
Diffusion-based variational inference

Justin Domke, University of Massachusetts Amherst

these slides: t.ly/9vZvk or people.cs.umass.edu/domke/diffusion.pdf

xp0q
dx “ fpx, tq dt ` gptq dw

dx “ rfpx, tq ´ gptq2 rx log ptpxq s dt ` gptq dw̄
Score function

Data Noise

PriorSamples

Figure 1: We can use an SDE to diffuse data to a simple noise distribution. This SDE can be reversed
once we know the score of the marginal distribution at each intermediate time step, rx log ptpxq.

associated reverse-time diffusion process [1, 16] given by the following SDE

dx “ “
fpx, tq ´ gptq2rx log ptpxq‰

dt ` gptq dw̄, (2)

where w̄ is now a standard Wiener process in the reverse-time direction. Here dt represents an
infinitesimal negative time step, meaning that the above SDE must be solved from t “ T to t “ 0.
This reverse-time SDE results in exactly the same diffusion process txptqutPr0,T s as Eq. (1), assuming
it is initialized with xpT q „ pT pxq. This result allows for the construction of diffusion-based
generative models, and its functional form reveals the key target for learning: the time-dependent
score function rx log ptpxq. Again, see Fig. 1 for a helpful visualization of this two-part formulation.

In order to estimate rx log ptpxq from a given dataset, we fit the parameters of a neural network
s✓px, tq, termed a score-based model, such that s✓px, tq « rx log ptpxq for almost all x P RD and
t P r0, T s. Unlike many likelihood-based generative models, a score-based model does not need to
satisfy the integral constraints of a density function, and is therefore much easier to parameterize.
Good score-based models should keep the following least squares loss small

JSMp✓;�p¨qq :“ 1

2

ª T

0

Eptpxqr�ptq krx log ptpxq ´ s✓px, tqk2
2s dt, (3)

where � : r0, T s Ñ R°0 is a positive weighting function. The integrand features the well-known
score matching [23] objective Eptpxqrkrx log ptpxq ´ s✓px, tqk2

2s. We therefore refer to Eq. (3) as a
weighted combination of score matching losses.

With score matching techniques [56, 46], we can compute Eq. (3) up to an additive constant and
minimize it for training score-based models. For example, we can use denoising score matching [56]
to transform JSMp✓;�p¨qq into the following, which is equivalent up to a constant independent of ✓:

JDSMp✓;�p¨qq :“ 1

2

ª T

0

Eppxqp0tpx1|xqr�ptq��rx1 log p0tpx1 | xq ´ s✓px1, tq��2

2
s dt. (4)

Whenever the drift coefficient f✓px, tq is linear in x (which is true for all SDEs in [48]), the transition
density p0tpx1 | xq is a tractable Gaussian distribution. We can form a Monte Carlo estimate of
both the time integral and expectation in JDSMp✓;�p¨qq with a sample pt,x,x1q, where t is uniformly
drawn from r0, T s, x „ ppxq is a sample from the dataset, and x1 „ p0tpx1 | xq. The gradient
rx1 log p0tpx1 | xq can also be computed in closed form since p0tpx1 | xq is Gaussian.

After training a score-based model s✓px, tq with JDSMp✓;�p¨qq, we can plug it into the reverse-time
SDE in Eq. (2). Samples are then generated by solving this reverse-time SDE with numerical SDE
solvers, given an initial sample from ⇡pxq at t “ T . Since the forward SDE Eq. (1) is designed such
that pT pxq « ⇡pxq, the reverse-time SDE will closely trace the diffusion process given by Eq. (1) in
the reverse time direction, and yield an approximate data sample at t “ 0 (as visualized in Fig. 1).

3 Likelihood of score-based diffusion models

The forward and backward diffusion processes in score-based diffusion models induce two probabilis-
tic models for which we can define a likelihood. The first probabilistic model, denoted as pSDE

✓ pxq,
is given by the approximate reverse-time SDE constructed from our score-based model s✓px, tq. In
particular, suppose tx̂✓ptqutPr0,T s is a stochastic process given by

dx̂ “ “
fpx̂, tq ´ gptq2s✓px̂, tq‰

dt ` gptq dw̄, x̂✓pT q „ ⇡. (5)

3

meanwhile...

Variational Inference with Hamiltonian Monte Carlo

Christopher Wolf christopher.wolf@tum.de

Maximilian Karl⇤ & Patrick van der Smagt⇤ karlma@in.tum.de

Chair of Robotics and Embedded Systems, Department of Informatics,
Technische Universität München, Germany

Abstract

Variational inference lies at the core of
many state-of-the-art algorithms. To im-
prove the approximation of the posterior be-
yond parametric families, it was proposed
to include MCMC steps into the variational
lower bound. In this work we explore this
idea using steps of the Hamiltonian Monte
Carlo (HMC) algorithm, an e�cient MCMC
method. In particular, we incorporate the
acceptance step of the HMC algorithm, guar-
anteeing asymptotic convergence to the true
posterior. Additionally, we introduce some
extensions to the HMC algorithm geared to-
wards faster convergence. The theoretical ad-
vantages of these modifications are reflected
by performance improvements in our experi-
mental results.

1. Introduction

In modern data analysis probabilistic graphical models
have emerged as a powerful and intuitive tool to cap-
ture and reveal hidden structures present in the data.
Training and interpreting these models requires infer-
ring the hidden variables of the observed data under
the model. In many state-of-the-art graphical model
approaches this key task is performed based on vari-
ational inference, a method converting complex in-
ference problems into high-dimensional optimization
problems (Jordan et al., 1999). For instance Ho↵man
et al. (2013) follow this approach for large scale text-
to-topic models and Gregor et al. (2015); Rezende et
al. (2014); Kingma and Welling (2014) apply it to the
generation of images.

⇤Patrick van der Smagt and Maximilian Karl are also
a�liated with fortiss, An-Institut der Technischen Univer-
sität München, Germany

Variational inference approximates the intractable
true posterior distribution by the best-fitting candi-
date from a fixed family of distributions. While this
makes the approximation procedure very fast, the re-
striction to a usually quite limited family of distri-
butions means, that often the true posterior is only
poorly approximated. This in turn hampers the train-
ing and final performance of the graphical model.
Many suggestions for broader families of candidate dis-
tributions have been put forward allowing for more
complicated approximations. A powerful framework,
unifying several previous approaches, is the work by
Rezende and Mohamed (2015) on normalizing flows.
Here, arbitrarily complicated distributions are gener-
ated by applying a sequence of invertible mappings to a
simple initial distribution. An interesting example for
such a normalizing flow is the Hamiltonian variational
inference method derived by Salimans et al. (2015),
where steps of the Hamiltonian Monte Carlo (HMC)
algorithm are used to transform the initial distribu-
tion. Since the HMC algorithm generates a Markov
chain converging to the true posterior, this extension
to variational inference is particularly appealing, be-
cause the generated family of distributions is guaran-
teed to contain the true posterior (provided enough
steps are taken). However, Salimans et al. (2015) left
out the acceptance step of the HMC algorithm, so that
convergence to the true posterior is no longer ensured
and the true posterior need not be within the gener-
ated distribution family.

In this work we exploit the structure of the HMC al-
gorithm to derive the variational lower bound for the
case, where a distribution is transformed by steps of
the full HMC algorithm including the acceptance step.
By doing so, we regain the asymptotic guarantee of a
perfect approximation. Additionally, we present two
extensions to the HMC algorithm, which can be in-
cluded in the approximation procedure and speed up
the convergence to the true posterior. We begin by re-
vising variational inference, MCMC methods and the

ar
X

iv
:1

60
9.

08
20

3v
1

 [s
ta

t.M
L]

 2
6

Se
p

20
16

Stochastic Normalizing Flows

Hao Wu
Tongji University

Shanghai, P.R. China
wwtian@gmail.com

Jonas Köhler
FU Berlin

Berlin, Germany
jonas.koehler@fu-berlin.de

Frank Noé
FU Berlin

Berlin, Germany
frank.noe@fu-berlin.de

Abstract

The sampling of probability distributions specified up to a normalization constant
is an important problem in both machine learning and statistical mechanics. While
classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC)
or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing
interest in using normalizing flows in order to learn the transformation of a simple
prior distribution to the given target distribution. Here we propose a generalized
and combined approach to sample target densities: Stochastic Normalizing Flows
(SNF) – an arbitrary sequence of deterministic invertible functions and stochastic
sampling blocks. We show that stochasticity overcomes expressivity limitations
of normalizing flows resulting from the invertibility constraint, whereas trainable
transformations between sampling steps improve efficiency of pure MCMC/LD
along the flow. By invoking ideas from non-equilibrium statistical mechanics
we derive an efficient training procedure by which both the sampler’s and the
flow’s parameters can be optimized end-to-end, and by which we can compute
exact importance weights without having to marginalize out the randomness of the
stochastic blocks. We illustrate the representational power, sampling efficiency and
asymptotic correctness of SNFs on several benchmarks including applications to
sampling molecular systems in equilibrium.

1 Introduction

A common problem in machine learning and statistics with important applications in physics is the
generation of asymptotically unbiased samples from a target distribution defined up to a normalization
constant by means of an energy model u(x):

µX(x) / exp(�u(x)). (1)
Sampling of such unnormalized distributions is often done with Markov Chain Monte Carlo (MCMC)
or other stochastic sampling methods [13]. This approach is asymptotically unbiased, but suffers
from the sampling problem: without knowing efficient moves, MCMC approaches may get stuck in
local energy minima for a long time and fail to converge in practice.

Normalizing flows (NFs) [41, 40, 5, 35, 6, 33] combined with importance sampling methods are
an alternative approach that enjoys growing interest in molecular and material sciences and nuclear
physics [28, 25, 32, 22, 1, 30]. NFs are learnable invertible functions, usually represented by a neural
network, pushing forward a probability density over a latent or “prior” space Z towards the target
space X . Utilizing the change of variable rule these models provide exact densities of generated
samples allowing them to be trained by either maximizing the likelihood on data (ML) or minimizing
the Kullback-Leibler divergence (KL) towards a target distribution.

Let FZX be such a map and its inverse FXZ = F�1
ZX . We can consider it as composition of T

invertible transformation layers F0, ..., FT with intermediate states yt given by:

yt+1 = Ft(yt) yt = F�1
t (yt+1) (2)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
2.

06
70

7v
3

 [s
ta

t.M
L]

 2
6

O
ct

 2
02

0

Monte Carlo Variational Auto-Encoders

Achille Thin 1 Nikita Kotelevskii 2 Alain Durmus 3 Maxim Panov 2 Eric Moulines 1 4 5 Arnaud Doucet 6

Abstract

Variational auto-encoders (VAE) are popular deep
latent variable models which are trained by max-
imizing an Evidence Lower Bound (ELBO). To
obtain tighter ELBO and hence better variational
approximations, it has been proposed to use im-
portance sampling to get a lower variance estimate
of the evidence. However, importance sampling
is known to perform poorly in high dimensions.
While it has been suggested many times in the lit-
erature to use more sophisticated algorithms such
as Annealed Importance Sampling (AIS) and its
Sequential Importance Sampling (SIS) extensions,
the potential benefits brought by these advanced
techniques have never been realized for VAE: the
AIS estimate cannot be easily differentiated, while
SIS requires the specification of carefully cho-
sen backward Markov kernels. In this paper, we
address both issues and demonstrate the perfor-
mance of the resulting Monte Carlo VAEs on a
variety of applications.

1. Introduction
Variational Auto-Encoders (VAE) introduced by (Kingma &
Welling, 2013) are a very popular class of methods in unsu-
pervised learning and generative modelling. These methods
aim at finding a parameter ✓ maximizing the marginal log-
likelihood p✓(x) =

R
p✓(x, z)dz where x 2 RN is the

observation and z 2 Rd is the latent variable. They rely on
the introduction of an additional parameter � and a family
of variational distributions q�(z|x). The joint parameters
{✓, �} are then inferred through the optimization of the

*Equal contribution 1CMAP, Ecole Polytechnique, Univer-
site Paris-Saclay, France 2CDISE, Skolkovo Institute of Science
and Technology, Moscow, Russia 3Ecole Nationale Supérieure
Paris-Saclay, France 4HDI Lab, HSE University, Moscow, Rus-
sia 5Centre de recherche Lagrange en mathematiques et cal-
cul 6University of Oxford. Correspondence to: Achille Thin
<achille.thin@polytechnique.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Evidence Lower Bound (ELBO) defined as

L(✓, �) =

Z
log

✓
p✓(x, z)

q�(z|x)

◆
q�(z|x)dz

= log p✓(x)�KL
�
q�(z|x) k p✓(z|x)

�
6 log p✓(x) .

