APPENDIX: Truncated Message Passing

This appendix derives algorithm 2 from the main paper, which calculates the gradient of some loss function
on the predicted marginals obtained after a fixed number of message-passing updates. The following deriva-
tion will be quite terse, as the fundamental idea of the algorithm follows that of reverse-mode automatic
differentiation.

In this entire appendix, the dependence of factors ¢ and predicted marginals p on the input x is suppressed
for simplicity.

The basic iteration of TRW is [1, Theorem 7.2]
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After the messages have been iterated, one obtains predicted marginals via [1, Eqs. 7.13a & 7.13b]
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We prefer to rewrite these rules in the following equivalent forms, which make the normalization steps
explicit. Here, a superscript of “0” denotes a value before normalization.
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Before proceeding with the derivation, there are two lemmas that will be used repeatedly. First note the
general rule for “back-propagating with respect to normalization™

Lemma 1. If b = ———, then
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Because this formula is somewhat awkward, we will simply make reference to it, rather than reproduce it in
the algorithm.

A second lemma is

Lemma 2. If y = H xi", then
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Now, suppose we have run message-passing for a fixed number of iterations. Now, we will calculate some
loss function L(u) of the beliefs, along with the partial derivatives
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By application of Lemma 1, we can obtain
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Holding the messages m constant, we can recover the initial partial derivatives with respect to parameters
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Now, holding ¥ constant, we can initialize derivatives with respect to messages.
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Now, consider the single update of the messages from node ¢ to node s:
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When reverse-propagating derivatives over this update, we must consider three “inputs™ 1) Messages m., ¢
into node ¢, 2) The univariate potentials 1 (y;), and 3) The bivariate potentials ¥ (y;, ys). We calculate these
three derivatives separately.
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