (5)

E(y;w) := E(y,xn;w) (6)

y∗(w) := y∗(xn;w) (7)

Q(y) := Q(y,yn). (8)

2 Implicit Differentiation

In this section, we review the most traditional way to
fit continuous energy-based models. The basic result
is the following theorem (Samuel and Tappen, 2009,
Do et al., 2007).

Theorem 1. Define y∗(w) = arg miny E(y,w), and

L(w) = Q(y∗(w)). Then, when all derivatives exist,

dL

dw
= − ∂2E

∂w∂yT

(

∂2E

∂y∂yT

)

−1
dQ

dy
, (9)

where all quantities on the right hand side are evalu-

ated at y∗(w) and w.

Using this result, it is easy to calculate dL/dw. First,
perform the energy optimization to recover y∗. Next,
compute the loss gradient, and second-order derivative
matrices of E, all at y∗. Finally, solve the above linear
system to recover he gradient. In practice, it is often
complex or expensive to form the derivatives matrices,
though this can be done in some cases (Samuel and
Tappen, 2009, Tappen et al., 2007). Here, we focus on
methods making use only of the gradients ∇yE and
∇wE. If the linear system in Eq. 9 is solved using
an iterative linear method such as conjugate-gradients,
this is sufficient. This gives the implicit-CG algorithm,

Algorithm: (implicit-cg)

1. Perform the optimization to set

y∗ ← argmin
y

E(y;w).

2. Compute the loss Q(y∗) and the gradient
g = ∇yQ(y∗).

3. Define the function

hess-multiply(v) :=
∂2E(y∗;w)

∂y∂yT
v.

4. Find z← conjugate-gradient(hess-multiply,g).

5. Recover the parameter gradient

dL

dw
= −∂2E(y∗;w)

∂w∂yT
z.

similar to that proposed by Do et al. in the context of
hyper-parameter learning (Do et al., 2007).

By using efficient matrix-vector products, explicitly
forming the second-order derivative matrices in steps
3 and 5 may be avoided; see the following section.

3 Finite Difference Matrix-Vector

Products

Lemma 2. Consider some differentiable function f :
R

M → R
N . The product of the Jacobian of f with an

arbitrary vector v is

df

dyT
v = lim

r→0

1

r

(

f(y + rv) − f(y)
)

. (10)

This essentially just states that the product of the Ja-
cobian matrix df/dzT with some arbitrary vector v is
the derivative of the function f in the direction of v.
This result has long use in numerical analysis and ma-
chine learning (LeCun et al., 1993). It can be used to
approximate matrix-vector products by taking some
small but finite r. We follow Andrei (2009) in using
r =
√

ǫ(1 + |y|∞)/|v|∞, where ǫ is machine precision.
Numerically superior results are given by using two
sided differences, i.e. by using the approximation

df

dyT
v ≈ 1

2r

(

f(y + rv) − f(y − rv)
)

, (11)

which is accurate to o(r2). Higher-order approxima-
tions exist. For example, one can approximate the
matrix-vector product to order o(r4) using four func-
tion evaluations (Boresi and Chong, 1991, Sec. 3.3).
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In our implementations, we found that two sided dif-
ferences as in Eq. 11 were accurate to several digits of
precision, even when used recursively, as in the algo-
rithms below. To reduce round-off error, one could in-
stead use Pearlmutter’s algorithm (1994), though this
requires applying automatic differentiation techniques
to the energy function code. Complex perturbations
(Martins et al., 2003) could also be used to reduce
round-off error, if the code for f supports complex
numbers.

The two particular limits that we will make use of are

∂2E

∂y∂yT
v = lim

r→0

1

r

(

∇yE(y + rv;w) −∇yE(y;w)
)

∂2E

∂w∂yT
v = lim

r→0

1

r

(

∇wE(y + rv;w) −∇wE(y;w)
)

,

which follow from substituting f(y) = ∇yE(y;w) and
f(y) = ∇wE(y;w) into Eq. 10.