The design of expressive variational families has been the
topic of many works and is a core ingredient in the effi-
ciency of VAE (Rezende & Mohamed, 2015; Kingma et al.,
2016). Another line of research consists in using positive
unbiased estimators p̂✓(x) of the loglikelihood p✓(x) for
q�, i.e. Eq� [p̂✓(x)] = p✓(x). Indeed, as noted in (Mnih &
Rezende, 2016), it follows from Jensen’s inequality that

L(✓, �) = Eq� [log p̂✓(x)] 6 log p✓(x) . (1)

A Taylor expansion shows that

L(✓, �) ⇡ log p✓(x)� 1

2
varq�


p̂✓(x)

p✓(x)

�
;

see e.g. (Maddison et al., 2017; Domke & Sheldon, 2018)
for formal results. Hence the ELBO becomes tighter as the
variance of the estimator decreases.

A common method to obtain an unbiased estimate
is built on importance sampling; i.e. p̂✓(x) =

n�1
Pn

i=1[p✓(x, zi)/q�(zi|x)] for zi
i.i.d.⇠ q�(·|x). In partic-

ular, combined with (1), we obtain the popular Importance
Weighted Auto Encoder (IWAE) proposed by (Burda et al.,
2015). However, it is expected that the relative variance
of this importance-sampling based estimator typically in-
creases with the dimension of the latent z. To circumvent
this issue, we suggest in this paper to consider other esti-
mates of the evidence which have shown great success in the
Monte Carlo literature. In particular, Annealed Importance
Sampling (AIS) (Neal, 2001; Wu et al., 2016), and its Se-
quential Importance Sampling (SIS) extensions (Del Moral
et al., 2006) define state-of-the-art estimators of the evi-
dence. These algorithms rely on an extended target distri-
bution for which an efficient importance distribution can be
defined using non-homogeneous Markov kernels.

It has been suggested in various contributions that AIS could
be useful to train VAE (Salimans et al., 2015; Wu et al.,
2016; Maddison et al., 2017; Wu et al., 2020). However, to
the authors knowledge, no contribution discusses how an

ar
X

iv
:2

10
6.

15
92

1v
1

 [s
ta

t.M
L]

 3
0

Ju
n

20
21

Differentiable Annealed Importance Sampling
and the Perils of Gradient Noise

Guodong Zhang1,2, Kyle Hsu3, Jianing Li1, Chelsea Finn3, Roger Grosse1,2

1University of Toronto, 2Vector Institute, 3Stanford University
{gdzhang, rgrosse}@cs.toronto.edu

{kylehsu, cbfinn}@cs.stanford.edu, jrobert.li@mail.utoronto.ca

Abstract

Annealed importance sampling (AIS) and related algorithms are highly effective
tools for marginal likelihood estimation, but are not fully differentiable due to the
use of Metropolis-Hastings correction steps. Differentiability is a desirable property
as it would admit the possibility of optimizing marginal likelihood as an objective
using gradient-based methods. To this end, we propose Differentiable AIS (DAIS),
a variant of AIS which ensures differentiability by abandoning the Metropolis-
Hastings corrections. As a further advantage, DAIS allows for mini-batch gradients.
We provide a detailed convergence analysis for Bayesian linear regression which
goes beyond previous analyses by explicitly accounting for the sampler not having
reached equilibrium. Using this analysis, we prove that DAIS is consistent in the
full-batch setting and provide a sublinear convergence rate. Furthermore, motivated
by the problem of learning from large-scale datasets, we study a stochastic variant
of DAIS that uses mini-batch gradients. Surprisingly, stochastic DAIS can be
arbitrarily bad due to a fundamental incompatibility between the goals of last-iterate
convergence to the posterior and elimination of the accumulated stochastic error.
This is in stark contrast with other settings such as gradient-based optimization and
Langevin dynamics, where the effect of gradient noise can be washed out by taking
smaller steps. This indicates that annealing-based marginal likelihood estimation
with stochastic gradients may require new ideas.

1 Introduction

Marginal likelihood (ML), sometimes called evidence, is a central quantity in Bayesian learning
as it measures how well a model can describe a particular dataset. It is commonly used to select
hyperparameters for Gaussian processes [Rasmussen, 2003], where either closed-form solutions or
accurate, tractable approximations are available. However, it is more often the case that computing
ML is computationally intractable, as it involves summation or integration over high-dimensional
model parameters or latent variables. In this case, one must resort to numerical methods or other
approximations [Kass and Raftery, 1995]. In the context of model comparison (e.g., evaluating gener-
ative models [Wu et al., 2016, Huang et al., 2020]), annealed importance sampling (AIS) [Neal, 2001]
is one of the most popular and effective algorithms. Notably, AIS is closely related to other generic
ML estimators that yield accurate estimation [Grosse et al., 2015], including Sequential Monte Carlo
(SMC) [Doucet et al., 2001] and nested sampling [Skilling et al., 2006]. Under some assumptions,
AIS is able to produce accurate estimates of marginal likelihood given enough computation time (it
converges to the true ML value quickly by adding more intermediate distributions).

AIS alternates between Markov chain Monte Carlo (MCMC) transitions and importance sampling
updates, where the MCMC step typically involves a non-differentiable Metropolis-Hastings (MH)
correction. Unfortunately, the non-differentiability precludes gradient-based optimization of the
sampler and complicates theoretical analysis. To deal with this, we marry AIS with Hamiltonian

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

ar
X

iv
:2

10
7.

10
21

1v
2

 [s
ta

t.M
L]

 2
6

O
ct

 2
02

1

Bayesian Inference via Sparse Hamiltonian Flows

Naitong Chen Zuheng Xu Trevor Campbell
Department of Statistics

University of British Columbia
[naitong.chen | zuheng.xu | trevor]@stat.ubc.ca

Abstract

A Bayesian coreset is a small, weighted subset of data that replaces the full dataset
during Bayesian inference, with the goal of reducing computational cost. Although
past work has shown empirically that there often exists a coreset with low inferential
error, efficiently constructing such a coreset remains a challenge. Current methods
tend to be slow, require a secondary inference step after coreset construction,
and do not provide bounds on the data marginal evidence. In this work, we
introduce a new method—sparse Hamiltonian flows—that addresses all three of
these challenges. The method involves first subsampling the data uniformly, and
then optimizing a Hamiltonian flow parametrized by coreset weights and including
periodic momentum quasi-refreshment steps. Theoretical results show that the
method enables an exponential compression of the dataset in a representative
model, and that the quasi-refreshment steps reduce the KL divergence to the target.
Real and synthetic experiments demonstrate that sparse Hamiltonian flows provide
accurate posterior approximations with significantly reduced runtime compared
with competing dynamical-system-based inference methods.

1 Introduction

Bayesian inference provides a coherent approach to learning from data and uncertainty assessment in
a wide variety of complex statistical models. Two standard methodologies for performing Bayesian
inference in practice are Markov chain Monte Carlo (MCMC) [1; 2; 3, Ch. 11,12] and variational
inference (VI) [4, 5]. MCMC simulates a Markov chain that targets the posterior distribution. In the
increasingly common setting of large-scale data, most exact MCMC methods are intractable. This
is essentially because simulating each MCMC step requires an (expensive) computation involving
each data point, and many steps are required to obtain inferential results of a reasonable quality. To
reduce cost, a typical approach is to perform the computation for a random subsample of the data,
rather than the full dataset, at each step [6–10] (see [11] for a recent survey). However, recent work
shows that the speed benefits are outweighed by the drawbacks; uniformly subsampling at each step
causes MCMC to either mix slowly or provide poor inferential approximation quality [11–15]. VI,
on the other hand, posits a family of approximations to the posterior and uses optimization to find the
closest member, enabling the use of scalable stochastic optimization algorithms [16, 17]. While past
work involved simple parametric families, recent work has developed flow families based on Markov
chains [18, 19]—and in particular, those based on Langevin and Hamiltonian dynamics [20–25].
However, because these Markov chains are typically designed to target the posterior distribution,
each step again requires a computation involving all the data, making KL minimization and sampling
slow. Repeated subsampling to reduce cost has the same issues that it does in MCMC.

Although repeated subsampling in each step of a Markov chain (for MCMC or VI) is not generally
helpful, recent work on Bayesian coresets [26] has provided empirical evidence that there often exists
a fixed small, weighted subset of the data—a coreset—that one can use to replace the full dataset in
a standard MCMC or VI inference method [27]. In order for the Bayesian coreset approach to be

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
3.

05
72

3v
2

 [s
ta

t.M
L]

 1
2

Ja
n

20
23

xp0q
dx “ fpx, tq dt ` gptq dw

dx “ rfpx, tq ´ gptq2 rx log ptpxq s dt ` gptq dw̄
Score function

Data Noise

PriorSamples

Figure 1: We can use an SDE to diffuse data to a simple noise distribution. This SDE can be reversed
once we know the score of the marginal distribution at each intermediate time step, rx log ptpxq.

associated reverse-time diffusion process [1, 16] given by the following SDE

dx “ “
fpx, tq ´ gptq2rx log ptpxq‰

dt ` gptq dw̄, (2)

where w̄ is now a standard Wiener process in the reverse-time direction. Here dt represents an
infinitesimal negative time step, meaning that the above SDE must be solved from t “ T to t “ 0.
This reverse-time SDE results in exactly the same diffusion process txptqutPr0,T s as Eq. (1), assuming
it is initialized with xpT q „ pT pxq. This result allows for the construction of diffusion-based
generative models, and its functional form reveals the key target for learning: the time-dependent
score function rx log ptpxq. Again, see Fig. 1 for a helpful visualization of this two-part formulation.

In order to estimate rx log ptpxq from a given dataset, we fit the parameters of a neural network
s✓px, tq, termed a score-based model, such that s✓px, tq « rx log ptpxq for almost all x P RD and
t P r0, T s. Unlike many likelihood-based generative models, a score-based model does not need to
satisfy the integral constraints of a density function, and is therefore much easier to parameterize.
Good score-based models should keep the following least squares loss small

JSMp✓;�p¨qq :“ 1

2

ª T

0

Eptpxqr�ptq krx log ptpxq ´ s✓px, tqk2
2s dt, (3)

where � : r0, T s Ñ R°0 is a positive weighting function. The integrand features the well-known
score matching [23] objective Eptpxqrkrx log ptpxq ´ s✓px, tqk2

2s. We therefore refer to Eq. (3) as a
weighted combination of score matching losses.

With score matching techniques [56, 46], we can compute Eq. (3) up to an additive constant and
minimize it for training score-based models. For example, we can use denoising score matching [56]
to transform JSMp✓;�p¨qq into the following, which is equivalent up to a constant independent of ✓:

JDSMp✓;�p¨qq :“ 1

2

ª T

0

Eppxqp0tpx1|xqr�ptq��rx1 log p0tpx1 | xq ´ s✓px1, tq��2

2
s dt. (4)

Whenever the drift coefficient f✓px, tq is linear in x (which is true for all SDEs in [48]), the transition
density p0tpx1 | xq is a tractable Gaussian distribution. We can form a Monte Carlo estimate of
both the time integral and expectation in JDSMp✓;�p¨qq with a sample pt,x,x1q, where t is uniformly
drawn from r0, T s, x „ ppxq is a sample from the dataset, and x1 „ p0tpx1 | xq. The gradient
rx1 log p0tpx1 | xq can also be computed in closed form since p0tpx1 | xq is Gaussian.

After training a score-based model s✓px, tq with JDSMp✓;�p¨qq, we can plug it into the reverse-time
SDE in Eq. (2). Samples are then generated by solving this reverse-time SDE with numerical SDE
solvers, given an initial sample from ⇡pxq at t “ T . Since the forward SDE Eq. (1) is designed such
that pT pxq « ⇡pxq, the reverse-time SDE will closely trace the diffusion process given by Eq. (1) in
the reverse time direction, and yield an approximate data sample at t “ 0 (as visualized in Fig. 1).

3 Likelihood of score-based diffusion models

The forward and backward diffusion processes in score-based diffusion models induce two probabilis-
tic models for which we can define a likelihood. The first probabilistic model, denoted as pSDE

✓ pxq,
is given by the approximate reverse-time SDE constructed from our score-based model s✓px, tq. In
particular, suppose tx̂✓ptqutPr0,T s is a stochastic process given by

dx̂ “ “
fpx̂, tq ´ gptq2s✓px̂, tq‰

dt ` gptq dw̄, x̂✓pT q „ ⇡. (5)

3

meanwhile...

