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Abstract

This paper presents a new constraint connecting the sig-
nals in multiple views of a surface. The constraint arises
from a harmonic analysis of the geometry of the imaging
process and it gives rise to a new technique for multiple
view image reconstruction. Given several views of a sur-
face from different positions, fundamentally different infor-
mation is present in each image, owing to the fact that cam-
eras measure the incoming light only after the application
of a low-pass filter. Our analysis shows how the geometry
of the imaging is connected to this filtering. This leads to a
technique for constructing a single output image containing
all the information present in the input images.

1. Introduction
The light field entering a camera is, in general, highly

discontinuous. This signal can be said to contain an “in-
finite” amount of information. All cameras, however, can
only measure a finite amount of information. To cope with
this, good cameras low-pass filter, or “blur” the incoming
light before measuring it. This is sometimes called “anti-
aliasing”. Note that this filtering is a continuous process
that takes place in the optics of the camera. 1

Now, suppose we have two images of a surface, taken
from different positions. If the surface is Lambertian, the
discontinuous light fields entering the camera at each po-
sition contain the same signals, merely warped depending
on the geometry. However, the real, measured signals (after
low-pass filtering) are quite different, even accounting for
the warping. To warp and then filter is not the same as to
filter and then warp.

This effect can be understood in a different way. Take
two images of a surface. The incoming light (the “ideal im-
ages”) contains the same underlying signal. Hence the real,

1If the low-pass filter removes everything above the Nyquist frequency,
the continuous signal can be reconstructed from discrete samples. This
paper will use continuous mathematics- for standard, discretely sampled
images, this can be thought of as referring to the reconstructed signal.

observed images are warped versions of the same (ideal)
image, filtered with an identical low-pass filter. We will
show in Section 2 that they can be thought of instead as the
same (ideal) image, convolved with different, warped ver-
sions of the low-pass filter. This insight makes an analysis
of these effects much easier.

In Section 3 we will show how this can be understood
in the frequency domain. Depending on the effective fil-
tering in each image, different frequencies are attenuated to
different degrees. This leads to a simple idea for multiple
view image reconstruction- to create an output image, just
select each frequency from the input image in which it was
least filtered. This leads to several technical problems- what
range of frequencies to take from each image, and how to
“pull out” a specific range of frequencies from a given im-
age. These problems are addressed in Sections 4 and 5.

Finally, in Section 6 we summarize the algorithm for
reconstruction in the case of affine transformations. This
is then generalized to arbitrary, continuous transformations
in Section 6. Ultimately, we will find that one can recon-
struct an output image simply as a sum of the input images
(warped to a common frame) convolved with different fil-
ters. Fig. 1 summarizes the approach.

1.1. Previous Work

The most closely related previous work is by Wang et al.
[6]. There, the authors model the process of creating one
image from another through the steps of reconstructing the
continuous signal, warping, prefiltering, and resampling.
The image filtering process is modeled as an ideal low-pass
filter. If the columns of images are stacked together as vec-
tors, this ultimately leads to a numerical linear constraint on
the desired image with respect to each observed image. The
desired image is then obtained using least squares to find a
solution approximately satisfying each of these constraints.

Another related area is super-resolution [5]. In super-
resolution, the input images are generally taken from nearby
positions, and the goal is to take advantage of aliasing ef-
fects to construct a higher-resolution image. Unlike this
related work, our method makes no attempt to invert the
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Figure 1. A graphical summary of the method for the affine case. Top row: Input images. Second row: Images warped to a common
coordinate system. Third row: Filters computed for each image. Fourth row: Result of convolution of filters with images from the second
row. Bottom: Reconstructed image. For non-affine motion, the only change is that the filters become spatially variant.



original blurring kernel. Instead, here we essentially just
combine the information in the different input images into
one reconstructed image. It turns out that this can still be
done, with out modeling the blurring process. Thus, this
method would offer little improvement when the input im-
ages are nearby. The point-spread function in real cameras
is difficult to estimate, and does not appear to exactly obey
idealizations like Gaussian or ideal low-pass [4]. If the blur-
ring kernel is modeled, better results (perhaps greatly better)
could be obtained by fusing a deconvolution strategy with
the constraint we use here.