Besides being efficient, this approach is very conve-
nient; it is only necessary that the user provide rou-
tines to compute ∇yE and ∇wE. For clarity, we will
present all algorithms as taking matrix-vector multi-
plies, but use two-sided differences in implementation.

4 Back-Optimization

In deriving the implicit differentiation approach, it is
assumed that both the minimization of the energy and
the linear system are solved exactly. In practice, of
course, one solves these to a finite accuracy. If the
tolerances are too loose, the resulting loss gradient can
be very inaccurate. In practice, tolerances must be
set heuristically to try to avoid prohibitive expense
without creating a uselessly inaccurate gradient.

The basic idea of back-optimization is to simply define

the loss in terms of the results of an incomplete opti-
mization. That is, define y∗(w) = opt-alg

y
E(y;w),

where opt-alg denotes an operator that runs a given
optimization algorithm for a specified number of iter-
ations with a predetermined step-size.

One can imagine instead defining an operator that runs
a given optimization algorithm until a specified con-
vergence threshold is reached. However, such an ap-
proach has disadvantages. Most seriously, it can lead
to y∗ being non-differentiable with respect to w.

Our first algorithm takes the derivative of a loss com-
puted after a fixed number of iterations of gradient de-
scent. Here, we adopt the notation of a left-pointing
arrow to denote a (possibly intermediate) derivative
of L with respect to some quantity. So, e.g., ←−w will
eventually come to be equal to dL/dw.

Algorithm: (gradient-descent)

1. Initialize y0.

2. For k = 0, 1, ..., N − 1

(a) yk+1 ← yk − λ∇yE(yk;w)

3. L← Q(yN )

Algorithm: (back-gd)

1.
←−
yN ← ∇Q(yN )

2. ←−w ← 0

3. For k = N − 1, ...0

(a) ←−w ←←−w − λ∂2E(yk;w)
∂w∂yT

←−−−yk+1

←−yk ←←−−−yk+1 − λ∂2E(yk;w)
∂y∂yT

←−−−yk+1

4. Return ∇wL =←−w

Theorem 3. After back-gd executes, ←−w = dL/dw.

Proof. The basic idea is that, by the chain rule,

dL

dw
=

N
∑

k=1

∂yT
k

∂w

dQ

dyk

. (12)

To calculate derivatives, we must calculate the two
terms on the right-hand side on this equation. While
dQ

dyN

is calculated directly, for k ∈ {0, ..., N − 1},

dQ

dyk

=
∂yT

k+1

∂yk

dQ

dyk+1
=

(

I − λ
∂2E(yk;w)

∂y∂yT

) dQ

dyk+1
.

Similarly, we can calculate

∂yT
k+1

∂w
= −λ

∂2E(yk;w)

∂w∂yT
. (13)

One might also fit parameters to initialize y0, in which
case the derivative ←−y0 could be used.

Gradient descent has the advantage of simplicity.
However, second-order optimization methods usually
converge faster, sometimes dramatically so. Per-
haps the simplest second-order method is heavy-ball

(Polyak, 1964), or gradient descent with momentum.
This is only slightly more complex than gradient de-
scent, but often leads to faster optimization.

Theorem 4. After back-hb executes, ←−w = dL/dw.

Proof. As the immediate effects of w are only on pk,

dL

dw
=

∑

k

∂pT
k

∂w

dQ

dpk

. (14)
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Algorithm: (heavy-ball)

1. Initialize y0.

2. Initialize p0 ← 0

3. For k = 0, 1, ..., N − 1

(a) pk+1← −∇yE(yk;w) + γpk

(b) yk+1← yk + λpk+1

4. L← Q(yN )

Algorithm: (back-hb)

1. ←−yN ← ∇Q(yN )

