Statistical Machine Learning Notes 10
Learning Theory

Instructor: Justin Domke

1 Introduction

Most of the methods we have talked about in the course have been introduced somewhat
heuristically, in the sense that we have not rigorously proven that they actually work!
Roughly speaking, in supervised learning we have taken the following strategy:

e Pick some class of functions f(x) (decision trees, linear functions, etc.)
e Pick some loss function, measuring how we would like f(x) to perform on test data.

e Fit f(x) so that it has a good average loss on training data. (Perhaps using cross-
validation to regularize.)

What is missing here is a proof that the performance on training data is indicative of per-
formance on test data. We intuitively know that the more “powerful” the class of functions
is, the more training data we will tend to need, but we have not made the definition of
“powerful”] nor this relationship precise.

In these notes we will study two of the most basic ways of characterizing the “power” of a set
of functions. We will look at some rigorous bounds confirming and quantifying our above
intuition— that is, for a specific set of functions, how much training data is needed to prove
that the function will work well on test data?

2 Hoeffding’s Inequality

The basic tool we will use to understand generalization is Hoeffding’s inequality. This is a
general result in probability theory. It is extremely widely used in machine learning theory.
There are several equivalent forms of it, and it is worth understanding these in detail.

Theorem 1 (Hoeffding’s Inequality). Let Zi, ..., Z,, be random independent, identically dis-
tributed random variables, such that 0 < Z; < 1. Then,

Pr[|% ZZi — E[Z]| > e} <§ = 2exp(—2n62)
i=1

1

Learning Theory 2

The intuition for this result is very simple. We have a bunch of variables Z;. We know that
when we average a bunch of them up, we should usually get something close to the expected
value. Hoeftfding quantifies “usually” and “close” for us.

(Note that the general form of Hoeffding’s inequality is for random variables in some range
a < Z; <b. As we will mostly be worrying about the 0-1 classification error, the above form
is fine for our purposes. Note also that can also rescale your variables to lie between 0 and

1, and then apply the above proof.)

The following examples compare Hoeffding’s inequality to the true probability of deviating
from the mean by more than e for binomial distributed variables, with E[Z] = P. For P = 1
the bound is not bad. However, for P = % it is not good at all. What is happening is that
Hoeffding’s inequality does not make use of any properties of the distribution, such as its
mean or variance. In a way, this is great, since we can calculate it just from n and e. The
price we pay for this generality is that some distributions will converge to their means much
faster than Hoeffding is capable of knowing.

10 -
£= 0.25 P = 0.50 £= 0.05 P= 0.50
08
w
A
206
c * True
& —Hoeffding bound
£04
a
0.2
% 60 80 100 0 200 400 600 800 1000
n
1,
£= 0.25 P = 0.10 £= 0.05 P= 0.10
08
w
A
206
C
o
(D)
£04
a
0.2
% 60 80 100 0 200 400 600 800 1000

Learning Theory 3

You should ask yourself: how will these figures look with P = .97 Will Hoeffding be loose
or tight?

Another form of Hoeffding’s inequality of the following®.

Theorem 2 (Hoeffding-2). Suppose we choose

1
n > —log—. (2.1)

Then, with probability at least 1 — §, the difference between the empirical mean %Z?:l Z;
and the true mean E[Z)] is at most €.

This second form is very useful. To understand it, we can think of setting two “slop” param-
eters:

e The “accuracy” € says how far we are willing to allow the empirical mean to be from
the true mean.

e The “confidence” § says what probability we are willing to allow of “failure”. (That is,
a deviation larger than e)

If we choose these two parameters, Eq. 2.1 tells us how much it will “cost” in terms of
samples.

Note that, informally, accuracy is expensive, while confidence is cheap. Explicitly, if we find
n for some €, §, then we decide that we want 10 times more confidence. We can calculate
that for ¢’ = 6/10, we will need

1,12 2-10 1,12
= 2(=)"1 = —(—)" log(10) = C
w =1 (370s 2 = L) 10g00) = n 4 19
"Want proof, do you?Suppose
2

Then, by Hoeffding’s inequality,

1 n
Pri=> 7~ EZ)| > ¢ < 2exp(~2nc’)
i=1
1. 2,
< 2€Xp(—2ﬁ10g 36)
2
= 2exp(—log 3)

Learning Theory 4

samples to achieve this. Thus, we can just add a constant number C(e) of extra samples.
If we would like 100 times more confidence, we can just add 2C(€) extra samples. Another
way of looking at this is that n o log% or § o< W2(n) Just to emphasize: this is great, this is
the best we could imagine. We will see below that the “cheapness” of confidence turns out
to be key to our goal of creating learning bounds.

