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1 Probability

This section is largely inspired by Larry Wasserman’s All of Statistics and Arian Melki and
Tom Do’s Review of Probability Theory.

1.1 Sample Spaces

The basic element of probability theory is that of a sample space Ω. We can think of this
as “the set of all the things that can happen”. For example, if we are flipping a coin, we
might have

Ω = {H, T},

or if we are flipping three coins, we might have

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

An event A is defined to be a subset F ⊂ Ω of the sample space. Probability measures
are defined as a function p from events to real numbers

P : F → R.

In order to be considered a valid probability distribution1, these functions have to obey some
natural axioms:

• P (A) ≥ 0 - “Probabilities aren’t negative.”

• P (Ω) = 1 - “Something happens.”

• If A1, A2, ..., AN are disjoint, then P (A1 ∩ A2) = P (A1) + P (A2).

Given these axioms, many other properties can be derived :

• P (∅) = 0

• A ⊂ B → p(A) ≤ p(B)

• P (A) = 1 − P (Ac) (where Ac = {ω : ω ∈ Ω, ω 6∈ A}

• P (A) ≤ 1

1Or probability density, if variables are continuous.

http://www.stanford.edu/class/cs229/section/cs229-prob.pdf


Background 3

• P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Conditional probabilities are defined as

P (A|B) =
P (A, B)

P (B)
.

Though samples spaces are the foundation of probability theory, we rarely need to deal with
them explicitly. This is because they usually disappear into the background, while we work
with random variables.

1.2 Random Variables

A random variable X is a function from a sample space to the real numbers

X : Ω → R.

Technically, we need to impose some mild regularity conditions on the function in order for
it to be a valid random variable, but we won’t worry about such niceties. Given a random
variable X, we define X−1 to be the function that maps a real number to all the events
corresponding to that number, i.e.

X−1(A) = {ω : X(ω) ∈ A}.

Given this, we can assign probabilities to random variables as

P (X ∈ A) = P (X−1(A)).

Note here that we are “overloading” the notation for a probability distribution by allowing
it to take either events or conditions on random variables as input. We will also use (fairly
self-explanatory) notations like

P (X = 5), or P (3 ≤ X ≤ 7).

Now, why introduce random variables? Basically, because we usually don’t care about every
detail of the sample space. If we are flipping a set of 5 coins, it is awkward to deal with the
set

Ω = {HHHHH, HHHHT, ..., TTTTT},
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which would involve specifying probabilities for each of the possible 25 outcomes. However,
if we define a random variable

X(ω) = number of H in ω,

we must only define probabilities P (X = 0), P (X = 1), ..., P (X = 5).

Example: Let Ω = {(x, y) : x2 + y2 ≤ 1} be the unit disk. Take a random point ω = (x, y)
from Ω. Some valid random variables are:

• X(ω) = x

• Y (ω) = y

• Z(ω) = x + y

• W (ω) =
√

x2 + y2

Now, we will commonly distinguish between two types of random variables.

• A discrete random variable is one in which X(A) takes a finite or countably infinite
number of values.

• A continuous random variable is one for which a probability density function exists.
(Defined below!)

For a discrete random variable, we can define a probability mass function such that

P (X = x) = pX(x).

Be careful! Do you understand how p is different from P ? Do you understand how X is
different from x?

For a continuous random variable, a probability density function can be defined2 such
that

P (a ≤ X ≤ b) =

ˆ b

a

pX(x)dx.

Note that we must integrate a probability density function to get a probability. For con-
tinuous random variables, pX(x) 6= P (X = x) (in general). It is quite common, in fact, for
probability densities to be higher than one.

2Technically, we should first define the cumulative distribution function.
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1.3 Multiple Random Variables

We will often be interested in more than one random variable at a time. If we take two
discrete random variables X and Y , the joint probability mass function is defined as

P (X = x, Y = y) = pX,Y (x, y).

For continuous random variables, the joint probability density function is defined such
that

P ((X, Y ) ∈ A) =

ˆ ˆ

A

pX,Y (x, y)dxdy.

Again, we need to integrate the joint probability density function in order to get a probability.
Again, densities can be higher than zero.

The marginal distribution is defined by

pX(x) =

{

∑

y pX,Y (x, y) if Y is discrete
´∞

−∞
pX,Y (x, y) if Y is continuous

.