Variational Inference with Hamiltonian Monte Carlo

Christopher Wolf christopher.wolf@tum.de

Maximilian Karl⇤ & Patrick van der Smagt⇤ karlma@in.tum.de

Chair of Robotics and Embedded Systems, Department of Informatics,
Technische Universität München, Germany

Abstract

Variational inference lies at the core of
many state-of-the-art algorithms. To im-
prove the approximation of the posterior be-
yond parametric families, it was proposed
to include MCMC steps into the variational
lower bound. In this work we explore this
idea using steps of the Hamiltonian Monte
Carlo (HMC) algorithm, an e�cient MCMC
method. In particular, we incorporate the
acceptance step of the HMC algorithm, guar-
anteeing asymptotic convergence to the true
posterior. Additionally, we introduce some
extensions to the HMC algorithm geared to-
wards faster convergence. The theoretical ad-
vantages of these modifications are reflected
by performance improvements in our experi-
mental results.

1. Introduction

In modern data analysis probabilistic graphical models
have emerged as a powerful and intuitive tool to cap-
ture and reveal hidden structures present in the data.
Training and interpreting these models requires infer-
ring the hidden variables of the observed data under
the model. In many state-of-the-art graphical model
approaches this key task is performed based on vari-
ational inference, a method converting complex in-
ference problems into high-dimensional optimization
problems (Jordan et al., 1999). For instance Ho↵man
et al. (2013) follow this approach for large scale text-
to-topic models and Gregor et al. (2015); Rezende et
al. (2014); Kingma and Welling (2014) apply it to the
generation of images.

⇤Patrick van der Smagt and Maximilian Karl are also
a�liated with fortiss, An-Institut der Technischen Univer-
sität München, Germany

Variational inference approximates the intractable
true posterior distribution by the best-fitting candi-
date from a fixed family of distributions. While this
makes the approximation procedure very fast, the re-
striction to a usually quite limited family of distri-
butions means, that often the true posterior is only
poorly approximated. This in turn hampers the train-
ing and final performance of the graphical model.
Many suggestions for broader families of candidate dis-
tributions have been put forward allowing for more
complicated approximations. A powerful framework,
unifying several previous approaches, is the work by
Rezende and Mohamed (2015) on normalizing flows.
Here, arbitrarily complicated distributions are gener-
ated by applying a sequence of invertible mappings to a
simple initial distribution. An interesting example for
such a normalizing flow is the Hamiltonian variational
inference method derived by Salimans et al. (2015),
where steps of the Hamiltonian Monte Carlo (HMC)
algorithm are used to transform the initial distribu-
tion. Since the HMC algorithm generates a Markov
chain converging to the true posterior, this extension
to variational inference is particularly appealing, be-
cause the generated family of distributions is guaran-
teed to contain the true posterior (provided enough
steps are taken). However, Salimans et al. (2015) left
out the acceptance step of the HMC algorithm, so that
convergence to the true posterior is no longer ensured
and the true posterior need not be within the gener-
ated distribution family.

In this work we exploit the structure of the HMC al-
gorithm to derive the variational lower bound for the
case, where a distribution is transformed by steps of
the full HMC algorithm including the acceptance step.
By doing so, we regain the asymptotic guarantee of a
perfect approximation. Additionally, we present two
extensions to the HMC algorithm, which can be in-
cluded in the approximation procedure and speed up
the convergence to the true posterior. We begin by re-
vising variational inference, MCMC methods and the

ar
X

iv
:1

60
9.

08
20

3v
1

 [s
ta

t.M
L]

 2
6

Se
p

20
16

Stochastic Normalizing Flows

Hao Wu
Tongji University

Shanghai, P.R. China
wwtian@gmail.com

Jonas Köhler
FU Berlin

Berlin, Germany
jonas.koehler@fu-berlin.de

Frank Noé
FU Berlin

Berlin, Germany
frank.noe@fu-berlin.de

Abstract

The sampling of probability distributions specified up to a normalization constant
is an important problem in both machine learning and statistical mechanics. While
classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC)
or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing
interest in using normalizing flows in order to learn the transformation of a simple
prior distribution to the given target distribution. Here we propose a generalized
and combined approach to sample target densities: Stochastic Normalizing Flows
(SNF) – an arbitrary sequence of deterministic invertible functions and stochastic
sampling blocks. We show that stochasticity overcomes expressivity limitations
of normalizing flows resulting from the invertibility constraint, whereas trainable
transformations between sampling steps improve efficiency of pure MCMC/LD
along the flow. By invoking ideas from non-equilibrium statistical mechanics
we derive an efficient training procedure by which both the sampler’s and the
flow’s parameters can be optimized end-to-end, and by which we can compute
exact importance weights without having to marginalize out the randomness of the
stochastic blocks. We illustrate the representational power, sampling efficiency and
asymptotic correctness of SNFs on several benchmarks including applications to
sampling molecular systems in equilibrium.

1 Introduction

A common problem in machine learning and statistics with important applications in physics is the
generation of asymptotically unbiased samples from a target distribution defined up to a normalization
constant by means of an energy model u(x):

µX(x) / exp(�u(x)). (1)
Sampling of such unnormalized distributions is often done with Markov Chain Monte Carlo (MCMC)
or other stochastic sampling methods [13]. This approach is asymptotically unbiased, but suffers
from the sampling problem: without knowing efficient moves, MCMC approaches may get stuck in
local energy minima for a long time and fail to converge in practice.

Normalizing flows (NFs) [41, 40, 5, 35, 6, 33] combined with importance sampling methods are
an alternative approach that enjoys growing interest in molecular and material sciences and nuclear
physics [28, 25, 32, 22, 1, 30]. NFs are learnable invertible functions, usually represented by a neural
network, pushing forward a probability density over a latent or “prior” space Z towards the target
space X . Utilizing the change of variable rule these models provide exact densities of generated
samples allowing them to be trained by either maximizing the likelihood on data (ML) or minimizing
the Kullback-Leibler divergence (KL) towards a target distribution.

Let FZX be such a map and its inverse FXZ = F�1
ZX . We can consider it as composition of T

invertible transformation layers F0, ..., FT with intermediate states yt given by:

yt+1 = Ft(yt) yt = F�1
t (yt+1) (2)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

00
2.

06
70

7v
3

 [s
ta

t.M
L]

 2
6

O
ct

 2
02

0

Monte Carlo Variational Auto-Encoders

Achille Thin 1 Nikita Kotelevskii 2 Alain Durmus 3 Maxim Panov 2 Eric Moulines 1 4 5 Arnaud Doucet 6

Abstract

Variational auto-encoders (VAE) are popular deep
latent variable models which are trained by max-
imizing an Evidence Lower Bound (ELBO). To
obtain tighter ELBO and hence better variational
approximations, it has been proposed to use im-
portance sampling to get a lower variance estimate
of the evidence. However, importance sampling
is known to perform poorly in high dimensions.
While it has been suggested many times in the lit-
erature to use more sophisticated algorithms such
as Annealed Importance Sampling (AIS) and its
Sequential Importance Sampling (SIS) extensions,
the potential benefits brought by these advanced
techniques have never been realized for VAE: the
AIS estimate cannot be easily differentiated, while
SIS requires the specification of carefully cho-
sen backward Markov kernels. In this paper, we
address both issues and demonstrate the perfor-
mance of the resulting Monte Carlo VAEs on a
variety of applications.

1. Introduction
Variational Auto-Encoders (VAE) introduced by (Kingma &
Welling, 2013) are a very popular class of methods in unsu-
pervised learning and generative modelling. These methods
aim at finding a parameter ✓ maximizing the marginal log-
likelihood p✓(x) =

R
p✓(x, z)dz where x 2 RN is the

observation and z 2 Rd is the latent variable. They rely on
the introduction of an additional parameter � and a family
of variational distributions q�(z|x). The joint parameters
{✓, �} are then inferred through the optimization of the

*Equal contribution 1CMAP, Ecole Polytechnique, Univer-
site Paris-Saclay, France 2CDISE, Skolkovo Institute of Science
and Technology, Moscow, Russia 3Ecole Nationale Supérieure
Paris-Saclay, France 4HDI Lab, HSE University, Moscow, Rus-
sia 5Centre de recherche Lagrange en mathematiques et cal-
cul 6University of Oxford. Correspondence to: Achille Thin
<achille.thin@polytechnique.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Evidence Lower Bound (ELBO) defined as

L(✓, �) =

Z
log

✓
p✓(x, z)

q�(z|x)

◆
q�(z|x)dz

= log p✓(x)�KL
�
q�(z|x) k p✓(z|x)

�
6 log p✓(x) .

The design of expressive variational families has been the
topic of many works and is a core ingredient in the effi-
ciency of VAE (Rezende & Mohamed, 2015; Kingma et al.,
2016). Another line of research consists in using positive
unbiased estimators p̂✓(x) of the loglikelihood p✓(x) for
q�, i.e. Eq� [p̂✓(x)] = p✓(x). Indeed, as noted in (Mnih &
Rezende, 2016), it follows from Jensen’s inequality that

L(✓, �) = Eq� [log p̂✓(x)] 6 log p✓(x) . (1)

A Taylor expansion shows that

L(✓, �) ⇡ log p✓(x)� 1

2
varq�


p̂✓(x)

p✓(x)

�
;

see e.g. (Maddison et al., 2017; Domke & Sheldon, 2018)
for formal results. Hence the ELBO becomes tighter as the
variance of the estimator decreases.

A common method to obtain an unbiased estimate
is built on importance sampling; i.e. p̂✓(x) =

n�1
Pn

i=1[p✓(x, zi)/q�(zi|x)] for zi
i.i.d.⇠ q�(·|x). In partic-

ular, combined with (1), we obtain the popular Importance
Weighted Auto Encoder (IWAE) proposed by (Burda et al.,
2015). However, it is expected that the relative variance
of this importance-sampling based estimator typically in-
creases with the dimension of the latent z. To circumvent
this issue, we suggest in this paper to consider other esti-
mates of the evidence which have shown great success in the
Monte Carlo literature. In particular, Annealed Importance
Sampling (AIS) (Neal, 2001; Wu et al., 2016), and its Se-
quential Importance Sampling (SIS) extensions (Del Moral
et al., 2006) define state-of-the-art estimators of the evi-
dence. These algorithms rely on an extended target distri-
bution for which an efficient importance distribution can be
defined using non-homogeneous Markov kernels.

It has been suggested in various contributions that AIS could
be useful to train VAE (Salimans et al., 2015; Wu et al.,
2016; Maddison et al., 2017; Wu et al., 2020). However, to
the authors knowledge, no contribution discusses how an

ar
X

iv
:2

10
6.

15
92

1v
1

 [s
ta

t.M
L]

 3
0

Ju
n

20
21

Differentiable Annealed Importance Sampling
and the Perils of Gradient Noise

Guodong Zhang1,2, Kyle Hsu3, Jianing Li1, Chelsea Finn3, Roger Grosse1,2

1University of Toronto, 2Vector Institute, 3Stanford University
{gdzhang, rgrosse}@cs.toronto.edu

{kylehsu, cbfinn}@cs.stanford.edu, jrobert.li@mail.utoronto.ca

Abstract

Annealed importance sampling (AIS) and related algorithms are highly effective
tools for marginal likelihood estimation, but are not fully differentiable due to the
use of Metropolis-Hastings correction steps. Differentiability is a desirable property
as it would admit the possibility of optimizing marginal likelihood as an objective
using gradient-based methods. To this end, we propose Differentiable AIS (DAIS),
a variant of AIS which ensures differentiability by abandoning the Metropolis-
Hastings corrections. As a further advantage, DAIS allows for mini-batch gradients.
We provide a detailed convergence analysis for Bayesian linear regression which
goes beyond previous analyses by explicitly accounting for the sampler not having
reached equilibrium. Using this analysis, we prove that DAIS is consistent in the
full-batch setting and provide a sublinear convergence rate. Furthermore, motivated
by the problem of learning from large-scale datasets, we study a stochastic variant
of DAIS that uses mini-batch gradients. Surprisingly, stochastic DAIS can be
arbitrarily bad due to a fundamental incompatibility between the goals of last-iterate
convergence to the posterior and elimination of the accumulated stochastic error.
This is in stark contrast with other settings such as gradient-based optimization and
Langevin dynamics, where the effect of gradient noise can be washed out by taking
smaller steps. This indicates that annealing-based marginal likelihood estimation
with stochastic gradients may require new ideas.

1 Introduction

Marginal likelihood (ML), sometimes called evidence, is a central quantity in Bayesian learning
as it measures how well a model can describe a particular dataset. It is commonly used to select
hyperparameters for Gaussian processes [Rasmussen, 2003], where either closed-form solutions or
accurate, tractable approximations are available. However, it is more often the case that computing
ML is computationally intractable, as it involves summation or integration over high-dimensional
model parameters or latent variables. In this case, one must resort to numerical methods or other
approximations [Kass and Raftery, 1995]. In the context of model comparison (e.g., evaluating gener-
ative models [Wu et al., 2016, Huang et al., 2020]), annealed importance sampling (AIS) [Neal, 2001]
is one of the most popular and effective algorithms. Notably, AIS is closely related to other generic
ML estimators that yield accurate estimation [Grosse et al., 2015], including Sequential Monte Carlo
(SMC) [Doucet et al., 2001] and nested sampling [Skilling et al., 2006]. Under some assumptions,
AIS is able to produce accurate estimates of marginal likelihood given enough computation time (it
converges to the true ML value quickly by adding more intermediate distributions).