2. ←−pN ← 0

3. ←−w ← 0

4. For k = N − 1, N − 2, ..., 0

(a) ←−yk ←←−−−yk+1
←−−−pk+1←←−−−pk+1 + λ←−−−yk+1

(b) ←−yk ←←−yk − ∂2E(yk;w)
∂y∂yT

←−−−pk+1

←−w ←←−w − ∂2E(yk;w)
∂w∂yT

←−−−pk+1

←−pk ← γ←−−−pk+1

5. Return ∇wL =←−w

The first of the terms on the right hand side is

∂pT
k+1

∂w
= −∂2E(yk;w)

∂w∂yT
, (15)

while the second is

dQ

dpk

=
∂pT

k+1

∂pk

dQ

dpk+1
+

∂yT
k

∂pk

dQ

dyk

(16)

= γ
dQ

dpk+1
+ λ

dQ

dyk

. (17)

This requires the calculation of dQ/dyk, which is

dQ

dyk

=
∂yT

k+1

∂yk

dQ

dyk+1
+

∂pT
k+1

∂yk

dQ

dpk+1
(18)

= I
dQ

dyk+1
− ∂2E(yk;w)

∂y∂yT

dQ

dpk+1
. (19)

Finally, we consider LBFGS (Liu and Nocedal, 1989),
based on Nocedal and Wright’s notation (1999). In
LBFGS, the previous M gradients are used to approx-
imate the inverse Hessian at each inference iteration.
Note, however that back-LBFGS stores all state vec-
tors yk, and thus will have O(ND) storage, rather
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Figure 1: Binary Denoising results with varying num-
bers of inference iterations N . With few inference it-
erations, the back-optimization methods perform sub-
optimally, but with 15 iterations, heavy ball and
LBFGS are similar to implicit.
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Figure 2: Binary denoising results, with N = 15 itera-
tions used for all back-optimization methods. In terms
of training risk vs. learning iterations, implicit-cg per-
forms well. However, as it takes more energy gradient
evaluations per learning iteration, it is much slower.

than O(MD), where D is the dimensionality of y. In
practice, this is a minor issue, as the motivation of
these types of algorithms is to use a small value N . If
necessary, state vectors and gradients could be recom-
puted as needed from logarithmic storage with only a
constant factor increase in time complexity, using the
technique known as checkpointing (Griewank, 1992).

The derivation of back-LBFGS is quite tedious and so
is omitted. It follows the same strategy as for gradient
descent and heavy ball above, mechanically differenti-
ating each step of the algorithm.

The rest of the paper reverts to the notation from the
introduction, making explicit reference to both the in-
puts and outputs of the energy function, and loss func-
tion. In all of the following problems, learning is done
by batch (non limited-memory) BFGS.

We use a step size λ = 1 for all algorithms. Note that
for GD and HB, the effective step is fit in learning, by
adjusting the magnitude of E. For HB, we set γ = 1

2 ,
while for LBFGS, we use M = 5.
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Algorithm: (lbfgs)

1. Initialize y0.

2. For k = 0, 1, ..., N − 1

(a) m ← min(M, k)

(b) gk ← ∇yE(yk;w)

(c) rk ← get-dir

(d) yk+1← yk − λrk

3. L← Q(xN )

Algorithm: (back-lbfgs)

1. ←−yN ← ∇Q(yN )

2. (Initialize ←−g , ←−x )

3. For k = N − 1, ..., 0

(a) m ← min(M, k)

(b) ←−rk ← −λ←−−−yk+1
←−yk ←←−yk +←−−−yk+1

(c) back-get-dir

(d) ←−yk ←←−yk + ∂2E(yk;w)
∂y∂yT

←−gk

←−w ←←−w + ∂2E(yk;w)
∂w∂yT

←−gk

Algorithm: (get-dir)

1. qk ← gk

2. For i = k − 1, ..., k −m

(a) si ← xi+1 − xi

(b) yi ← gi+1 − gi

(c) ρi ← 1/yT
i si

(d) αi ← ρi s
T
i qi+1

(e) qi ← qi+1 − αi yi

3. If k > 0, γ ← s
T

k−1
yk−1

y
T

k−1
yk−1

,

else γ ← γ0.