Other work based on similar principles is in the graphics
literature for texture mapping. Greene and Heckbert pro-
posed the elliptical weighted average (EWA) filter [3]. Es-
sentially, a circular filter in the image space is projected to
the texture space, resulting in an elliptical filter. Similar
principles are used here.

2. Theory
2.1. Notation

Given some function f , and a matrix A, we will use the
notation fA to represent f , warped under the motion A.
That is, fA is the function such that,

∀x, fA(x) = f(Ax). (1)

We will use lowercase letters (i, or j) to represent func-
tions in the spatial domain, and uppercase letters (I , or J)
for the frequency domain. Boldface letters (x) represent
vectors.

2.2. Derivation

Suppose that, if x1 in the first image corresponds to x2

in the second image, then x2 = Ax1. So if i1 is a func-
tion representing the first “ideal” image, and i2 is a function
representing the second,

x2 = Ax1 =⇒ i2(x2) = i1(x1). (2)

Hence, for all x,

i2(x) = iA
−1

1 (x). (3)

i1 and i2 should be thought of as essentially arbitrary real
functions. Now, the fundamental assumption here is that we
do not observe these ideal images. One can only measure
the ideal image after convolution with some low-pass filter,
e. Let j1and j2 denote the real, measured images.

j1(x) = [i1 ∗ e](x) (4)

j2(x) = [i2 ∗ e](x) (5)

Now, use Eqn. 3 to change the expression for j2, to make
its relationship to j1 more explicit.

j2(x) = [iA
−1

1 ∗ e](x) (6)

Now, we will use the following Theorem. (see Ap-
pendix)

[fA ∗ g](x) =
1
|A| [f ∗ gA−1

](Ax) (7)

Applying this, we have,

j2(x) =
1

|A−1| [i1 ∗ eA](A−1x). (8)

So, finally,

jA
2 (x) = |A|[i1 ∗ eA](x) (9)

Contrast this with the expression for j1 in Eqn. 4. It is as
if, instead of being filtered with e, it was filtered with |A|eA.

This simple result has important implications- if we have
multiple views of some surface, even after we warp the im-
ages into a common coordinate system, different signals are
present. However, these signals can be understood sim-
ply as the result of the same ideal image, convolved with
warped versions of the same filter.

This is most intuitive in the frequency domain. Let E
denote the Fourier transform of e, J1that of j1, and so on.
Then, by the convolution theorem,

J1(u) = [I1 · E](u) (10)

The analogous equations is also true for J2, but we will
continue our analysis from Eqn. 9. We will use the follow-
ing theorem, which is essentially a special case of the Affine
Fourier Theorem [1] [2].

If F{f(x)} = F (u) , then F{fA(x)} =
1
|A|F

A−T

(u)

(11)
Now apply the theorem to eA.

F{eA(x)} =
1
|A|E

A−T

(u) (12)

So we can clearly see the contrast between the Fourier
transform of the first image, and the Fourier transform of
the warped version of the second image

F{jA
2 (x)} = [I1 · EA−T

](u) (13)

In the frequency domain, it is as if, rather than being
filtered with E, it was filtered with EA−T

.
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Figure 2. Different filters in the frequency domain.

3. Intuition
Suppose we have many views of a surface, warped under

different motions Ai. Suppose also that E is a pure low-
pass filter. (This is only for the purpose of explanation. We
assume only that E is a symmetric, decreasing function.)

This situation is pictured in Fig. 2 for the two motions,

A1 =
[

1 0
0 .75

]
, A2 =

[
.75 0
0 1

]
.

It is natural to think that if we have these two images,
we could reconstruct an image which contains the best fre-
quency information from each. This is shown in part (c).

Now, for images with affine motion, the following sim-
ple algorithm will perform multiple view reconstruction.
(We emphasize that this is only for the sake of explanation-
the results in this paper do not use this algorithm.)

1. Input a set of images, j1, j2, ... jn, and a corresponding
set of motions, A1, A2, ... An

2. Warp each image to the central coordinate system, to
obtain jAi

i (x).

3. For each image, ji compute the Fourier Transform of
the warped image, F{jAi

i }(u) = [I · EA−T
i ](u).

4. Create the reconstructed image in the Fourier do-
main. For all u, set K(u) = F{jAl

l }(u), where
l = argmini |A−T

i u|.