AIS alternates between Markov chain Monte Carlo (MCMC) transitions and importance sampling
updates, where the MCMC step typically involves a non-differentiable Metropolis-Hastings (MH)
correction. Unfortunately, the non-differentiability precludes gradient-based optimization of the
sampler and complicates theoretical analysis. To deal with this, we marry AIS with Hamiltonian

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

ar
X

iv
:2

10
7.

10
21

1v
2

 [s
ta

t.M
L]

 2
6

O
ct

 2
02

1

Bayesian Inference via Sparse Hamiltonian Flows

Naitong Chen Zuheng Xu Trevor Campbell
Department of Statistics

University of British Columbia
[naitong.chen | zuheng.xu | trevor]@stat.ubc.ca

Abstract

A Bayesian coreset is a small, weighted subset of data that replaces the full dataset
during Bayesian inference, with the goal of reducing computational cost. Although
past work has shown empirically that there often exists a coreset with low inferential
error, efficiently constructing such a coreset remains a challenge. Current methods
tend to be slow, require a secondary inference step after coreset construction,
and do not provide bounds on the data marginal evidence. In this work, we
introduce a new method—sparse Hamiltonian flows—that addresses all three of
these challenges. The method involves first subsampling the data uniformly, and
then optimizing a Hamiltonian flow parametrized by coreset weights and including
periodic momentum quasi-refreshment steps. Theoretical results show that the
method enables an exponential compression of the dataset in a representative
model, and that the quasi-refreshment steps reduce the KL divergence to the target.
Real and synthetic experiments demonstrate that sparse Hamiltonian flows provide
accurate posterior approximations with significantly reduced runtime compared
with competing dynamical-system-based inference methods.

1 Introduction

Bayesian inference provides a coherent approach to learning from data and uncertainty assessment in
a wide variety of complex statistical models. Two standard methodologies for performing Bayesian
inference in practice are Markov chain Monte Carlo (MCMC) [1; 2; 3, Ch. 11,12] and variational
inference (VI) [4, 5]. MCMC simulates a Markov chain that targets the posterior distribution. In the
increasingly common setting of large-scale data, most exact MCMC methods are intractable. This
is essentially because simulating each MCMC step requires an (expensive) computation involving
each data point, and many steps are required to obtain inferential results of a reasonable quality. To
reduce cost, a typical approach is to perform the computation for a random subsample of the data,
rather than the full dataset, at each step [6–10] (see [11] for a recent survey). However, recent work
shows that the speed benefits are outweighed by the drawbacks; uniformly subsampling at each step
causes MCMC to either mix slowly or provide poor inferential approximation quality [11–15]. VI,
on the other hand, posits a family of approximations to the posterior and uses optimization to find the
closest member, enabling the use of scalable stochastic optimization algorithms [16, 17]. While past
work involved simple parametric families, recent work has developed flow families based on Markov
chains [18, 19]—and in particular, those based on Langevin and Hamiltonian dynamics [20–25].
However, because these Markov chains are typically designed to target the posterior distribution,
each step again requires a computation involving all the data, making KL minimization and sampling
slow. Repeated subsampling to reduce cost has the same issues that it does in MCMC.

Although repeated subsampling in each step of a Markov chain (for MCMC or VI) is not generally
helpful, recent work on Bayesian coresets [26] has provided empirical evidence that there often exists
a fixed small, weighted subset of the data—a coreset—that one can use to replace the full dataset in
a standard MCMC or VI inference method [27]. In order for the Bayesian coreset approach to be

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
3.

05
72

3v
2

 [s
ta

t.M
L]

 1
2

Ja
n

20
23

This talk

What’s the relationship?

A unified view of these inference methods.

Diffusion models

data z0

Brownian motion Q

Gaussian zT

learned approximate inverse diffusion P

Diffusion-esque inference

Gaussian z0

MCMC bridging Gaussian to posterior Q

posterior zT

approximate inverse MCMC diffusion P

Diffusion models

data z0

Brownian motion Q

Gaussian zT

learned approximate inverse diffusion P

Q: sample z0 from data, add noise until zT dzt =−βtztdt +
√

2βtdwt

P: sample zT from Gaussian, denoise until z0 dzt =−βtztdt−2βtsθ (zt , t)dt +
√

2βtdw̄t

minimize KL(Q‖P) KL(Q‖P) = KL(qT ‖pT)+EzT∼qT KL(Q(·|zT)‖P(·|zT))

∇ logqt(z) defines ideal denoising if sθ (z, t) = ∇ logqt(z) then KL(Q‖P) = KL(qT ‖pT)

Diffusion models

data z0

Brownian motion Q

Gaussian zT

learned approximate inverse diffusion P

Q: sample z0 from data, add noise until zT

dzt =−βtztdt +
√

2βtdwt

P: sample zT from Gaussian, denoise until z0

dzt =−βtztdt−2βtsθ (zt , t)dt +
√

2βtdw̄t

minimize KL(Q‖P)

KL(Q‖P) = KL(qT ‖pT)+EzT∼qT KL(Q(·|zT)‖P(·|zT))

∇ logqt(z) defines ideal denoising

if sθ (z, t) = ∇ logqt(z) then KL(Q‖P) = KL(qT ‖pT)

Diffusion models

data z0

Brownian motion Q

Gaussian zT

learned approximate inverse diffusion P

Q: sample z0 from data, add noise until zT dzt =−βtztdt +
√

2βtdwt

P: sample zT from Gaussian, denoise until z0 dzt =−βtztdt−2βtsθ (zt , t)dt +
√

2βtdw̄t

minimize KL(Q‖P) KL(Q‖P) = KL(qT ‖pT)+EzT∼qT KL(Q(·|zT)‖P(·|zT))

∇ logqt(z) defines ideal denoising if sθ (z, t) = ∇ logqt(z) then KL(Q‖P) = KL(qT ‖pT)

Diffusion-esque inference

Gaussian z0

MCMC bridging Gaussian to posterior Q

posterior zT

approximate inverse MCMC diffusion P

Q: sample z0 from Gaussian, do Langevin on πt

where π0 = (Gaussian) and πT = (posterior).

dzt = ∇ logπt(zt)dt +
√

2 dwt

P: sample zT from posterior, do inverse MCMC.

dzt = ∇ logπt(zt)dt−2sθ (zt , t)dt +
√

2dw̄t

minimize KL(Q‖P)

KL(Q‖P) = KL(qT ‖pT)+EzT∼qT KL(Q(·|zT)‖P(·|zT))

∇ logqt(z) defines optimal inverse dynamics

if sθ (z, t) = ∇ logqt(z) then KL(Q‖P) = KL(qT ‖pT)

Diffusion-esque inference

Gaussian z0

MCMC bridging Gaussian to posterior Q

posterior zT

approximate inverse MCMC diffusion P

Q: sample z0 from Gaussian, do Langevin on πt

where π0 = (Gaussian) and πT = (posterior).
dzt = ∇ logπt(zt)dt +

√
2 dwt

P: sample zT from posterior, do inverse MCMC. dzt = ∇ logπt(zt)dt−2sθ (zt , t)dt +
√

2dw̄t

minimize KL(Q‖P) KL(Q‖P) = KL(qT ‖pT)+EzT∼qT KL(Q(·|zT)‖P(·|zT))

∇ logqt(z) defines optimal inverse dynamics if sθ (z, t) = ∇ logqt(z) then KL(Q‖P) = KL(qT ‖pT)

Comparison

Diffusion models Diffusion-based VI
z0 data (samples) Gaussian
zT Gaussian posterior (distribution)

Q noising MCMC on bridging densities
P learned denoising inverse MCMC

goal good P to model z0 good Q to model zT

marginals q(zt |z0) tractable yes no /

scores ∇ logq(zt) tractable no no, but can approximate using
bridging densities ,

Comparison

Diffusion models Diffusion-based VI
z0 data (samples) Gaussian
zT Gaussian posterior (distribution)

Q noising MCMC on bridging densities
P learned denoising inverse MCMC

goal good P to model z0 good Q to model zT

marginals q(zt |z0) tractable yes no /

scores ∇ logq(zt) tractable no no, but can approximate using
bridging densities ,

Comparison

Diffusion models Diffusion-based VI
z0 data (samples) Gaussian
zT Gaussian posterior (distribution)

Q noising MCMC on bridging densities
P learned denoising inverse MCMC

goal good P to model z0 good Q to model zT

marginals q(zt |z0) tractable yes no /

scores ∇ logq(zt) tractable no no, but can approximate using
bridging densities ,

Comparison

Diffusion models Diffusion-based VI
z0 data (samples) Gaussian
zT Gaussian posterior (distribution)

Q noising MCMC on bridging densities
P learned denoising inverse MCMC

goal good P to model z0 good Q to model zT

marginals q(zt |z0) tractable yes no /

scores ∇ logq(zt) tractable no no, but can approximate using
bridging densities ,

Variational Inference

p(z) = p̄(z)/Z

min
q∈Family

KL(q(z)‖p(z))

max
q∈Family

ELBO(q(z)‖ p̄(z)) := E
q(z)

log(p̄(z)/q(z))

Diffusion-based variational inference

Q: z0 ∼ q0, run MCMC diffusion on πt (q0 = π0 πT = pT) until zT .
P: zT ∼ pT , run reverse diffusion on πt until z0.
Convert Q and P to discrete time.
Optimize KL(Q‖P)≥ KL(qT‖pT).

Many instances (Wu et al 2020; Thin et al 2021; Geffner & D 2021, 2023; Zhang et al 2021; Doucet et al 2022).

Design choices:
Starting distribution q0 (Standard Gaussian? Learned Gaussian?)

Bridging distributions πt (Fixed? Learned?)

Forward process Q (Langevin? Underdamped Langevin?)

Backward process P (Fixed? Learned score network?)

Numerical simulation of Q and P (Splitting? Euler-Maruyama?)

Optimizer (SGD? Adam? Step sizes?)

Diffusion-based variational inference

Q: z0 ∼ q0, run MCMC diffusion on πt (q0 = π0 πT = pT) until zT .
P: zT ∼ pT , run reverse diffusion on πt until z0.
Convert Q and P to discrete time.
Optimize KL(Q‖P)≥ KL(qT‖pT).

Many instances (Wu et al 2020; Thin et al 2021; Geffner & D 2021, 2023; Zhang et al 2021; Doucet et al 2022).

Design choices:
Starting distribution q0 (Standard Gaussian? Learned Gaussian?)

Bridging distributions πt (Fixed? Learned?)

Forward process Q (Langevin? Underdamped Langevin?)

Backward process P (Fixed? Learned score network?)

Numerical simulation of Q and P (Splitting? Euler-Maruyama?)

Optimizer (SGD? Adam? Step sizes?)

Diffusion-based variational inference

Q: z0 ∼ q0, run MCMC diffusion on πt (q0 = π0 πT = pT) until zT .
P: zT ∼ pT , run reverse diffusion on πt until z0.
Convert Q and P to discrete time.
Optimize KL(Q‖P)≥ KL(qT‖pT).

Many instances (Wu et al 2020; Thin et al 2021; Geffner & D 2021, 2023; Zhang et al 2021; Doucet et al 2022).

Design choices:
Starting distribution q0 (Standard Gaussian? Learned Gaussian?)

Bridging distributions πt (Fixed? Learned?)

Forward process Q (Langevin? Underdamped Langevin?)

Backward process P (Fixed? Learned score network?)

Numerical simulation of Q and P (Splitting? Euler-Maruyama?)

Optimizer (SGD? Adam? Step sizes?)

Starting distribution

q0 closer to pT =⇒ less distance for πt to travel

q0 = N (0, I)

q0 = N (µ,diag(σ2)), (µ,σ2) from Gaussian VI
q0 = N (µ,Σ), (µ,Σ) from Gaussian VI
q0 = N (µ,Σ), (µ,Σ) optimized as part of Q

Normalizing flows?

Starting distribution

q0 closer to pT =⇒ less distance for πt to travel

q0 = N (0, I)

q0 = N (µ,diag(σ2)), (µ,σ2) from Gaussian VI
q0 = N (µ,Σ), (µ,Σ) from Gaussian VI
q0 = N (µ,Σ), (µ,Σ) optimized as part of Q

Normalizing flows?