On the other hand, accuracy is quite expensive. Suppose that we decide we want 10 times
more accuracy. We can calculate that for ¢ = ¢/10, we will need 100n samples. An increase
of a factor of 100! If we want 100 times more accuracy, we will need a factor of 10,000 times

more samples. Another way of looking at this is that € %

Yet another way of stating Hoeffding’s inequality is

Theorem 3 (Hoeffding-3). If we draw n samples, then with probability at least 1 — ¢, the
difference between the empirical mean + 3" | Z; and the true mean E[Z] is at most €, where

< 11 2
€ — log =
—V 2n g5

With only this simple tool, we can actually derive quite a lot about learning theory.

3 Finite Hypothesis Spaces

How do we use this result for learning theory? The variables we are interested in bounding
are the 0-1 classification error rates of classifers. Given some classifier g, we are interested
in bounding how far the true error rate Ry.(g) is from the observed error rate on n samples,
R.(g). (The notation R(g) is, for the moment, banned.) Here that our bounds are on the
0 — 1 classification error.

Given n training samples, we can state bounds on the difference of the observed and true
error rates for any classifier g. Namely, using Hoeffding-3, with probability 1 — ¢,

2
|Rtrue(g) - Rn(g)| <4/ 5 log ~.

Another way (Hoeffding-2) of stating this result is, if we want that |Riue(g) — Ru(g)| < €
with probability at least 1 — 9, then we should pick

1 2

> —-. .
nz o5 log 5 (3.1)

Now, let’s derive some learning bounds! Here, we will think of things rather more abstractly
than we have before. We will think of having a set of possible classifiers G. These could

Learning Theory 5t

be the set of all decision trees, the set of all linear functions, etc. For now, we assume
that the set G is finite. Note that this is a very strong assumption! When we talked about
linear functions, our classifiers were parameterized by some vector of weights w. Since these
are real numbers, this represents infinite number of classifiers. We could get a finite set by
picking a finite number of weight vectors w, and only considering those.

Now, the above bounds look very nice. We have made no assumptions on the true distribution
or the form of the classifiers g, and so these bounds are almost universally applicable.

Unfortunately, they aren’t useful. Let’s start with a bad idea of how to apply them. (This
does not work! Don’t do it. You have been warned!)

Incorrect, wrong, broken algorithm:

e Input the set of classifiers G.
e Draw n > %(%)2 log% samples.

e Output ¢g* = argmin R,(g)
geg

We might be tempted to conclude that since R, (g) is close to Rye(g) with high probability
for all g, the output g* should be close to the best class. Trouble is, it isn’t true! One way of
looking at the previous results is this: for any given classifier, there aren’t too many “bad”
training sets for which the empirical risk is far off from the true risk. However, different
classifiers can have different bad training sets. If we have 100 classifiers, and each of them
is inaccurate on 1% of training sets, it is possible that we always have at least one such that
the empirical risk and true risk are far off.

(On the other hand, it is possible that the bad training sets do overlap. In practice, this
does seem to happen to some degree, and is probably partially responsible for the fact that
learning algorithms generalize better in practice than these type of bounds can prove.)

The way to combat this is to make the risk of each particular classifier being off really small.
If we have 100 classifiers, and want only a 1% chance of failure, we limit the probability
of failure of each to 0.01%. Or, if we want an overall probability of failure of §, we make
sure that each individual classifer can only fail with probability §/G. Plugging this into our
previous result, we have

Theorem 4. With probability 1 — 6, for all g € G simultaneously

1 2
Rinels) ~ Ra(9)] < 1 5 log 25 (32)

Notice that if the different classifiers g are similar to one another, this bound will be loose.
In the limit that all g are identical, the right hand side should just be @/% log %.

Learning Theory 6

Let’s test this theorem out with some experiments. In the following experiment, we pick 50
random linear classifiers in five dimensions, and calculate the true risk? for each (shown as a
bar graph). The true clasification rule is also linear (not included in the set of 50 classifiers).
Then, we repeat the following experiment: draw n samples, and calculate the empirical risk
(shown as blue dots). We can clearly see that we estimate the risk more accurately with
large n.

n =50, 50 repetitions

x 0.5/

0 25 30 40
classifier

n = 500, 50 repetitions

@ 0.5

30 35 40

0 5 10 25

classifier
n = 5000, 50 repetitions
1 I I I I I I
x 0.5 i ™ | T M r | i
0 5 10 15 20 25 30 35 40 45 50
classifier

Now, lets see how our bound in Eq. 3.2 compares to reality. First of all, we compute a
histogram of the maximum disparity between the empirical and true risk. (Below on left.)
Next, we plot the observed disparities, in order. (Below on right, in blue.) This gives us

2To be perfectly honest, this was approximated on 10 random samples.