This is called “marginalization” because it was originally done by accountants literally writing
numbers in the margins of tables. Reassuringly, it does work out that one obtains the same
probability mass/density by deriving pX directly from probabilities on the sample space or by
first deriving pX,Y and then marginalizing. (Otherwise our choice of using the same notation
pX in both cases would be quite odd.)

For either type of variable, we define the conditional probability mass/density function
as

pY |X(y|x) =
pX,Y (x, y)

pX(x)
,

assuming that pX(x) 6= 0.

Two random variables X and Y are said to be independent if for all A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

This is equivalent to either of the following:

• pX,Y (x, y) = pX(x)pY (y) for all x and y.

• pY |X(y|x) = pY (y) whenever pX(x) 6= 0.

The random variables X and Y are said to be conditionally independent given Z if
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P (X ∈ A, Y ∈ B|Z ∈ C) = P (X ∈ A|Z ∈ C)P (Y ∈ B|Z ∈ C).

This is equivalent to saying:

• pX,Y |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z) for all x, y, z.

• pY |X,Z(y|x, z) = pY |Z(y|z) whenever pX,Z(x, z) 6= 0.

1.4 Expectations

The expected value of a random variable is defined to be

E[X] =

{

∑

x xpX(x) if X is discrete
´

xpX(x)dx if X is continuous
.

Note that in certain cases (which aren’t even particularly weird), the integral might fail to
converge, and we will say that the expected value does not exist. A couple important results
about expectations follow.

Theorem 1. If X1, ..., Xn are random variables, and a1, ..., an are constants, then

E[
∑

i

aiXi] =
∑

i

aiE[Xi].

Do not miss the word “independent” in the following theorem!

Theorem 2. If X1, ..., Xn are independent random variables, then

E[
∏

i

Xi] =
∏

i

E[Xi].

The variance of a random variable is defined by

V[X] = E[(X − E[X])2].

Roughly speaking, this measures how “spread out” the variable X is.

Some other useful results, which you should prove for “fun” if you’ve never seen them before
follow. Again, note the word “independent” in the third result.

Theorem 3. Assuming that the variance exists, then
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• V(X) = E[X2] − E[X]2

• If a and b are constants, then V(aX + b) = a2
V(X).

• If X1, ..., Xn are independent, and a1, ..., an are constants, then

V[
n

∑

i=1

aiXi] =
n

∑

i=1

aiV[Xi].

Given two random variables X and Y , the covariance is defined by

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])].

Given two random variables X and Y , the conditional expectation of X given that Y = y
is

E[X|Y = y] =

{

∑

xpX|Y (x|y) if X is discrete
´

xpX|Y (x|y)dx if X is continuous
.

Given a bunch of random variables X1, X2, ..., Xn it can be convenient to write them together
in a vector X. We can then define things such the expected value of the random vector

E[X] =

[ E[X1]
...

E[Xn]

]

,

or the covariance matrix

Cov[X] =

[ Cov[X1, X1] . . . Cov[X1, Xn]
...

. . .
...

Cov[Xn, X1] . . . Cov[Xn, Xn]

]

.

1.5 Empirical Expectations

Suppose that we have some dataset {(x1, y1), (x2, y2), ..., (xN , yN)}. Suppose further that we
have some vector of weights w. We might be interested in the sum of squares fit of y to
w · x.

R =
1

N

N
∑

i=1

(yi − w · xi)2.
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Instead, we will sometimes convenient to define a discrete distribution that assigns 1/N
probability to each of the values in the dataset. We will write expectations with respect to
this distribution as Ê. Thus, we would write the above sum of squares error as

R = Ê[(Y − w · X)2].

Once you get used to this notation, it often makes expressions simpler by getting rid of Σ, i
and N .

2 Linear Algebra

2.1 Basics

A vector is a bunch of real numbers stuck together

x = (x1, x2, ..., xN).

Given two vectors, we define the inner product two be the sum of the products of corre-
sponding elements, i.e.

x · y =
∑

i

xiyi.

(Obviously, x and y must be the same length in order for this to make sense.)

A matrix is a bunch of real numbers written together in a table

A =











A11 A12 ... A1N

A21 A22 ... A2N
...

...
...

AM1 AM2 ... AMN











.

We will sometimes refer to the ith column or row of A as A•i or Ai•, respectively. Thus, we
could also write

A =
[

A•1 A•2 ... A•N

]

,

or
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A =











A1•

A2•
...

AM•











.

Given a matrix A and a vector x, we define the matrix-vector product by

b = Ax ↔ bi =
∑

j

Aijxj = Ai·x.