5. Output the image in the spatial domain. k(x) =
F−1{K}.

Steps 1-3 simply create the frequency domain representa-
tions of the input images in a common coordinate system.
To understand step 4, notice that for each frequency, we
would like to take it from each image in which it has been
filtered least. Now, since we assume that E(u) is a mono-
tonically decreasing function of |u| only, we would like to
select the motion for which |A−T

i u| is least.
However, this simple algorithm could only work when

the global motion is affine. We will present a different al-
gorithm that operates completely in the spatial domain. We

will later show that this allows us to do reconstruction for
transformations that are only locally affine- for example full
projective transformations. Nevertheless, the algorithm op-
erates on the same principles as the simple one above. Be-
fore we can present the algorithm, we need to develop two
tools.

4. The Frequency Slice Filter
Here, the goal is to create a filter that will pass a certain

range of frequencies. More specifically, given θ1and θ2,
we would like a filter c such that, in the frequency domain
(Fig. 3(a)), (where ∠u denotes the “angle” of u: if u =
r[cos θ, sin θ]T , then ∠u = θ)

Cθ1,θ2(u) =

{
1 θ1 ≤ ∠u ≤ θ2

0 else
(14)

First, suppose we would like to create a filter that passes
exactly those frequencies in the first and third quadrants.
(That is, θ1 = 0, θ2 = π/2.) Naively, we would just plug
these values into the above equation. However, if we do this,
the inverse Fourier Transform will not converge. A conve-
nient fact is useful here- the images have already been low-
pass filtered. Hence, it does not matter what the filter does
to very high frequencies. So, instead, we will define the
following filter, cutting off higher frequencies. (Fig. 3(b))

C0,π/2,r(u) =

{
1 0 ≤ ∠u ≤ π/2, and |u| ≤ r

0 else
(15)

The filters corresponding to different r will always be
different. Nevertheless, once r is sufficiently high (above
the highest frequency present in an image), the result of ap-
plying the different filters to an image will be the same.

Before extending this to the case of other θ1, θ2, we will
find the inverse Fourier transform.

c0,π/2,r(x) = F−1{C0,π/2,r(u)} (16)

=
∫
u

C0,π/2,r(u) exp(2πiuTx)du (17)

=
∫
0≤u≤r

[exp(2πiuTx) + exp(−2πiuTx)]du (18)

=
∫
0≤u≤r

2 cos(2πuT x)du (19)

c0,π/2,r(x) =
1

2π2xy [cos(2πrx) + cos(2πry) − cos(2πr(x + y)) − 1]

(20)
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Figure 3. The frequency slice filter in the frequency domain.
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Figure 4. The frequency slice filter in the spatial domain.

Examples are shown in Fig. 4. Notice that this function
has linear decay in the spatial domain. This is a potential
problem, since the filter will need to be large to capture the
entire profile. In practice, however, we have found that this
was not a problem. We used matrices of size 51 by 51 to
represent the filters, and found that using larger sizes re-
sulted in little change to the output. This will be important
later, because in projective reconstruction, the transforma-
tion must be close to affine in a window the size of this filter.
Regardless, it would certainly be better to use a filter with
faster decay. This is left as future work.

Now, to define the filter for arbitrary angles, we will
again use the special case of the Affine Fourier Theorem,
as in Eqn. 11. Given θ1, and θ2, define the following ma-
trix:

V =
[

cos θ1 cos θ2

sin θ1 sin θ2

]
(21)

Now, we can define the frequency slice filter for arbitrary
angles.

cθ1,θ2,r(x) = |V |cV T

0,π/2,r(x) (22)

To see this, apply Eqn. 11 to the right hand side

F{|V |cV T

0,π/2,r(x)} = |V | · |V −T |C(V T )−T

0,π/2,r (u) (23)

F{|V |cV T

0,π/2,r(x)} = CV −1

0,π/2,r(u) (24)

To understand the presence of V −1, notice that it will
send [cos θ1, sin θ1]T to [1, 0]T , and [cos θ2, sin θ2]T to

(a) (b) (c)

Figure 5. Frequency Segmentation.

[0, 1]T . Hence only those frequencies in the correct range
of angles will be passed. Fig. 3 (c) shows an example with
θ1 = π/10, θ2 = 4π/10.