4. rk−m ← γkqk−m

5. For i = k −m, ..., k − 1

(a) ri+1 ← ri + si(αi − ρi y
T
i ri)

Algorithm: (back-get-dir)

1. For i = k − 1, ..., k −m

(a) ←−ri ←←−−ri+1 − ρiyis
T
i
←−−ri+1

←−si ← (αi − ρi y
T
i ri)
←−−ri+1

←−αi ← sT
i
←−−ri+1

←−yi ← −ρiris
T
i
←−−ri+1

←−ρi ← −yT
i ris

T
i
←−−ri+1

2. ←−−−qk−m← γ←−−−rk−m

←−γ ← qT
k−m
←−−−rk−m

3. If k > 0

(a) ←−−sk−1 ←
yk−1

yT
k−1yk−1

←−γ

←−−−yk−1 ← ( sk−1

y
T

k−1
yk−1

− 2(sT

k−1
yk−1)yk−1

(yT

k−1
yk−1)2

)←−γ

4. For i = k −m, ..., k − 1

(a) ←−−qi+1←←−qi

←−αi ←←−αi − yT
i
←−qi

←−yi ←←−yi − αi
←−qi

(b) ←−ρi ←←−ρi + sT
i qi+1

←−αi

←−si ←←−si + ρiqi+1
←−αi

←−−qi+1←←−−qi+1 + ρisi
←−αi

(c)
←−yi ←←−yi − si

(yT

i
si)2
←−ρi

←−si ←←−si − yi

(yT

i
si)2
←−ρi

(d) ←−gi ←←−gi −←−yi

←−−gi+1←←−−gi+1 +←−yi

(e) ←−yi ←←−yi −←−si

←−−yi+1←←−−yi+1 +←−si

5. ←−gk ←←−gk +←−qk
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N=3 N=9 N=15

gd

hb

lbfgs

input output implicit

Figure 3: Example binary labeling results. Heavy ball,
LBFGS, and implicit all achieve test errors in the range
of 12.7%-13.0%. Though our purpose is not to com-
pare different models, a CRF trained on a larger num-
ber of images from this same datatset achieves test
errors of 12.6-14.0%, depending on the loss (Domke,
2010).

5 Example: Image Labeling

In this section, we compare the above techniques on a
very simple model for structured prediction, similar to
(a multiclass generalization of) the Logistic Random
Field (Tappen et al., 2008). We claim no advantages to
this model, other than being convenient benchmark for
learning algorithms. The goal is to predict a label for
each location i by means of a vector of scores yi. Let y∗

be a set of indicator functions for the true labeling. (If
the true label at location i is 5 then the 5th component
of y∗

i is one and others are zero.) Then, we take the
loss to be the sum of logistic losses over all locations,

Q(y∗,y) = −
∑

i

(

yT
i y∗

i − log
∑

j

exp y∗

ij

)

. (20)

We use a quadratic model, taking a sum of the dif-
ference of linear transformations of score vectors at
neighboring pairs, as well as the difference of linear
transformations of a each score vector with the input
features xi at the same location, i.e.

E(y,x; W1, W2, V1, V2) =
∑

i

||V1yi − V2xi||22

+
∑

(i,j)

||W1yi −W2yj ||22. (21)

The parameters of this problem are somewhat redun-
dant, but this does no harm.

We will apply this to imaging problems, with one loca-
tion for each pixel, and immediate (4-connected) pix-
els considered neighbors. Calculating the gradient of
Q with respect to y∗, or of E with respect to y or the
four weight matrices is not hard, and so details are
suppressed for space. As the energy is quadratic over
y, finding miny E could be done by standard least-
squares methods. However, such methods are super-
linear in the number of variables, and we prefer meth-
ods that readily generalize to more complex energies.

For each of the following problems, we first fit a stan-
dard (unstructured) logistic regression model to ini-
tialize V2 and set V1 = I. To provide a mild “smooth-
ing” we initialize W1 = W2 = 1

10I.