There are a couple of other interesting ways of looking at matrix-vector multiplication. One
is that we can see the matrix-vector product as a vector of the inner-product of each row of
A with x.

b = Ax =











A1·x

A2·x
...

AM ·x











Another is that we can write the result as the sum of the columns of A, weighted by the
components of x.

b = Ax = A·1x1 + A·2x2 + ... + A·NxN .

Now, suppose that we have two matrices, A and C. We define the matrix-matrix product
by

C = AB ↔ Cij =
∑

k

AikBkj = Ai·B·j.

Where does this definition come from? The motivation is as follows.

Theorem 4. If C = AB, then

Cx = A(Bx).
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Proof.

(Cx)i =
∑

j

Cijxj

=
∑

j

∑

k

AikBkjxj

=
∑

k

Aik

∑

j

Bkjxj

=
∑

k

Aik(Bx)k

= (A(Bx))i

Now, as with matrix-vector multiplication, there are a bunch of different ways to look at
matrix-matrix multiplication. Here, we will look at A and B in two different ways.

A =











A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AM1 AM2 . . . AMN











(a table)

=











A1·

A2·
...

AM ·











(a bunch of row vectors)

=
[

A·1 A·2 . . . A·N

]

(a bunch of column vectors)

Theorem 5. If C = AB, then

• C =











A1·B·1 A1·B·2 . . . A1·B·N

A2·B·1 A2·B·2 . . . A2·B·N
...

...
. . .

...
AM ·B·1 AM ·B·2 . . . AM ·B·N











(A matrix of inner products)

• C =
∑

i A·iBi· (The sum out outer products)

• C =
[

AB·1 AB·2 . . . AB·N

]

(A bunch of matrix-vector multiplies)
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• C =











A1·B
A2·B

...
AM ·B











(A bunch of vector-matrix multiplies)

In a sense, matrix-matrix multiplication generalizes matrix-vector multiplication, if you think
of a vector as a N × 1 matrix.

Interesting aside. Suppose that A is N × N and B is N × N . How much time will it
take to compute C = AB? Believe it or not, this is an open problem! There is an obvious
solution of complexity O(N3). However, algorithms have been invented with complexities of
roughly O(N2.807) and O(N2.376), though with weaknesses in terms of complexity of imple-
mentation, numerical stability and computational constants. (The idea of these algorithms
is to manually find a way of multiplying k×k matrices for some chosen k (e.g. 2) while using
less than k3 multiplications, then using this recursively on large matrices.) It is conjectured
that algorithms with complexity of essentially O(N2) exist.

There are a bunch of properties that you should be aware of with matrix-matrix multiplica-
tion.

• A(BC) = (AB)C

• A(B + C) = AB + AC

Notice that AB = BA isn’t on this list. That’s because it isn’t (usually) true.

The identity matrix I is an N × N matrix, with

Iij =

{

1 i = j

0 i 6= j
.

It is easy to see that Ix = x.

The transpose of a matrix is obtained by flipping the rows and columns.

(AT )ij = Aji

It isn’t hard to show that

• (AT )T = A

• (AB)T = BT AT

(A + B)T = AT + BT
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3 Matrix Calculus

(This section is based on Minka’s Old and New Matrix Algebra Useful for Statistics and
Magnus and Neudecker’s Matrix Differential Calculus with Applications in Statistics and

Econometrics.)

Here, we will consider functions that have three types of inputs:

1. Scalar input

2. Vector input

3. Matrix input

We can also look at functions with three types of outputs

1. Scalar output

2. Vector output

3. Matrix output

We might try listing the derivatives we might like to calculate in a table.

input \ output scalar vector matrix

scalar f(x)
dx

df

dx

dF

dx

vector
df

dx

df

dxT

matrix
df

dX

The three entries that aren’t listed are awkward to represent with matrix notation.

Now, we could compute any of the derivatives above via partials. For example, instead of
directly trying to compute the matrix

df

dxT
,

we could work out each of the scalar derivatives

dfi

dxj

.

http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
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However, this can get very tedious. For example, suppose, we have the simple case

f(x) = Ax.

Then
fi(x) =

∑

j

Aijxj .

whence
dfi

dxj
= Aij.

Armed with this knowledge, we can get the simple expression

df

dxT
= A.

Surely there is a simpler way!

3.1 Checking derivatives with finite differences

In practice, after deriving a complicated gradient, practitioners almost always check the
gradient numerically. The key idea is the following. For a scalar function

f ′(x) = lim
dx→0

f(x + dx) − f(x)

dx
.