5. Partitioning Frequency Space
Given the frequency slice filters, we are nearly prepared

to do multiple view reconstruction for affine transforma-
tions. The main remaining problem is the following: Sup-
pose we are given a set of images warped to a common
frame, {jAi

i (x)}, as well as the set of motions producing
those images, {Ai}. For a given frequency u having angle
θ, in which image is that frequency least filtered? (Notice
that this will depend only on the angle of u, and not on its
magnitude.)

Recall from above that

F{jAi

i (x)} = [I · EA−T
i ](u).

So, for each angle θ, we would like to choose a motion
Ai, such that E(A−T

i [cos θ, sin θ]T ) is maximum. This will
be the case when |A−T

i [cos θ, sin θ]T | is minimum. We can
picture the situation by drawing a curve, where for each an-
gle θ, we use the length |A−T

i [cos θ, sin θ]T |. (Fig 5 (a).)
To “carve up” the space of frequencies we need two steps.

1. For each pair of motions Ai, and Aj , find points for
which the curves meet. That is, find u such that

|A−T
i u| = |A−T

j u|.

uT (A−1
i A−T

i − A−1
j A−T

j )u = 0

Notice that this does not depend on the magnitude of
u. If we assume that either the first or second com-
ponent of u is nonzero, this can be solved by setting
u = [ux, 1]T , or u = [1, uy]T , and solving a quadratic
equation. Complex values as a solution indicate that
the two curves do not intersect.

2. Find the angles of all the points u found in the previous
step and sort them. Now, form pairs from all adjacent
angles. This results in a sequence of pairs of angles,
< θ1, θ2 >, < θ2, θ3 > ... < θm−1, θm >. It now
remains to find the motion that has the smallest value



in each region. The simplest procedure is simply to
test all motions and find,

argmin
i

|A−T
i

[
cos(.5(θj + θj+1)
sin(.5(θj + θj+1))

]
|. (25)

This works, but has a worst-case time complexity of
O(n3), where n is the number of input images. How-
ever, an optimization can reduce this to O(n2 log n):
for each angle θj keep track of the motions whose in-
tersection produced that angle. Then, if some motion
Ai is minimum in the region < θj−1, θj >, Ai will
also be the minimum in the region < θj , θj+1 >, un-
less θj was produced by the intersection of Ai with
some other motion Ak, and Ak is “smaller” than Ai in
the sense of Eqn. 25. This means that we only need to
test at most two motions in each region.

The frequency segmentation process is illustrated in Fig. 5.
(a) shows the magnitude of |A−T

i [cos θ, sin θ]T |, for each
motion Ai, and each angle θ. In (b), the angles are found
where the motions “intersect”. In (c), the shape is shown,
where for each angle, the magnitude is taken from the best
motion.

6. Affine Reconstruction
Algorithm 1 summarizes the method for reconstruction

of images warped under affine transformations. The method
is fairly simple- first the frequency space is partitioned, then
the final image is reconstructed as the sum of the input im-
ages convolved with different filters. Notice that this algo-
rithm takes place entirely in the spatial domain.

In our implementation, the convolution in step 4 takes
place discretely, rather than as an integration. For the results
shown in this paper, we use r = .3. This is high enough to
avoid filtering out frequencies that are present in the input
images, but low enough to allow for the filters to be reason-
ably approximated with discrete samples.

7. General Reconstruction
The theory developed thus far has all been for the case

of affine motion. We can observe, however, that it is essen-
tially a local process- the filters have a small area of support.
It turns out that we can extend the method to essentially ar-
bitrary differentiable transformations. This is because any
differentiable transformation can be locally approximated
as affine. We will give examples here for projective trans-
formations, but it is simplest to first show how to approxi-
mate a general transformation. Suppose that some function
t(x) gives the transformation, so

if x2 = t(x1) , then i2(x2) = i1(x1). (26)

It follows that

Algorithm 1 Affine Reconstruction

1. Input a set of images, j1, j2, ... jn, and a corresponding
set of motions, A1, A2, ... An

2. Warp each image to the central coordinate system, to
obtain jAi

i (x).

3. Use the method described in Section 5 to partition the
frequency space. Obtain a set of pairs of angles, along
with the best motion in that region, < θi1, θi2, Ai >.