Learning Theory 7

an estimate of probabilities. For example, the median observed disparity is about .138,
telling us that with probability % we see a maximum deviation of less than .138. Our bound,
meanwhile, only guarantees that we should see a deviation of less than about .230.

n = 50, repetitions = 5000 n = 50, repetitions = 5000

500

0.4

Il observed
—bound

4007

3001

counts

2001

max, IR (0)-R,,(O)

100¢

0 0.1 0.2 0.3 0.4 0.2 0.4 0.6 0.8 1
max_ R (6)R,,,(0)] 5

Since in general we are interested in bounds we can state with high confidence, lets zoom in
on the range of small 0. Here, we see that the bound performs relatively better.

n = 50, repetitions = 5000
0.4 ‘ :

Il observed
0.351 —bound

0.3

max, IR (0)-R,,(O)
o
N

0 0.005 5 0.01 0.015

4 Structural Risk Minimization

Lets recall the model selection problem. When doing supervised learning, we pick some class
of functions G, then pick the function ¢ in that class with the the lowest empirical risk. The
model selection problem is this: What set of function G should we use?

Notice that our bound in Eq. 5.1 exhibits a bias-variance tradeoff. If we pick a big set of

Learning Theory 8

functions, some ¢g might have a low risk. Thus, as G gets bigger, mingeg Ruye(g) will be
non-increasing. (This means a decrease in bias.) On the other hand, the more functions we
have, the more danger there is that one happens to score well on the training data. Thus,

as G gets bigger, 24/ 5-log = is increasing. (This means an increase in variance.)

In structural risk minimization, we have a sequence of function sets or “models”, G, Gs, G3,
etc. We assume that they are strictly increasing, and so

Q1 CQQ ngc

We would like to select G; to trade-off between bias and variance. Now, we define

* = argmin R, (q)).
g; = argmin I, (g;)

This is the function that minimizes the empirical risk under the model G;. This, our question
is if we should output g7, g5, etc. We know that for more complex models, g will be selected
from a larger set, and so could fit the true function better. On the other hand, we run a
greater risk of overfitting.

Recall that we know, from Eq. 3.2, that for all g € G; simultaneously,

1 2|G;|
rue S n _l
Rirue(9) < Ru(g) + 4/ 5 -log —

Consequently, this is also true for g;. This gives us a bound on the true risk of each of the
functions, in terms of only the empirical risk and the size of the model.

L log%. (4.1)

) < *
Rtrue(gz) = RTL(QZ) + m 5

What we would like to to is minimize Rie(g)). Since we can’t do that, the idea of strucural
risk minimization is quite simple: minimize the bound!

Structural Risk Minimization using a Hoeffding bound

e For all 7, compute g = arg mign R.(9)
[S

1
e Pick i such that R,(g)) + o log is minimized.
n

2|Gi
1)

e Output g}

Learning Theory 9

This is an alternative to methods like cross-validation. Note that in practice the bound in
Eq. 4.1 is often very loose. Thus, while SRM may be based on firmer theoretical foundations
than cross-validation, this does not mean that it will work better.

5 More on Finite Hypothesis Spaces

We can also ask another question. Let ¢g* be the best classifier in G.

t = i Rrue
g" = argmin Rue(9)

We might try to bound the probability that empirical risk minimization picks ¢*. This is
hard to do, because if there is some other classifier that has a true risk very close to that of
g*, a huge number of samples could be required to distinguish them. On the other hand, we
don’t care too much— if we pick some classifier that has a true risk close to that of g*, we
should be happy with that. So, instead we will bound the difference of the true risk of the
classifier picked by empirical risk minimization and the true risk of the optimal classifier.

Theorem 5. With probability at least 1 — 9,

: . /1. 2|G|
< — —_—. .
Rirue (arg min R.(9)) < min Rirue(g) + 2 5 log 5 (5.1)

What this says is this: Take the function ¢g* minimizing the empirical risk. Then, with high
probability (1 — §), the true risk of ¢* will not be too much worse that the true risk of the
best function. Put another way, empirical risk minimization usually picks a classifier with a
true risk close to optimal, where “usually” is specified as ¢ and “close” is the constant on the
right hand side.

You should prove this as an exercise. The basic idea is that, with high probability R, (¢") >
Rirue(g') — €, while simultaneously R,,(¢g*) < Riue(g*) + €. Since ¢’ did best on the training
data, we have Rie(9') < Ra(9') +€ < Ru(g") + € < Rie (g%) + 2¢.

We have one more theorem for finite hypothesis spaces.