Thus, just by picking a very small number ǫ, (Say, ǫ = 10−7), we can approximate

f ′(x) ≈
f(x + ǫ) − f(x)

ǫ
.

We can generalize this trick to more dimensions. If f(x) is a scalar valued function of a
vector,

df

dxi

≈
f(x + ǫêi) − f(x)

ǫ
.

While if f(X) is a scalar-valued function of a matrix,

df

dXij
≈

f(X + ǫÊij) − f(X)

ǫ
.
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If f(x) is a vector-valued function of a vector,

df

dxi
≈

f(x + ǫêi) − f(x)

ǫ
.

Now, why don’t we always just compute derivatives this way? Two reasons:

1. It is numerically unstable. The constant ǫ needs to be picked carefully, and accuracy
can still be limited.

2. It is expensive. We need to call the function a number of times depending on the size
of the input.

Still, it is highly advised to check derivatives this way. For most of the difficult problems
below, I did this, and often found errors in my original derivation!

3.2 Differentials

Consider the regular old derivative

f ′(x) = lim
dx→0

f(x + dx) − f(x)

dx
.

This means that we can represent f as

f(x + dx) = f(x) + dx f(x) + rx(dx)

where the remainder function goes to zero quickly as h goes to zero, i.e.

lim
dx→0

rx(dx)

dx
= 0.

Now, think of the point x as being fixed. Then, we can look at the difference f(x+dx)−f(x)
as consisting of two terms:

• The linear term dx f ′(x).

• The “error” rx(dx), which gets very small as dx goes to zero.

For a simple scalar/scalar function, the differential is defined to be

df(x; dx) = dx f ′(x).
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The differential is a linear function of dx.

Similarly, consider a vector/vector function f : R
n → R

m. If there exists a matrix A ∈ R
m×n

such that
f(x + dx) = f(x) + A(x)dx + rx(dx),

where the remainder term goes quickly to zero, i.e.

lim
dx→0

rx(dx)

||dx||
= 0,

then the matrix A(x) is said to be the derivative of f at x and

df(x; dx) = A(x)dx

is said to be the differential of f at x. The differential is again a linear function of dx.

Now, since differentials are always functions of (x; dx), below we will stop writing that. That
is, we will simply say

df = A(x)dx.

However, we would always remember that df depends on both x and dx.

3.3 How to differentiate

Suppose we have some function f(X) or f(x) for F (x) or whatever. How do we calculate
the derivative? There is an “algorithm” of sorts for this:

1. Calculate the differential df or df or dF .

2. Manipulate the differentiatial into an appropriate form

3. Read off the result.

Remember, below, we will drop the argument of the differential, and write it simply as df,
df or dF .

input\output scalar vector matrix

scalar if df = a(x)dx if df = a(x)dx if dF = A(x)dx

then
df

dx
= a(x) then

df

dx
= a(x) then

dF

dx
= A(x)

vector if df = a(x) · dx if df = A(x)dx

then
df

dx
= a(x) then df

dxT = A(x)

matrix if df = A(X) · dX

then
df

dX
= A(X)
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3.4 Traces and inner products

Traditionally, the matrix\scalar rule above is written in the (in my opinion less transparent)
form

if df = tr(A(X)·TdX) then
df

dX
= A(X). (3.1)

This is explained by the following identity.

Theorem 6.
A · B = tr(AT B)

Proof.

tr(AT B) =
∑

i

(AT B)ii =
∑

i

∑

j

AjiBji = A · B.

A crucial rule for the manipulation of traces is that the matrices can be “cycled”. If one will
use the rule in Eq. 3.1, this identity is crucial for getting differentials into the right form to
read off the result.

tr(AB) = tr(BA)

tr(ABC...Z) = tr(BC...ZA)

= tr(C...ZAB).

We can leverage this rule to derive some new results for manipulating inner products. First,
we have results for three matrices.

Theorem 7. If A, B and C are real matrices such that A · (BC) is well defined, then

A · (BC) = BT · (CAT )

= B · (ACT )

= CT · (AT B)

= C · (BT A)



Background 17

Proof.

A · (BC) = tr(AT BC)

= tr(BCAT )

= BT · (CAT )

= B · (ACT )

= tr(CAT B)

= CT · (AT B)

= C · (BT A)

The way to remember this is that you can swap the position of A with either B or C, but
then you transpose the one (of B or C) you didn’t swap with.