In a first experiment, we trained all methods on a
small binary denoising dataset, designed so that it was
practical to run implicit-CG to completion for com-
parison purposes. Following Domke (2010), we took 8
images from the Berkeley segmentation dataset, bina-
rized them to obtain the true labeling. The noisy input
values are then generated as b(1− t1.25) + (1− b)t1.25,
where b is the true binary label, and t ∈ [0, 1] is ran-
dom. Figures 1-3 show the results. For implicit-CG, a
threshold of 10−4 for both optimization and conjugate
gradients was selected (with the energy normalized by
the number of pixels) after testing 10−1, ..., 10−8 on
a small problem and finding that this was the loosest
threshold not leading to bad line directions and sub-
optimal solutions.

Though in terms of the number of learning iterations,
implicit-CG is the best performing method, this is no
real advantage. In terms of energy function evalua-
tions (time complexity), back-LBFGS is much faster.
Further, despite taking more learning iterations, it
finds a solution with essentially identical risk.

In a second experiment, we consider the semantic seg-
mentation task. Here, the model is slightly generalized
to include non-uniform weights. Specifically, each pair
(i, j) has a vector of “edge features” f(i,j), which weight
the pairwise terms. Thus, we use the energy

E(y,x; W1, W2, V1, V2) =
∑

i

||V1yi − V2xi||22

+
∑

(i,j)

exp(uT fij) ||W1yi −W2yj ||22. (22)

We use the Stanford backgrounds dataset(Gould et al.,
2009a,b), at a resolution of approximately 80 × 107
(images vary slightly in resolution). We use a set of
42 features at each pixel consisting of a constant [1
feature], the pixel position [2 features], the LAB color
space components [3 features], and a histogram of gra-
dients (Dalal and Triggs, 2005) as computed by Dol-
lár’s toolbox (2011) [36 features]. As edge features fij ,
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Figure 4: Scene labeling results, with each algorithm
given 107 energy gradient evaluations, representing
several days on computation time on an 8-core 2.26
GHz PC. Implicit-CG can complete few learning it-
erations within the allowed computation time. Back-
LBFGS outperforms back-GD and back-HB.

Figure 5: Scene labeling results. From top left: In-
put, truth, implicit-CG, back-GD, back-HB, and back-
LBFGS, all with N = 5. (Best in color.)

we use both the l2 norm of the RGB intensities at i
and j and the maximum of a Sobel edge filter at i and
j. Both of these are discretized into 10 bins, for a total
of 20 edge features.

Results are shown in Figs. 4-5. Again, back-LBFGS is
most successful in reducing the loss in a given amount
of computation time.

6 Example: Fields of Experts

Denoising

The next experiment is on learning a discriminative
Fields of Experts (FoE) denoising model (Roth and
Black, 2009). The energy function, corresponding to
MAP inference given Gaussian noise, is
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Figure 6: Training curves on denoising data. The
back-optimization methods perform similarly, while
implicit-cg is slow and suffers from imperfect infer-
ence convergence– sometimes even increasing in train-
ing risk after adding filters.

Table 2: Denoising performance (PSNR) on standard
test images with a noise level of σ = 25. All are for 24
5× 5 filter models with N = 10 inference iterations.

method Barbara Boats House Lena Peppers Average

back-gd 27.93 29.37 31.51 31.21 29.59 29.92

back-hb 27.81 29.33 31.50 31.14 29.51 29.86

back-lbfgs 28.05 29.37 31.52 31.25 29.59 29.96

E(y,x; α, β, f) = eα
∑

k

||ρ(y ∗ fk)||22 + eβ ||y − x||22,

ρ(z) = log(1 + z2), (23)

where {fk} are a set of filters, and ∗ denotes convo-
lution. We found little harm in using a single weight
α for all filters rather than individual weights, as is
more common. The derivatives dE/dα and dE/dβ are
trivial, while dE/dy and dE/dfk are well known (Zhu
and Mumford, 1997, Eq. 14).