4. Output k =
∑

i[j
Ai

i ∗ cθi1,θi2,r]

∀x, i2(x) = i1(t−1(x)). (27)

Now, write j2 in the usual way.

j2(x) = [i2 ∗ e](x) (28)

j2(x) =
∫
x′

i1(t−1(x − x′))e(x′)dx′ (29)

Notice here that e(x′) will be zero unless x′ is small. So,
we will use a local approximation for the transformation.

t(x − x′) ≈ t(x) − Jxx′ (30)

Where Jx denotes the Jacobian of t, evaluated at the
point x. Now, take the inverse.

t−1(x − x′) ≈ t−1(x) − J−1
x x′ (31)

Substitute this in the above expression for j2.

j2(x) =
∫
x′

i1(t−1(x) − J−1
x x′)e(x′)dx′ (32)

Now, change variables. Set y = J−1
x x′.

j2(x) =
∫
y

i1(t−1(x) − y)e(Jxx′)|Jx|dy (33)

j2(x) = |Jx|[i1 ∗ eJx](t−1(x)) (34)

So finally, we have a simple local approximation.

j2(t(x)) = |Jx|[i1 ∗ eJx ](x) (35)

The method for general reconstruction is given as Algo-
rithm 2. Conceptually, the only difference with affine re-
construction is that the final image k is the sum of spatially
varying filters convolved with the input images.



Algorithm 2 General Reconstruction

1. Input a set of images, j1, j2, ... jn, and a corresponding
set of transformations, t1, t2, ... tn

2. Warp each image to the central coordinate system, to
obtain jti

i (x).

3. For each point x,

(a) For each transformation ti, compute the Jacobian
at x, Jx,i.

(b) Use the method described in Section 5 to parti-
tion the frequency space. Obtain a set of pairs of
angles, along with the best motion in that region,
< θi1, θi2, Jx,i >.

(c) Set k(x) =
∑

i[j
Jx,i

i ∗ cθi1,θi2,r](x)

4. Output k.

7.1. Projective Transformations

We will give specific results for the case of projective
transformations. The only issue is how to compute the local
Jacobian of the transformation. In non-projective coordi-
nates, let x1 = [x1, y1]T , x2 = [x2, y2]T . Then we can
write the transformation as

x2 = (h1x1 + h2y1 + h3)/(h7x1 + h8y1 + h9), (36)

y2 = (h4x1 + h5y1 + h6)/(h7x1 + h8y1 + h9). (37)

The Jacobian is simply a matrix containing four partial
derivatives. These are easily evaluated. (See additional ma-
terial.)

Jx1 =

[
∂x2
∂x1

∂x2
∂y1

∂y2
∂x1

∂y2
∂y1

]

8. Discussion
Figure 6 shows an example reconstruction for affine mo-

tion. In this experiment, images are of the same surface
under four different transformations. Notice that when
warped to a common coordinate system, each image is vis-
ibly blurred. Close observation reveals that this blurring is
different in each of the warped images. Still, the recon-
structed image is quite sharp. The meaning of this is per-
haps surprising- all the high-frequency content in the recon-
structed image is present in the input, just distributed among
the different images. Figure 7 shows a similar example for

reconstruction under projective motion. In this case all four
input images are shown. (Please see the extra material for
more experiments.)

This paper has presented an analysis of the filtering done
by the imaging process in multiple views taken of a surface.
We have seen that if we warp images to a common frame,
they can be understood as the same ideal image, convolved
with distorted versions of the same low-pass filter. Here this
has led to an image reconstruction technique, but the same
ideas could be useful in different areas. One important ap-
plication is the problem of image matching. To correspond
surface regions, it is necessary to understand the relation-
ship between the underlying signals. This analysis could be
useful in creating invariant region descriptors for matching
when there is large motion between the images.
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A. Appendix
Theorem

[fA ∗ g](x) =
1
|A| [f ∗ gA−1

](Ax) (38)

Proof

[fA ∗ g](x) =
∫
x′

f(Ax − Ax′)g(x′)dx′ (39)

We would like to change variables. Define y = Ax′.
Then, we can re-write the integral.

[fA ∗ g](x) =
1
|A|

∫
y

f(Ax − y)g(A−1y)dy (40)

[fA ∗ g](x) =
1
|A| [f ∗ gA−1

](Ax) (41)
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Figure 6. An example affine reconstruction. Left column: Input
images. Right column: Input images warped to a common coordi-
nate system. Bottom: Reconstructed output image.
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Figure 7. An example projective reconstruction. Left column: In-
put images. Right column: Input images warped to a common
coordinate system. Bottom: Reconstructed output image.