Now, we consider results for four. For higher numbers of matrices, just put some together in
a group and apply one of the above rules. (These can be proven in similar ways by converting
to the trace form, permuting the matrices, and then converting back.)

Theorem 8.

A · (BCD) = CT · DAT B

= C · BT ADT

3.5 Rules for Differentials

In the following, α is a real constant, and f and g are real-valued functions (we write them
as taking a matrix input for generality, but these rules also work if the input is scalar or
vector-valued.), and r : R → R.
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d(α) = 0

d(αf) = αdf

d(f + g) = df + dg

d(f − g) = df − dg

d(fg) = df g(X) + f(X) dg

d(
f

g
) =

df g(X) − f(X) dg

g2(X)

d(f−1) = −f−2(X)df

d(fα) = αfα−1(X)df

d(log f) =
df

f(X)

d(ef) = ef(X)df

d(αf) = αf(X) log(α) df

d(r(f)) = r′(f(X)) df

On the other hand, suppose that A is a constant matrix and F and G are matrix-valued
functions. There are similar, but slightly more complex rules.

d(A) = 0

d(αF ) = αdF

d(F + G) = dF + dG

d(F − G) = dF − dG

d(FG) = dF G(X) + F (X) dG

d(AF ) = A dF

d(F T ) = (dF )T

d(F−1) = −F (X)−1(dF )F (X)−1

d(|F |) = |F (X)|F (X)−1 · dF

d(F · G) = d(F ) · G + F · d(G)

d(A · F ) = A · d(F )

Another important rule is for “elementwise” functions. Suppose that R : R
m×n → R

m×n is a
function that operates elementwise. (e.g. exp or sin.) Then

d(R(F )) = R′(F (X)) ⊙ dF,

where ⊙ denotes elementwise multiplication.
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A useful rule for dealing with elementwise multiplication is that

x ⊙ y = diag(x)y.

Also note that
diag(x)y = diag(y)x,

and, similarly,

xT diag(y) = yT diag(x).

3.6 Examples

Lets try using these rules to compute some interesting derivatives.

Example 9. Consider the function f(x) = xT Ax. This has the differential

df = d(xT Ax)

= d((xT A)x)

= d(xT A)x + (xT A)d(x)

= (d(ATx))Tx + (xT A)d(x)

= (AT dx)Tx + (xT A)dx

= d(xT )Ax + xT Adx

= xT (A + AT )dx

= (A + AT )x · dx

From which we can conclude that

df

dx
= (A + AT )x.

Example 10. Consider the function f(X) = aT Xa. This has the differential

df = d(aT Xa)

= d(aT X)a + aT Xd(a)

= aT dXa

= (aaT ) · X
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This gives the result
df

dX
= aaT .

Example 11. Consider the function f(x) = Ax. This has the differential

df = Adx

From which we can conclude that
df

dxT
= A.

Example 12. Consider the function

f(X) = |X|.

This has the differential

df = |X|X−1 · dX.

whence we can conclude that
df

dX
= |X|X−1.

Example 13. Consider the function f(X) = |XTX|. This has the differential

df = |XTX|(XTX)−1 · d(XT X)

= |XTX|(XTX)−1 · (XT dX + d(XT ) X)

= 2|XTX|(XTX)−1 · XT dX

= dX · 2X|XTX|(XTX)−1.

and so we have that
df

dX
= 2X|XTX|(XTX)−1.

(I believe that Minka’s notes contain a small error in this example.)
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Example 14. Consider the function

f(x) = e−x
T Ax

We have that

d(e−xT Ax) = e−xT Axd(−xT Ax)

= e−xT Ax(A + AT )x · dx
df

dx
= e−x

T Ax(A + AT )x.

Example 15. Consider the function

f(x) = sin(x · x).

df = cos(x · x)d(x · x)

= 2 cos(x · x)(x · dx)

df

dx
= 2 cos(x · x)x

Example 16. Consider the (Normal distribution) function

f(x) =
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x).

The differential is

df =
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x)d(−

1

2
xT Σ−1x)

=
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x)(−

1

2
)(Σ−1 + Σ−T )x · dx

= −f(x)Σ−1x · dx

From which we can conclude that

df

dx
= −f(x)Σ−1x.
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Example 17. Consider again the Normal distribution, but now as a function of Σ.

f(Σ) =
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x).