Starting distribution

q0 closer to pT =⇒ less distance for πt to travel

q0 = N (0, I)

q0 = N (µ,diag(σ2)), (µ,σ2) from Gaussian VI
q0 = N (µ,Σ), (µ,Σ) from Gaussian VI
q0 = N (µ,Σ), (µ,Σ) optimized as part of Q

Normalizing flows?

Bridging distributions

better path πt between q0 and pT =⇒ qt closer to πt

π̄t(z) = q0(z)1−βt p̄(z)βt , βt fixed
π̄t(z) = q0(z)1−βt p̄(z)βt , βt optimized

Something with more parameters?

Bridging distributions

better path πt between q0 and pT =⇒ qt closer to πt

π̄t(z) = q0(z)1−βt p̄(z)βt , βt fixed
π̄t(z) = q0(z)1−βt p̄(z)βt , βt optimized

Something with more parameters?

Bridging distributions

better path πt between q0 and pT =⇒ qt closer to πt

π̄t(z) = q0(z)1−βt p̄(z)βt , βt fixed
π̄t(z) = q0(z)1−βt p̄(z)βt , βt optimized

Something with more parameters?

Forward Process Q

better diffusion =⇒ qt closer to πt

overdamped Langevin dzt = ∇ logπt(zt)dt +
√

2 dwt

qt(z) ≈ πt(z)

underdamped Langevin dzt = ρtdt

dρt = ∇ logπt(zt)dt− γρtdt +
√

2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0, I)

...with mass-matrix dzt = M−1
ρtdt

dρt = ∇ logπt(zt)dt− γM−1
ρtdt +

√
2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0,M)

Higher-order Langevin? Time-dependent momentum distribution?

Forward Process Q

better diffusion =⇒ qt closer to πt

overdamped Langevin dzt = ∇ logπt(zt)dt +
√

2 dwt

qt(z) ≈ πt(z)

underdamped Langevin dzt = ρtdt

dρt = ∇ logπt(zt)dt− γρtdt +
√

2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0, I)

...with mass-matrix dzt = M−1
ρtdt

dρt = ∇ logπt(zt)dt− γM−1
ρtdt +

√
2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0,M)

Higher-order Langevin? Time-dependent momentum distribution?

Forward Process Q

better diffusion =⇒ qt closer to πt

overdamped Langevin dzt = ∇ logπt(zt)dt +
√

2 dwt

qt(z) ≈ πt(z)

underdamped Langevin dzt = ρtdt

dρt = ∇ logπt(zt)dt− γρtdt +
√

2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0, I)

...with mass-matrix dzt = M−1
ρtdt

dρt = ∇ logπt(zt)dt− γM−1
ρtdt +

√
2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0,M)

Higher-order Langevin? Time-dependent momentum distribution?

Forward Process Q

better diffusion =⇒ qt closer to πt

overdamped Langevin dzt = ∇ logπt(zt)dt +
√

2 dwt

qt(z) ≈ πt(z)

underdamped Langevin dzt = ρtdt

dρt = ∇ logπt(zt)dt− γρtdt +
√

2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0, I)

...with mass-matrix dzt = M−1
ρtdt

dρt = ∇ logπt(zt)dt− γM−1
ρtdt +

√
2γ dwt

qt(z,ρ) ≈ πt(z,ρ) = πt(z)N (ρ|0,M)

Higher-order Langevin? Time-dependent momentum distribution?

Backward Process P (overdamped Langevin)

better P =⇒ KL(Q‖P) closer to KL(qT‖pT)

dzt = ∇ logπt(zt)dt +
√

2 dwt

Ideal reversal P:
dzt = ∇ logπt(zt)dt−2∇ logqt(zt)dt +

√
2 dw̄t

Simplest option:

(Tight if qt = πt)dzt =−∇ logπt(zt)dt +
√

2 dw̄t

Corrective score network:

(Tight if sθ = ∇ log πt
qt

)dzt =−∇ logπt(zt)dt +2sθ (zt , t)+
√

2 dw̄t

Backward Process P (overdamped Langevin)

better P =⇒ KL(Q‖P) closer to KL(qT‖pT)

dzt = ∇ logπt(zt)dt +
√

2 dwt

Ideal reversal P:
dzt = ∇ logπt(zt)dt−2∇ logqt(zt)dt +

√
2 dw̄t

Simplest option:

(Tight if qt = πt)dzt =−∇ logπt(zt)dt +
√

2 dw̄t

Corrective score network:

(Tight if sθ = ∇ log πt
qt

)dzt =−∇ logπt(zt)dt +2sθ (zt , t)+
√

2 dw̄t

Backward Process P (overdamped Langevin)

better P =⇒ KL(Q‖P) closer to KL(qT‖pT)

dzt = ∇ logπt(zt)dt +
√

2 dwt

Ideal reversal P:
dzt = ∇ logπt(zt)dt−2∇ logqt(zt)dt +

√
2 dw̄t

Simplest option:

(Tight if qt = πt)dzt =−∇ logπt(zt)dt +
√

2 dw̄t

Corrective score network:

(Tight if sθ = ∇ log πt
qt

)dzt =−∇ logπt(zt)dt +2sθ (zt , t)+
√

2 dw̄t

Backward Process P (overdamped Langevin)

better P =⇒ KL(Q‖P) closer to KL(qT‖pT)

dzt = ∇ logπt(zt)dt +
√

2 dwt

Ideal reversal P:
dzt = ∇ logπt(zt)dt−2∇ logqt(zt)dt +

√
2 dw̄t

Simplest option:

(Tight if qt = πt)dzt =−∇ logπt(zt)dt +
√

2 dw̄t

Corrective score network:

(Tight if sθ = ∇ log πt
qt

)dzt =−∇ logπt(zt)dt +2sθ (zt , t)+
√

2 dw̄t

Backward Process P (underdamped Langevin)

dzt = ρtdt

dρt = [∇ logπt(zt)− γρt]dt +
√

2γ dwt

Ideal reversal P:

dzt = ρt dt

dρt =
[
∇ logπt(zt)− γρt −2γ∇ρ logqt(ρt ,zt)

]
dt +

√
2γdw̄t

Simplest option

(Tight if qt = πt , so ∇ρ logqt =−ρ)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt]dt +
√

2γdw̄t

Corrective score network:

(Tight if sθ = ∇ρ log πt
qt

)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt +2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

Backward Process P (underdamped Langevin)

dzt = ρtdt

dρt = [∇ logπt(zt)− γρt]dt +
√

2γ dwt

Ideal reversal P:

dzt = ρt dt

dρt =
[
∇ logπt(zt)− γρt −2γ∇ρ logqt(ρt ,zt)

]
dt +

√
2γdw̄t

Simplest option

(Tight if qt = πt , so ∇ρ logqt =−ρ)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt]dt +
√

2γdw̄t

Corrective score network:

(Tight if sθ = ∇ρ log πt
qt

)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt +2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

Backward Process P (underdamped Langevin)

dzt = ρtdt

dρt = [∇ logπt(zt)− γρt]dt +
√

2γ dwt

Ideal reversal P:

dzt = ρt dt

dρt =
[
∇ logπt(zt)− γρt −2γ∇ρ logqt(ρt ,zt)

]
dt +

√
2γdw̄t

Simplest option

(Tight if qt = πt , so ∇ρ logqt =−ρ)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt]dt +
√

2γdw̄t

Corrective score network:

(Tight if sθ = ∇ρ log πt
qt

)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt +2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

Backward Process P (underdamped Langevin)

dzt = ρtdt

dρt = [∇ logπt(zt)− γρt]dt +
√

2γ dwt

Ideal reversal P:

dzt = ρt dt

dρt =
[
∇ logπt(zt)− γρt −2γ∇ρ logqt(ρt ,zt)

]
dt +

√
2γdw̄t

Simplest option

(Tight if qt = πt , so ∇ρ logqt =−ρ)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt]dt +
√

2γdw̄t

Corrective score network:

(Tight if sθ = ∇ρ log πt
qt

)dzt = ρt dt

dρt = [∇ logπt(zt)+ γρt +2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

Discretization

q(z1:K) = q(z1)︸ ︷︷ ︸
Gaussian

K−1

∏
k=1

Fk(zk+1|zk)

p̄(z1:K) = p̄(zK)︸ ︷︷ ︸
Target

K−1

∏
k=1

Bk(zk|zk+1)

minKL(q(z1:K)‖p(z1:K))

Splitting
Forward SDE

[
dzt

dρt

]
=

[
ρtdt

∇ logπt(zt)dt− γρtdt +
√

2γ dwt

]

Backward SDE
[

dzt

dρt

]
=

[
ρt dt

[∇ logπt(ρt)dt− γρtdt−2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

]

Fk = V U (U exact, V Euler-Maruyama, both for time δ)
Bk = U′V′ (U′ exact, V′ Euler-Maruyama, both for time δ)

Splitting
Forward SDE

[
dzt

dρt

]
=

[
ρtdt

0

]

︸ ︷︷ ︸
U

+

[
0

∇ logπt(zt)dt− γρtdt +
√

2γ dwt

]

︸ ︷︷ ︸
V

Backward SDE
[

dzt

dρt

]
=

[
ρt dt

0

]

︸ ︷︷ ︸
U′

+

[
0

[∇ logπt(ρt)− γρt −2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

]

︸ ︷︷ ︸
V′

Fk = V U (U exact, V Euler-Maruyama, both for time δ)
Bk = U′V′ (U′ exact, V′ Euler-Maruyama, both for time δ)

Splitting
Forward SDE

[
dzt

dρt

]
=

[
ρtdt

0

]

︸ ︷︷ ︸
U

+

[
0

∇ logπt(zt)dt− γρtdt +
√

2γ dwt

]

︸ ︷︷ ︸
V

Backward SDE
[

dzt

dρt

]
=

[
ρt dt

0

]

︸ ︷︷ ︸
U′

+

[
0

[∇ logπt(ρt)− γρt −2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

]

︸ ︷︷ ︸
V′

Fk = V U (U exact, V Euler-Maruyama, both for time δ)
Bk = U′V′ (U′ exact, V′ Euler-Maruyama, both for time δ)

Better Splitting
Forward SDE

[
dzt

dρt

]
=

[
ρtdt

0

]

︸ ︷︷ ︸
A

+

[
0

∇ logπt(zt)dt

]

︸ ︷︷ ︸
B

+

[
0

−γρtdt +
√

2γ dwt

]

︸ ︷︷ ︸
O

Backward SDE
[

dzt

dρt

]
=

[
ρt dt

0

]

︸ ︷︷ ︸
A′

+

[
0

∇ logπt(ρt)dt

]

︸ ︷︷ ︸
B′

+

[
0

[−γρt −2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

]

︸ ︷︷ ︸
O′

Fk = O B A B (A exact, B Euler-Maruyama, O exact, B for δ/2, others for δ)
Bk = B′A′B′O′ (A′ exact, B Euler-Maruyama, O′ Euler-Maruyama)

Better Splitting
Forward SDE

[
dzt

dρt

]
=

[
ρtdt

0

]

︸ ︷︷ ︸
A

+

[
0

∇ logπt(zt)dt

]

︸ ︷︷ ︸
B

+

[
0

−γρtdt +
√

2γ dwt

]

︸ ︷︷ ︸
O

Backward SDE
[

dzt

dρt

]
=

[
ρt dt

0

]

︸ ︷︷ ︸
A′

+

[
0

∇ logπt(ρt)dt

]

︸ ︷︷ ︸
B′

+

[
0

[−γρt −2γsθ (t,zt ,ρt)]dt +
√

2γdw̄t

]

︸ ︷︷ ︸
O′

Fk = O B A B (A exact, B Euler-Maruyama, O exact, B for δ/2, others for δ)
Bk = B′A′B′O′ (A′ exact, B Euler-Maruyama, O′ Euler-Maruyama)

Algorithm

Langevin Diffusion Variational Inference

∇λ log qT−t(yt, λt), which is typically unavailable. In-
spired by the fact that qT−t(y, λ) is expected to be close to
πT−t(y)N (λ|0, I), we propose to approximate this term as

∇λ log qT−t(yt, λt) ≈ −λt + s(T − t, yt, λt), (8)

where s : R × RD × RD → RD is some learnable
function approximator. Following recent work (Song et al.,
2020; Song & Ermon, 2019; Sohl-Dickstein et al., 2015;
Ho et al., 2020; Doucet et al., 2022), we use a neural
network, typically referred to as score network, which
is trained with the other parameters to maximize the
ELBO. The intuition behind our approximation in eq. (8)
comes from considering scenarios where the forward tran-
sitions mix fast. In such cases qT−t(yt, λt) will be
close to πT−t(yt)N (λt|0, I), and thus the approximation
∇λ log qT−t(yt, λt) ≈ −λt should work well. (In fact, as
we show in section 4.2, several well-known methods are
recovered by removing the score network; that is, fixing
s(t, y, λ) = 0.)