Theorem 6. If we set

(5.2)

then with probability 1 — 9, for all g € G simultaneously,

Learning Theory 10

|Rirue(g) — Rulg)| < e.

We can prove this by recalling (Eq. 3.1). This tells us that the above result must hold
for each g independently with probability 6/|G|. Thus, it must hold for all of them with
probability 9.

6 Infinite Spaces and VC Dimension

The big question we want to answer is, given a set of functions, how much data do we
need to collect to fit the set of functions reliably. The above results suggest that for finite
sets of functions, the amount of data is (at most) logarithmic in the size of the set. These
results don’t seem to apply to most of the classifiers we have discussed in this class, as they
generally fit real numbers, and so involve an infinite set of possible functions. On the other
hand, regardless of the fact that we use real numbers in analysing or algorithms, we use
digital computers, which represent numbers only to a fixed precision®. So, for example, if
we are fitting a linear model with 10 weights, on a computer that uses 32 bits to represent a
float, we actually have a large but finite number of possible models: 23%19. More generally,
if we have P parameters, Eq. 5.2 suggests using

1 1 2.2%2F 1 2
sz 08— = gallogs
samples suffices. This is reassuringly intuitive: the number of samples required is linear in
the number of free parameters. On the other hand, this isn’t a particularly tight bound, and
it is somehow distasteful to suddenly pull our finite precision representation of parameters
out of a hat, when this assumption was not taken into account when deriving the other
methods. (It seems to violate good taste to switch between real numbers and finite precision
for analysis whenever one is more convenient.)

n > (log = + 32Plog 2)

Theorem 7. With probability 1 — ¢, for all g € G simultaneously,

n

VC[G]

mﬁmgm@+¢wfmm +l0g20) + T log 3 6.1)

Where VC[G] is the VC-dimension of the set G, which we will define presently.

Take some set of points S = {x1,Xa,...,X4}. We say that G “shatters” S if the points can be
classified in all possibile ways by G. Formally stated, G shatters S if

3Technically, most algorithms could be implement using an abitrary precision library, but don’t think
about that.

Learning Theory 11

Yy, € {—1,+1}, dg € G : y; = sign g(x;).

The VC-dimension of G is defined to be the size of the largest set S that can be shattered
by G. Notice that we only need to be able to find one set of size d that can be shattered in
order for the VC dimension to be at least d.

Examples:

e A finite set of classifiers, can only produce (at most) |G| possible different labelings of
any group of points. Shattering a group of d points requires 2¢ labelings, implying that
thus, 2Vl < |G|, and so VC[G] < log, |G|

log, |G| n 1. 4
rue S n]- 1 2 _]. .
Rire(9) < R (9)+\/ " (log 1oz, 10 + log 2e) + ~log 5

e V(C-dimension of linear classifier in D dimensions is at least . Choose set of points

x; = (1,0,0,...,0)
x; = (0,1,0,...,0)
x5 = (0,0,1,...,0)

For this fixed set of points, we claim that for any set of labels y; € {—1,+1} it is
possible to find a vector of weights w such that y; = sign(w - x;) for all i. (Actually,
this is really easy! Just choose w; = ¥;.) In fact VC[G] = D, though the upper-bound
proof is somewhat harder.

e VC-dimension of SVM with polynomial kernel k(x,v) = (x - v)? is (DJ’II; _1) where D
is the length of x.

Just as with the Hoeffding bound above, we can use the the VC bound for structural risk
minimization. The assumption is now, we have a sequence of functions G;, Gs, etc., where
the VC dimension of the sets is increasing.

Structural Risk Minimization with VC dimension.

e For all 7, compute g7 = arg mign R.(9)
[S

n

SVCIG]

; 1. 4
e Pick i such that R,(g;) + \/VC[(]Z] (lo + log 2¢) + - log — is minimized.
n

4]

e Output g;

Learning Theory 12

7 Discussion

The fundamental weakness of the above bounds is their looseness. In practice, the bound
on the difference between the training risk and true risk in Eq. 6.1 is often hundreds of
times higher than the true difference. There are many worst-case assumptions leading to the
bound that are often not so bad in practice. Tightening the bounds remains an open area
of research. On the other hand, the bound can sometimes work well in practice despite its
looseness. The reason for this is that we are fundamentally interested in performing model
selection, not bounding test errors. The model selected by structural risk minimization is
sometimes quite good, despite the looseness of the bound.

Sources:

e A Tutorial on Support Vector Machines for Pattern Recognition, Burges, Data Mining
and Knowledge Discovery, 1998

e Introduction to Statistical Learning Theory, Bousquet, Boucheron, Lugosi, Advanced
Lectures on Machine Learning Lecture Notes in Artificial Intelligence, 2004