The differential is

df =
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x)d(−

1

2
xT Σ−1x) + d(

1

|2πΣ|−1
) exp(−

1

2
xT Σ−1x).

Let’s attack the two difficult parts in turn.

d(−
1

2
xT Σ−1x) = −

1

2
xT d(Σ−1)x

=
1

2
xT Σ−1dΣΣ−1x

=
1

2
(Σ−1x)(Σ−1x)T · dΣ.

Next, we can calculate

d(
1

|2πΣ|1/2
) = d(|2πΣ|−1/2)

= −
1

2
|2πΣ|−3/2d(|2πΣ|)

= −
1

2
|2πΣ|−3/2|2πΣ|(2πΣ)−1 · d(2πΣ)

= −
1

2

1

|2πΣ|1/2
Σ−1 · d(Σ)

Putting this all together, we obtain that

df =
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x)d(−

1

2
xT Σ−1x) + d(

1

|2πΣ|−1
) exp(−

1

2
xT Σ−1x).

=
1

|2πΣ|1/2
exp(−

1

2
xT Σ−1x)

1

2
(Σ−1x)(Σ−1x)T · dΣ −

1

2

1

|2πΣ|1/2
Σ−1 · d(Σ) exp(−

1

2
xT Σ−1x).

=
1

2
f(Σ)(Σ−1x)(Σ−1x)T · dΣ −

1

2
f(x)Σ−1 · d(Σ)

=
1

2
f(Σ)

(

(Σ−1x)(Σ−1x)T − Σ−1
)

· dΣ
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So, finally, we obtain
df

dΣ
=

1

2
f(Σ)

(

(Σ−1x)(Σ−1x)T − Σ−1
)

.

Example 18. Consider the function

f(x) = 1T exp(Ax) + xT Bx.

Let’s compute the gradient and Hessian both. First the gradient.

df = 1T d(exp(Ax)) + (B + B)Tx · dx

= 1T (exp(Ax) ⊙ d(Ax)) + (B + B)Tx · dx

= 1T diag(exp(Ax))Adx + (B + B)Tx · dx

= exp(Ax)T diag(1)Adx + (B + B)Tx · dx

= exp(Ax)T Adx + (B + B)Tx · dx

= AT exp(Ax) · dx + (B + B)Tx · dx

So, we have
df

dx
= AT exp(Ax) + (B + BT )x.

Now, what about the Hessian? The key idea is, define

g(x) = AT exp(Ax) + (B + BT )x.

Then,

dg = AT d(exp(Ax)) + (B + BT )dx.

= AT (exp(Ax) ⊙ d(Ax)) + (B + BT )dx.

= AT diag(exp(Ax))Adx + (B + BT )dx.

Hence, we have

dg

dxT
=

d2f

dxdxT
= AT diag(exp(Ax))A + (B + BT ).
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3.7 Cheatsheet

input\output scalar vector matrix

scalar if df = a(x)dx if df = a(x)dx if dF = A(x)dx

then
df

dx
= a(x) then

df

dx
= a(x) then

dF

dx
= A(x)

vector if df = a(x) · dx if df = A(x)dx

then
df

dx
= a(x) then df

dxT = A(x)

matrix if df = A(X) · dX

then
df

dX
= A(X)

A · (BC) = BT · (CAT )

= B · (ACT )

= CT · (AT B)

= C · (BT A)

A · (BCD) = CT · DAT B

= C · BT ADT

x ⊙ y = diag(x)y.

diag(x)y = diag(y)x,

xT diag(y) = yT diag(x).



Background 25

d(α) = 0

d(αf) = αdf

d(f + g) = df + dg

d(f − g) = df − dg

d(fg) = df g(X) + f(X) dg

d(
f

g
) =

df g(X) − f(X) dg

g2(X)

d(f−1) = −f−2(X)df

d(fα) = αfα−1(X)df

d(log f) =
df

f(X)

d(ef) = ef(X)df

d(αf) = αf(X) log(α) df

d(r(f)) = r′(f(X)) df

d(A) = 0

d(αF ) = αdF

d(F + G) = dF + dG

d(F − G) = dF − dG

d(FG) = dF G(X) + F (X) dG

d(AF ) = A dF

d(F T ) = (dF )T

d(F−1) = −F (X)−1(dF )F (X)−1

d(|F |) = |F (X)|F (X)−1 · dF

d(F · G) = d(F ) · G + F · d(G)

d(A · F ) = A · d(F )

d(R(F )) = R′(F (X)) ⊙ dF,
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