Transitions via numerical simulation. The second
source of intractability is that it is rarely possible to sim-
ulate the forward and reverse SDEs exactly. Thus, we
use a numerical simulation scheme to approximately sim-
ulate them. The requirements for the simulation scheme
are (1) it must yield transitions with a tractable ratio, and
(2) it must be differentiable, in order to allow unbiased repa-
rameterization gradients (Titsias & Lázaro-Gredilla, 2014;
Kingma & Welling, 2013; Rezende et al., 2014). Section 4
presents a scheme that satisfies these.

3.3 Framework for Langevin-based VI

Our formulation for Langevin-based VI is based on the tran-
sitions described above. To get a specific instance, several
choices are required:

• A momentum augmented target p̄(zK , ρK) =
p̄(zK)p(ρK |zK) that retains original target p̄(z) as
marginal, often defined as p̄(zK)N (ρK |0, I),

• A momentum augmented initial approximation q(z1, ρ1),
often defined as q(z1)N (ρ1|0, I),

• A score network s(t, z, ρ) to approximate intractable
term involving qt(z, ρ),

• Forward and backward transitions Fk and Bk with a
tractable ratio, obtained by numerically simulating the
forward and reverse SDEs from eqs. (6) and (7).

For specific choices for these components, we can compute

p̄(z1:K , ρ1:K)

q(z1:K , ρ1:K)
=

p̄(zK , ρK)

q(z1, ρ1)

K−1∏

k=1

Bk(zk, ρk|zk+1, ρk+1)

Fk(zk+1, ρk+1|zk, ρk)
,

(9)
required to estimate and optimize the ELBO from eq. (5).

Algorithm 1 Forward transition Fk(zk+1, ρk+1|zk, ρk)

Require: zk, ρk, step-size δ
Re-sample momentum ρ′

k ∼ mF (ρ′
k|ρk, γ, δ)

Update ρ′′
k = ρ′

k + δ
2∇ log πkδ(zk)

Update zk+1 = zk + δρ′′
k

Update ρk+1 = ρ′′
k + δ

2∇ log πkδ(zk+1)





Leapfrog step
τLP(zk, ρ′

k)

return (zk+1, ρk+1)

Algorithm 2 Backward transition Bk(zk, ρk|zk+1, ρk+1)

Require: zk+1, ρk+1, step-size δ
Update ρ′′

k = ρk+1 − δ
2∇ log πk(zk)

Update zk = zk+1 − δρ′′
k

Update ρ′
k = ρ′′

k − δ
2∇ log πk(zk+1)





Inverse leapfrog
τ−1
LP (zk+1, ρk+1)

Re-sample momentum ρk ∼ mB(ρk|ρ′
k, zk, γ, δ)

return (zk, ρk)

4 NUMERICAL SIMULATION SCHEME

This section introduces two numerical simulation schemes,
one for the forward SDE and one for the time-reversed
SDE, which yield transitions with a tractable ratio. We be-
gin by giving explicit algorithmic representations for these
transitions and an expression for their ratio (section 4.1).
We then explain how our formulation for Langevin-based
VI with these transitions can be used to recover several
existing methods, including ULA, MCD and UHA (sec-
tion 4.2), and also how it can be used to derive new methods
(section 4.3).

4.1 Forward and Backward Transitions

The forward transitions used to approximately simulate to
forward SDE are shown in algorithm 1. They consist of two
steps: (partial) momentum resampling from some distribu-
tion mF (see section 4.1.1), followed by a single leapfrog
integrator step typically used to simulate Hamiltonian dy-
namics (Neal et al., 2011; Betancourt, 2017) (denoted by
τLP in algorithm 1, which consists on sequential determin-
istic updates to the variables ρ, z, and ρ). As explained
in section 4.1.1, these transitions are derived by simulat-
ing the forward SDE from eq. (6) using splitting methods
(Bou-Rabee & Owhadi, 2010; Melchionna, 2007).

The backward transitions used to approximately simulate
the time-reversed SDE are shown in algorithm 2. They also
consist of two steps: the inverse of a single leapfrog integra-
tor step used to simulate Hamiltonian dynamics, followed
by a (partial) momentum resampling from some distribu-
tion mB . We include their derivation and details for the
momentum resampling distribution mB in section 4.1.1.

In order to use these transitions for Langevin-based VI, we
need an expression for their ratio. This is given in lemma 1,
proved in appendix D.

Tomas Geffner, Justin Domke

Lemma 1. Let Fk(zk+1, ρk+1|zk, ρk) and
Bk(zk, ρk|zk+1, ρk+1) be the transitions defined in
algorithms 1 and 2, mF and mB the momentum re-
sampling distributions used in these transitions, δ the
discretization step-size, and γ > 0 the damping coefficient.
Then,

Bk(zk, ρk|zk+1, ρk+1)

Fk(zk+1, ρk+1|zk, ρk)
=

mB(ρk|ρ′
k, zk, γ, δ)

mF (ρ′
k|ρk, γ, δ)

, (10)

where ρ′
k is as defined in algorithms 1 and 2, given by

(zk, ρ′
k) = τ−1

LP (zk+1, ρk+1).

Using the transitions from algorithms 1 and 2 and their
ratio given in lemma 1 we can get an exact expression
for the augmented ELBO from eq. (5). While comput-
ing this augmented ELBO exactly is typically intractable,
an unbiased estimate can be obtained using a sample from
q(z1:K , ρ1:K), as shown in algorithm 3.

Algorithm 3 Generating the augmented ELBO (eq. (5)).
Sample (z1, ρ1) ∼ q(z1, ρ1).
Initialize estimator as L ← − log q(z1, ρ1).
for k = 1, 2, · · · , K − 1 do

Run Fk (alg. 1) on (zk, ρk), store ρ′
k, zk+1, ρk+1.

Update L ← L + log
mB(ρk|ρ′

k,zk,γ,δ)
mF (ρ′

k
|ρk,γ,δ) .

Update L ← L + log p̄(zK , ρK).
return L

4.1.1 Derivation of Forward and Backward
Transitions

We now show the derivation for the forward
and backward transitions using splitting methods
(Bou-Rabee & Owhadi, 2010; Melchionna, 2007),
which have been observed to work well for Langevin
processes (Leimkuhler & Matthews, 2013; Monmarché,
2021). Simply put, splitting methods split an SDE into
multiple simpler components, simulate each component
for a time-step of size δ, and then combine the solutions
sequentially to build the δ-sized step for the original SDE.

Forward transitions. These are obtained by approx-
imately simulating the forward SDE using a splitting
method. Following Monmarche (Monmarché, 2021), we
split the SDE in three components, AF , BF and OF ,1

[
dzt

dρt

]
=

[
ρtdt
0

]

︸ ︷︷ ︸
AF

,

[
dzt

dρt

]
=

[
0

∇ log πt(zt)dt

]

︸ ︷︷ ︸
BF

,

1A similar split was used in the context of generative modeling
by Dockhorn et al. (Dockhorn et al., 2021), albeit for a different
(simpler) diffusion which targets a Gaussian using a different def-
inition for the bridging densities, as typically done with diffusion
models (Sohl-Dickstein et al., 2015).

[
dzt

dρt

]
=

[
0

−γρtdt +
√

2γdwt

]

︸ ︷︷ ︸
OF

,

each one simpler than the original SDE, and then build the
forward transition by sequentially composing the simula-
tions for components OF BF AF BF . The final forward tran-
sition shown in algorithm 1 can be obtained by noting that
each of the individual components can be simulated with
the following strategies:

Simulating AF . This can be done exactly. Given initial
values (zt0 , ρt0) at time t0, simulating AF for a time δ re-
sults in (zt0+δ, ρt0+δ) = (zt0 + δρt0 , ρt0).

Simulating BF . Given initial values (zt0 , ρt0) at time t0,
and using that πt0 ≈ πt0+δ for small δ, simulating
BF for a time δ results in (zt0+δ, ρt0+δ) = (zt0 , ρt0 +
δ∇ log πt0(zt0)).

Simulating OF . This can be done exactly, as OF corre-
sponds to an Ornstein–Uhlenbeck process. Given an ini-
tial value of ρt0 at time t0, simulating OF for a time δ
gives ρt0+δ ∼ N (ρt0+δ|ηρt0 , (1 − η2)I), where η =
exp(−γδ). However, as we will see next, exact sim-
ulation for the corresponding component of the reverse
SDE is not possible. Thus, it may be useful to simu-
late OF approximately as well, using the Euler-Maruyama
scheme (Maruyama, 1955; Bayram et al., 2018), which
gives ρt0+δ ∼ N (ρt0+δ|ρt0(1−γδ), 2γδI). We use mF to
denote generically the momentum resampling distribution
used, which could be any of the ones just described.

In summary, simulating OF yields the momentum resam-
pling step, while composing the simulations for BF AF BF

yields the leapfrog integration step (note that since BF is
simulated twice, it is done with a step-size of δ/2.)

Backward transitions. Like for the forward transitions,
these are derived by splitting the reverse SDE in three com-
ponents, AB , BB and OB (using our approximation for the
score term),
[

dyt

dλt

]
=

[
−λtdt

0

]

︸ ︷︷ ︸
AB

,

[
dyt

dλt

]
=

[
0

−∇ log πT−t(yt)dt

]

︸ ︷︷ ︸
BB

,

[
dyt

dλt

]
=

[
0

−γλtdt + 2γs(T − t, yt, λt)dt +
√

2γdwt

]

︸ ︷︷ ︸
OB

,

Then, we construct the backward transition by sequentially
composing the simulations for components BBABBBOB ,
where the sequence BBABBB yields the inverse of the
leapfrog integrator step, and OB yields the momentum re-
sampling step. The derivation follows the one for the for-
ward transitions closely, with one main difference: sim-
ulating component OB has an additional difficulty, due

Results

ULA (Wu et al 2020; Thin

et al 2021)

UHA (Zhang et al 2021;

Geffner & D 2021)

MCD (Doucet et al 2022) LDVI (Geffner & D 2021)

underdamped dynamics

score network score network

underdamped dynamics

Results

Tune:
I Initial distribution q0 (diagonal Gaussian)
I Discretization step-size
I Bridging densities’ parameters β

I Damping coefficient
I Score network (two hidden layers with residual connections)

Train with K ∈ {8,16,32,64,128,256} bridging distributions.
Optimize with Adam for 150k iters w/ learning rates of 10−3, 10−4, 10−5, keep best.

Logistic Regression (1) Tomas Geffner, Justin Domke

Table 5: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the ionosphere (d = 35) dataset. Higher is better. Plain VI achieves an ELBO of −124.1 nats. Best result for each value
of K highlighted.

Logistic regression (Ionosphere)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −116.4 −114.6 −115.6 −114.4 −117.7 −115.5
K = 16 −115.4 −113.6 −114.4 −113.1 −115.9 −113.8
K = 32 −114.5 −112.9 −113.4 −112.4 −114.6 −112.9
K = 64 −113.8 −112.5 −112.8 −112.1 −113.6 −112.4
K = 128 −113.1 −112.2 −112.3 −111.9 −113.1 −112.1
K = 256 −112.7 −112.1 −112.1 −111.7 −112.5 −111.9

E SIMPLER DISCRETIZATION SCHEME FROM SECTION 5.2

This section shows the derivation of the forward and backward transitions from algorithms 4 and 5 together and an expres-
sion for their ratio, and results on all datasets using the resulting method.

E.1 Transitions

Forward transitions The forward transitions F em
k (zk+1, ρk+1|zk, ρk) from algorithm 4 are obtained by splitting the

forward SDE as [
dzt

dρt

]
=

[
ρtdt
0

]

︸ ︷︷ ︸
UF

+

[
0

∇ log πt(zt)dt− γρtdt +
√

2γdwt

]

︸ ︷︷ ︸
VF

,

and by sequentially composing the simulations for components VF UF . Component VF is simulated using the Euler-
Maruyama scheme, while UF is simulated exactly. This yields the forward transitions from algorithm 4.

Backward transitions The backward transitions Bem
k (zk, ρk vertzk+1, ρk+1) from algorithm 5 are obtained by splitting

the time-reversed SDE as
[

dyt

dλt

]
=

[
−λtdt

0

]

︸ ︷︷ ︸
UB

+

[
0

−∇ log πT−t(yt)dt− γλtdt + 2γs(T − t, yt, λt)dt +
√

2γdwt

]

︸ ︷︷ ︸
VB

and by sequentially composing the simulations for components UBVB . Component UB is simulated exactly, while VB is
simulated using the Euler-Maruyama scheme. This yields the backward transitions from algorithm 5.