As a loss function, we use the squared difference of the
predicted and true images

Q(y∗,y) =
∑

i

(y∗

i − yi)
2. (24)

To reduce boundary effects, the sum in Eq. 24 is taken
with a 5-pixel boundary ignored. At test time, the im-
age boundaries are replicated by 50 pixels before de-
noising, then reduced. As in previous work (Barbu,
2009, Schmidt et al., 2010, Roth and Black, 2009, Sun
and Tappen, 2011), we train on 40 and test on 68
images from the Berkeley dataset. We train on one
100× 100 patch from each image.

Following Barbu (2009), we used a greedy training pro-
cedure, iteratively increasing the numbers of filters (all
retrained at each step). Each new filter is initialized to
a simple smoothing filter with +8 in the center, and−1
in the surrounding 8 pixels. We initialize eα = 10−3
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(a) Clean (b) Noisy (c) GD (d) HB (e) LBFGS

Figure 7: Results for denoising a test image. All algorithms use 24 5×5 filters and N = 10 iterations. Denoising
a 321× 481 image takes about 12 seconds on a 2.26 GHz PC. Differences between algorithms are small.

Table 1: Fields of Experts denoising results on 68 Berkeley segmentation images, with σ = 25 Gaussian noise, in
terms of Peak Signal to Noise ratio (PSNR). Other papers (Sun and Tappen, 2011, Barbu, 2009) give results for
standard denoising methods and more powerful model types. 1 - Linear systems solved using direct methods.

# filt. size training inference PSNR citation

24 5x5 contrastive divergence gd-2500 27.75 Roth and Black (2005)

8 3x3 contrastive divergence gibbs sampling 27.95 Schmidt et al. (2010)

24 5x5 implicit-direct1 conjugate gradients (full) 27.86 Samuel and Tappen (2009)

13 5x5 random search gd-4 28.21 Barbu (2009)

13 5x5 back-gd gd-10 28.31 (ours)

24 5x5 back-gd gd-10 28.39 (ours)

24 5x5 back-hb hb-10 28.35 (ours)

24 5x5 back-lbfgs lbfgs-10 28.39 (ours)

and eβ = 1, meaning the initial energy is dominated
by the ||y − x||22 term.

Results are shown in Tables 1 and 2. Though our
purpose is only to benchmark different learning algo-
rithms, results are not competitive with state of the art
denoising methods. Training time for each of our 13
(respectively 24) 5x5 filter models was approximately
13 (respectively 33) hours on a 8 core 2.26 GHz PC.
Figure 6 shows training curves. Barbu (2009) finds a
training time of around 12 days for his gd-4 model, on
a 8-core 2.4GHz PC (Extrapolating from a published
time of 3 days for a gd-1 model). Implicit-cg worked
poorly on this problem. With a threshold of 10−5, only
14 filters can be fit in the given amount of time and
results appear to suffer from poor search directions.

The improvements over previous work are mostly be-
cause it is practical to train with more filters and in-
ference iterations. LBFGS seemed to produce such
small benefits because inference was initialized to the
noisy image. If one initializes to zero, LBFGS and
HB greatly outperform GD. Still, all methods perform
better when initialized to the noisy image.

7 Discussion

With implicit-CG, too loose a threshold can lead to
learning failure (Fig. 6). An advantage of back opti-
mization methods is that one instead selects the num-
ber of inference iterations N , with a more straightfor-
ward tradeoff between speed and accuracy (Fig. 1).

The biggest advantage of back-LBFGS may simply
be reliability. On some problems, implicit-CG may
converge quickly enough or back-GD might perform
nearly as well. Experimentally, however, back-LBFGS
performs as well in all situations, and better in others.

The methods developed in this paper are likely to be
applicable to the problem of hyper-parameter learning
(Bengio, 2000, Do et al., 2007), where the goal would
be to optimize performance hold-out set after a fixed
number of iterations of training.

Future work might consider other inference methods.
Another possibility would be to tune the parameters
of the optimization at the same time as learning. For
example, the performance of heavy-ball depends on
the parameter γ. Thus, one might pursue dL/dγ, and
include γ as a free parameter in the empirical risk.
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