Ratio between transitions The ratio between the transitions from algorithms 4 and 5 is given by

Bem
k (zk, ρk|zk+1, ρk+1)

F em
k (zk+1, ρk+1|zk, ρk)

=
N (ρk|ρk+1(1− δγ)− δ∇ log πkδ(zk) + 2δγs(kδ, zk, ρk+1), 2δγI)

N (ρk+1|ρk(1− γδ) + δ∇ log πkδ(zk), 2γδI)
. (33)

This can be obtained following a similar reasoning as the one used to prove lemma 1.

E.2 Results on all models

Results for all models are shown in tables 5, 6, 7, 8 and 9. In addition to UHAEM and LDVIEM, the tables include results
for ULA, MCD, UHA and LDVI as well, to facilitate comparisons. It can be observed that, for all models, using the
simpler transitions from algorithms 4 and 5 (i.e. UHAEM and LDVIEM) lead to worse results than those obtained using
the transitions from algorithms 1 and 2 (i.e. UHA and LDVI).

Plain VI: −124.1

ULA - Overdamped / MCD - Overdamped+score net / UHA - Underdamped / LDVI - Underdamped+score net

Logistic Regression (2)
Langevin Diffusion Variational Inference

Table 6: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the sonar (d = 61) dataset. Higher is better. Plain VI achieves an ELBO of −138.6 nats. Best result for each value of K
highlighted.

Logistic regression (Sonar)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −122.4 −117.2 −120.1 −116.3 −124.1 −118.5
K = 16 −119.9 −114.4 −116.8 −112.6 −119.9 −114.4
K = 32 −117.4 −112.4 −113.9 −110.6 −116.4 −111.7
K = 64 −115.3 −111.1 −111.9 −109.7 −113.8 −110.3
K = 128 −113.5 −110.2 −110.6 −109.1 −111.9 −109.6
K = 256 −112.1 −109.7 −109.7 −108.9 −110.7 −109.1

Table 7: ELBO achieved after training by different methods for different values of K for the Brownian motion model
(d = 32). Higher is better. Plain VI achieves an ELBO of −4.4 nats. Best result for each value of K highlighted.

Brownian motion

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1.9 −1.4 −1.6 −1.1 −2.8 −2.8
K = 16 −1.5 −0.8 −1.1 −0.5 −2.2 −1.4
K = 32 −1.1 −0.4 −0.5 0.1 −1.6 −0.5
K = 64 −0.7 −0.1 0.1 0.5 −0.9 0.1
K = 128 −0.3 0.2 0.4 0.7 −0.4 0.4
K = 256 −0.1 0.5 0.6 0.9 0.1 0.6

Table 8: ELBO achieved after training by different methods for different values of K for the Lorenz system model (d = 90).
Higher is better. Plain VI achieves an ELBO of −1187.8 nats. Best result for each value of K highlighted.

Lorenz system

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1168.2 −1168.1 −1166.3 −1166.1 −1170.5 −1170.5
K = 16 −1165.7 −1165.6 −1163.1 −1162.2 −1169.8 −1166.8
K = 32 −1163.2 −1163.3 −1160.3 −1157.6 −1167.9 −1162.9
K = 64 −1160.9 −1161.1 −1157.7 −1153.7 −1161.3 −1161.4
K = 128 −1158.9 −1158.9 −1155.4 −1153.1 −1158.1 −1163.4
K = 256 −1157.2 −1157.1 −1153.3 −1151.1 −1163.1 −1154.6

Table 9: ELBO achieved after training by different methods for different values of K for a random effect regression model
with the seeds dataset (d = 26). Higher is better. Plain VI achieves an ELBO of −77.1 nats. Best result for each value of
K highlighted.

Random effect regression (seeds)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −75.5 −75.1 −74.9 −74.9 −75.9 −75.5
K = 16 −75.2 −74.6 −74.6 −74.5 −75.1 −75.1
K = 32 −74.9 −74.3 −74.2 −74.2 −74.8 −74.8
K = 64 −74.6 −74.1 −74.1 −73.9 −74.4 −74.4
K = 128 −74.3 −73.9 −73.8 −73.7 −74.1 −74.1
K = 256 −74.1 −73.7 −73.7 −73.6 −73.9 −73.7

Plain VI: −138.6

ULA - Overdamped / MCD - Overdamped+score net / UHA - Underdamped / LDVI - Underdamped+score net

Time Series (1)

Langevin Diffusion Variational Inference

Table 6: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the sonar (d = 61) dataset. Higher is better. Plain VI achieves an ELBO of −138.6 nats. Best result for each value of K
highlighted.

Logistic regression (Sonar)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −122.4 −117.2 −120.1 −116.3 −124.1 −118.5
K = 16 −119.9 −114.4 −116.8 −112.6 −119.9 −114.4
K = 32 −117.4 −112.4 −113.9 −110.6 −116.4 −111.7
K = 64 −115.3 −111.1 −111.9 −109.7 −113.8 −110.3
K = 128 −113.5 −110.2 −110.6 −109.1 −111.9 −109.6
K = 256 −112.1 −109.7 −109.7 −108.9 −110.7 −109.1

Table 7: ELBO achieved after training by different methods for different values of K for the Brownian motion model
(d = 32). Higher is better. Plain VI achieves an ELBO of −4.4 nats. Best result for each value of K highlighted.

Brownian motion

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1.9 −1.4 −1.6 −1.1 −2.8 −2.8
K = 16 −1.5 −0.8 −1.1 −0.5 −2.2 −1.4
K = 32 −1.1 −0.4 −0.5 0.1 −1.6 −0.5
K = 64 −0.7 −0.1 0.1 0.5 −0.9 0.1
K = 128 −0.3 0.2 0.4 0.7 −0.4 0.4
K = 256 −0.1 0.5 0.6 0.9 0.1 0.6

Table 8: ELBO achieved after training by different methods for different values of K for the Lorenz system model (d = 90).
Higher is better. Plain VI achieves an ELBO of −1187.8 nats. Best result for each value of K highlighted.

Lorenz system

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1168.2 −1168.1 −1166.3 −1166.1 −1170.5 −1170.5
K = 16 −1165.7 −1165.6 −1163.1 −1162.2 −1169.8 −1166.8
K = 32 −1163.2 −1163.3 −1160.3 −1157.6 −1167.9 −1162.9
K = 64 −1160.9 −1161.1 −1157.7 −1153.7 −1161.3 −1161.4
K = 128 −1158.9 −1158.9 −1155.4 −1153.1 −1158.1 −1163.4
K = 256 −1157.2 −1157.1 −1153.3 −1151.1 −1163.1 −1154.6

Table 9: ELBO achieved after training by different methods for different values of K for a random effect regression model
with the seeds dataset (d = 26). Higher is better. Plain VI achieves an ELBO of −77.1 nats. Best result for each value of
K highlighted.

Random effect regression (seeds)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −75.5 −75.1 −74.9 −74.9 −75.9 −75.5
K = 16 −75.2 −74.6 −74.6 −74.5 −75.1 −75.1
K = 32 −74.9 −74.3 −74.2 −74.2 −74.8 −74.8
K = 64 −74.6 −74.1 −74.1 −73.9 −74.4 −74.4
K = 128 −74.3 −73.9 −73.8 −73.7 −74.1 −74.1
K = 256 −74.1 −73.7 −73.7 −73.6 −73.9 −73.7

Plain VI: −4.4

ULA - Overdamped / MCD - Overdamped+score net / UHA - Underdamped / LDVI - Underdamped+score net

Time Series (2)

Langevin Diffusion Variational Inference

Table 6: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the sonar (d = 61) dataset. Higher is better. Plain VI achieves an ELBO of −138.6 nats. Best result for each value of K
highlighted.

Logistic regression (Sonar)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −122.4 −117.2 −120.1 −116.3 −124.1 −118.5
K = 16 −119.9 −114.4 −116.8 −112.6 −119.9 −114.4
K = 32 −117.4 −112.4 −113.9 −110.6 −116.4 −111.7
K = 64 −115.3 −111.1 −111.9 −109.7 −113.8 −110.3
K = 128 −113.5 −110.2 −110.6 −109.1 −111.9 −109.6
K = 256 −112.1 −109.7 −109.7 −108.9 −110.7 −109.1

Table 7: ELBO achieved after training by different methods for different values of K for the Brownian motion model
(d = 32). Higher is better. Plain VI achieves an ELBO of −4.4 nats. Best result for each value of K highlighted.

Brownian motion

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1.9 −1.4 −1.6 −1.1 −2.8 −2.8
K = 16 −1.5 −0.8 −1.1 −0.5 −2.2 −1.4
K = 32 −1.1 −0.4 −0.5 0.1 −1.6 −0.5
K = 64 −0.7 −0.1 0.1 0.5 −0.9 0.1
K = 128 −0.3 0.2 0.4 0.7 −0.4 0.4
K = 256 −0.1 0.5 0.6 0.9 0.1 0.6

Table 8: ELBO achieved after training by different methods for different values of K for the Lorenz system model (d = 90).
Higher is better. Plain VI achieves an ELBO of −1187.8 nats. Best result for each value of K highlighted.

Lorenz system

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1168.2 −1168.1 −1166.3 −1166.1 −1170.5 −1170.5
K = 16 −1165.7 −1165.6 −1163.1 −1162.2 −1169.8 −1166.8
K = 32 −1163.2 −1163.3 −1160.3 −1157.6 −1167.9 −1162.9
K = 64 −1160.9 −1161.1 −1157.7 −1153.7 −1161.3 −1161.4
K = 128 −1158.9 −1158.9 −1155.4 −1153.1 −1158.1 −1163.4
K = 256 −1157.2 −1157.1 −1153.3 −1151.1 −1163.1 −1154.6

Table 9: ELBO achieved after training by different methods for different values of K for a random effect regression model
with the seeds dataset (d = 26). Higher is better. Plain VI achieves an ELBO of −77.1 nats. Best result for each value of
K highlighted.

Random effect regression (seeds)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −75.5 −75.1 −74.9 −74.9 −75.9 −75.5
K = 16 −75.2 −74.6 −74.6 −74.5 −75.1 −75.1
K = 32 −74.9 −74.3 −74.2 −74.2 −74.8 −74.8
K = 64 −74.6 −74.1 −74.1 −73.9 −74.4 −74.4
K = 128 −74.3 −73.9 −73.8 −73.7 −74.1 −74.1
K = 256 −74.1 −73.7 −73.7 −73.6 −73.9 −73.7

Plain VI: −1187.8

ULA - Overdamped / MCD - Overdamped+score net / UHA - Underdamped / LDVI - Underdamped+score net

Hierarchical

Langevin Diffusion Variational Inference

Table 6: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the sonar (d = 61) dataset. Higher is better. Plain VI achieves an ELBO of −138.6 nats. Best result for each value of K
highlighted.

Logistic regression (Sonar)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −122.4 −117.2 −120.1 −116.3 −124.1 −118.5
K = 16 −119.9 −114.4 −116.8 −112.6 −119.9 −114.4
K = 32 −117.4 −112.4 −113.9 −110.6 −116.4 −111.7
K = 64 −115.3 −111.1 −111.9 −109.7 −113.8 −110.3
K = 128 −113.5 −110.2 −110.6 −109.1 −111.9 −109.6
K = 256 −112.1 −109.7 −109.7 −108.9 −110.7 −109.1

Table 7: ELBO achieved after training by different methods for different values of K for the Brownian motion model
(d = 32). Higher is better. Plain VI achieves an ELBO of −4.4 nats. Best result for each value of K highlighted.

Brownian motion

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1.9 −1.4 −1.6 −1.1 −2.8 −2.8
K = 16 −1.5 −0.8 −1.1 −0.5 −2.2 −1.4
K = 32 −1.1 −0.4 −0.5 0.1 −1.6 −0.5
K = 64 −0.7 −0.1 0.1 0.5 −0.9 0.1
K = 128 −0.3 0.2 0.4 0.7 −0.4 0.4
K = 256 −0.1 0.5 0.6 0.9 0.1 0.6

Table 8: ELBO achieved after training by different methods for different values of K for the Lorenz system model (d = 90).
Higher is better. Plain VI achieves an ELBO of −1187.8 nats. Best result for each value of K highlighted.

Lorenz system

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1168.2 −1168.1 −1166.3 −1166.1 −1170.5 −1170.5
K = 16 −1165.7 −1165.6 −1163.1 −1162.2 −1169.8 −1166.8
K = 32 −1163.2 −1163.3 −1160.3 −1157.6 −1167.9 −1162.9
K = 64 −1160.9 −1161.1 −1157.7 −1153.7 −1161.3 −1161.4
K = 128 −1158.9 −1158.9 −1155.4 −1153.1 −1158.1 −1163.4
K = 256 −1157.2 −1157.1 −1153.3 −1151.1 −1163.1 −1154.6

Table 9: ELBO achieved after training by different methods for different values of K for a random effect regression model
with the seeds dataset (d = 26). Higher is better. Plain VI achieves an ELBO of −77.1 nats. Best result for each value of
K highlighted.

Random effect regression (seeds)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −75.5 −75.1 −74.9 −74.9 −75.9 −75.5
K = 16 −75.2 −74.6 −74.6 −74.5 −75.1 −75.1
K = 32 −74.9 −74.3 −74.2 −74.2 −74.8 −74.8
K = 64 −74.6 −74.1 −74.1 −73.9 −74.4 −74.4
K = 128 −74.3 −73.9 −73.8 −73.7 −74.1 −74.1
K = 256 −74.1 −73.7 −73.7 −73.6 −73.9 −73.7

Plain VI: −77.1

ULA - Overdamped / MCD - Overdamped+score net / UHA - Underdamped / LDVI - Underdamped+score net

Conclusions

Compared to diffusion models...
Harder since marginals of Q not tractable
Easier because have a good guess for
score network

Experimentally...
Underdamped dynamics help
Learning a score network helps
Better discretization helps
Tuning more stuff helps

There’s a lot we still don’t understand...

Thank you!

Joint work with Tomas Geffner

Langevin Diffusion Variational Inference
AISTATS 2023, arXiv:2208.07743

these slides: t.ly/9vZvk or
people.cs.umass.edu/domke/diffusion.pdf

Conclusions

Compared to diffusion models...
Harder since marginals of Q not tractable
Easier because have a good guess for
score network

Experimentally...
Underdamped dynamics help
Learning a score network helps
Better discretization helps
Tuning more stuff helps

There’s a lot we still don’t understand...

Thank you!

Joint work with Tomas Geffner

Langevin Diffusion Variational Inference
AISTATS 2023, arXiv:2208.07743

these slides: t.ly/9vZvk or
people.cs.umass.edu/domke/diffusion.pdf

Optimizing more stuff helps
Tuning more stuff is good

ε – step size of HMC dynamics
η – damping coefficient
Σ – moment covariance
β – temperature schedule
ψ – “full rank” temperature schedule
q – initial distribution

Figure 2: UHA tuning all parameters leads to better performance than other methods.

that tuning the bridging parameters � and the initial approximation q(z) leads to the largest gains in
performance, and that tuning all parameters always outperforms tuning smaller subsets of parameters.
We show a more thorough analysis, including more subsets and values of K in Appendix B.

Figure 3: Tuning all parameters leads to better results than tuning subsets of them. Largest
gains are obtained by tuning bridging coefficients � and initial distribution q. ELBO achieved
as a function of parameters tuned (x-axis), for K = 64. The subsets are ordered in terms of increasing
performance (same ordering is used for all four models). Parameters are step-size ✏, damping
coefficient ⌘, moment covariance ⌃, bridging densities parameters � and , initial distribution q.

Finally, Appendix E shows results comparing UHA (tuning several parameters) against HMC, mean
field VI and IW in terms of the approximation accuracy achieved on a logistic regression model with
a fixed computational budget.

5.3 VAE training

Our method can be used to train latent variable models, such as Variational Auto-encoders (VAE)
[24, 31]. In this case the initial approximation q(z|x) and the model p(x, z) are parameterized by
two neural networks (encoder and decoder), whose parameters are trained by maximizing the ELBO.
UHA can be used to train VAEs by augmenting these two distributions as described in Section 3.

Datasets. We use three datasets: mnist [25] (numbers 1-9), emnist-letters [11] (letters A-Z), and
kmnist [10] (cursive Kuzushiji). All consist on greyscale images of 28⇥28 pixels. In all cases we use
stochastic binarization [33] and a training set of 50000 samples, a validation set of 10000 samples,
and a test set of 10000 samples. All datasets are available in tensorflow-datasets [1].

Baselines. We compare against Importance Weighted Auto-encoders [6] and plain VAE training [24].

Architecture details. We set q(z|x) to a diagonal Gaussian, p(z) to a standard Normal, and p(x|z)
to a Bernoulli. We consider two architectures for the encoder and decoder: (1) Feed forward networks
with one hidden layer of size 450 and Relu non-linearities, with a latent space dimensionality of 64;
(2) Architecture used by Burda et al. [6], feed forward networks with two hidden layers of size 200
with tanh non-linearities, with a latent space dimensionality of 50.

Training details. In all cases the encoder and decoder are initialized to parameters that maximize
the ELBO. For IW we tune the encoder and decoder parameters (using the doubly-reparameterized
estimator [40]), and for UHA we tune the integration step-size ✏, damping coefficient ⌘, bridging
parameters �, momentum covariance ⌃ (diagonal), and the decoder parameters. Following Caterini
et al. [7] we constrain ✏ 2 (0, 0.05) to avoid unstable behavior of the leapfrog discretization. We use
Adam with a step-size of 10�4 to train for 100 epochs and use the validation set for early stopping.
We repeated all simulations for three different random seeds. In all cases the standard deviation of
the results was less than 0.1 nats (not shown in tables).

9

(K = 64)

Better than importance-weighted VICompares well to baselines

UHA Our algorithm

HAIS Annealed
Importance
Sampling using
HMC dynamics

IW Importance
Weighting

HVI “Bridging the
gap” using HMC
dynamics

HVAE (Recent
algorithm)

VAEsVAE training

All methods achieved better results using the architecture with one hidden layer. These results
are shown in Tables 2 and 3. The first one shows the ELBO on the test set achieved for different
values of K, and the second one the log-likelihood on the test set estimated with AIS [44]. It can
be observed that UHA leads to higher ELBOs, higher log-likelihoods, and smaller variational gaps
(difference between ELBO and log-likelihood) than IW for all datasets, with the difference between
both methods’ performance increasing for increasing K. Notably, for K = 64, the variational gap
for UHA becomes quite small, ranging from 0.8 to 1.4 nats depending on the dataset.

Results for the architecture from Burda et al. [6] (two hidden layers) are shown in Tables 4 and
5 (Appendix C). Again, we observe that UHA consistently leads to higher ELBOs and the best
test log-likelihood was consistently achieved by UHA with K = 64. However, for smaller K, IW
sometimes had better log-likelihoods than UHA (despite worse ELBOs).

Table 2: ELBO on the test set (higher is better). For K = 1 both methods reduce to plain VI.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA �93.4 �89.8 �88.8 �88.1 �87.6
IW �93.4 �90.5 �89.9 �89.4 �89.0

letters UHA �137.9 �133.5 �132.3 �131.5 �130.9
IW �137.9 �134.6 �133.9 �133.2 �132.7

kmnist UHA �184.2 �176.6 �174.6 �173.2 �171.6
IW �184.2 �179.7 �178.7 �177.8 �177.0

Table 3: Log-likelihood on the test set (higher is better). This is estimated using AIS with under-
damped HMC using 2000 bridging densities, 1 HMC iteration with 16 leapfrog steps per bridging
density, integration step-size ✏ = 0.06, and damping coefficient ⌘ = 0.8.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA �88.5 �87.5 �87.2 �87.0 �86.9
IW �88.5 �87.6 �87.5 �87.3 �87.2

letters UHA �131.9 �130.7 �130.3 �130.1 �129.9
IW �131.9 �130.9 �130.7 �130.6 �130.4

kmnist UHA �174.3 �172.2 �171.6 �171.2 �170.2
IW �174.3 �173.0 �172.6 �172.4 �172.2

6 Discussion

Since UHA yields a differentiable lower bound, one could tune other parameters not considered in
this work. For instance, a different momentum distribution per bridging density could be used, that
is, ⇡̄m(z, ⇢) = ⇡̄m(z)Sm(⇢). We believe additions such as this may yield further gains. Also, our
method can be used to get tight and differentiable upper bounds on log Z using the reversed AIS
procedure described by Grosse et al. [18].

Finally, removing accept-reject steps might sometimes lead to instabilities during optimization if
the step-size ✏ becomes large. We observed this effect when training VAEs on some datasets for the
larger values of K. We solved this by constraining the range of ✏ (previously done by Caterini et al.
[7]). While this simple solution works well, we believe that other approaches (e.g. regularization,
automatic adaptation) could work even better. We leave the study of such alternatives for future work.

Acknowledgments and Disclosure of Funding

This material is based upon work supported in part by the National Science Foundation under Grant
No. 1908577.

10

All methods achieved better results using the architecture with one hidden layer. These results
are shown in Tables 2 and 3. The first one shows the ELBO on the test set achieved for different
values of K, and the second one the log-likelihood on the test set estimated with AIS [44]. It can
be observed that UHA leads to higher ELBOs, higher log-likelihoods, and smaller variational gaps
(difference between ELBO and log-likelihood) than IW for all datasets, with the difference between
both methods’ performance increasing for increasing K. Notably, for K = 64, the variational gap
for UHA becomes quite small, ranging from 0.8 to 1.4 nats depending on the dataset.

Results for the architecture from Burda et al. [6] (two hidden layers) are shown in Tables 4 and
5 (Appendix C). Again, we observe that UHA consistently leads to higher ELBOs and the best
test log-likelihood was consistently achieved by UHA with K = 64. However, for smaller K, IW
sometimes had better log-likelihoods than UHA (despite worse ELBOs).

Table 2: ELBO on the test set (higher is better). For K = 1 both methods reduce to plain VI.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA �93.4 �89.8 �88.8 �88.1 �87.6
IW �93.4 �90.5 �89.9 �89.4 �89.0

letters UHA �137.9 �133.5 �132.3 �131.5 �130.9
IW �137.9 �134.6 �133.9 �133.2 �132.7

kmnist UHA �184.2 �176.6 �174.6 �173.2 �171.6
IW �184.2 �179.7 �178.7 �177.8 �177.0

Table 3: Log-likelihood on the test set (higher is better). This is estimated using AIS with under-
damped HMC using 2000 bridging densities, 1 HMC iteration with 16 leapfrog steps per bridging
density, integration step-size ✏ = 0.06, and damping coefficient ⌘ = 0.8.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA �88.5 �87.5 �87.2 �87.0 �86.9
IW �88.5 �87.6 �87.5 �87.3 �87.2

letters UHA �131.9 �130.7 �130.3 �130.1 �129.9
IW �131.9 �130.9 �130.7 �130.6 �130.4

kmnist UHA �174.3 �172.2 �171.6 �171.2 �170.2
IW �174.3 �173.0 �172.6 �172.4 �172.2

6 Discussion

Since UHA yields a differentiable lower bound, one could tune other parameters not considered in
this work. For instance, a different momentum distribution per bridging density could be used, that
is, ⇡̄m(z, ⇢) = ⇡̄m(z)Sm(⇢). We believe additions such as this may yield further gains. Also, our
method can be used to get tight and differentiable upper bounds on log Z using the reversed AIS
procedure described by Grosse et al. [18].

Finally, removing accept-reject steps might sometimes lead to instabilities during optimization if
the step-size ✏ becomes large. We observed this effect when training VAEs on some datasets for the
larger values of K. We solved this by constraining the range of ✏ (previously done by Caterini et al.
[7]). While this simple solution works well, we believe that other approaches (e.g. regularization,
automatic adaptation) could work even better. We leave the study of such alternatives for future work.

Acknowledgments and Disclosure of Funding

This material is based upon work supported in part by the National Science Foundation under Grant
No. 1908577.

10

ELBO on test set log-likelihood on test set

Looseness
Finite time decomposition:

KL(q(z1:K)‖p(z1:K))︸ ︷︷ ︸
what you optimize

= KL(q(zK)‖p(zK))︸ ︷︷ ︸
what you care about

+KL(q(z1:K−1|zK)‖p(z1:K−1|zK))︸ ︷︷ ︸
looseness

Analogous to continuous time decomposition:

KL(Q‖P)︸ ︷︷ ︸
what you optimize

= KL(qT‖pT)︸ ︷︷ ︸
what you care about

+ E
zT∼qT

KL(Q(·|zT)‖P(·|zT))
︸ ︷︷ ︸

looseness

Ideal (intractable) transitions

Bk(zk|zk+1) = Fk(zk+1|zk)
q(zk)

q(zk+1)

would give KL(q(z1:K)‖p(z1:K)) = KL(q(zK)‖p(zK)).

Approximating these transitions analogous to approximating score function

SDEs

dzt = f (zt , t)dt +g(t)dwt zt+δ = zt +δ f (zt)+g(t)εt

ε0,εδ , · · ·εT ∼ N (0,δ)

dzt = f (zt , t)dt +g(t)dw̄t zt−δ = zt −δ f (zt)+g(t)εt

εT ,εT−δ , · · · ,ε0, · · · ∼ N (0,δ)

