
Statistical Machine Learning Notes 6 "bonus"

Lagrange Duality

Instructor: Justin Domke

1 Theory

Lagrange duality is a fundamental tool in machine learning (among many, many other areas).
Though a full understanding of Lagrange duality is beyond the scope of this course, the basic
intuition is not hard to explain. Let’s begin by considering a general optimization problem

min f0(x)

s.t. fi(x) ≤ 0

hi(x) = 0.

Here, we assume that the problem is convex, meaning that f0 and fi are convex functions,
and that hi are affine. Let the optimum of this problem be p∗.

The Lagrangian is defined to be

L(x, λ, ν) = f0(x) +
∑

i

λifi(x) +
∑

j

νjhj(x).

The Lagrange dual function is defined to be

g(λ, ν) = inf
x

L(x, λ, ν).

The key idea of Lagrange duality is the following observation:

Claim #1:
For any ν and for any λ ≥ 0, g(λ, ν) ≤ p∗.

This is to say, for any ν, and any nonnegative λ, g(λ, ν) lower-bounds the true optimum.
It is not hard to see why this is true. First off, for any x that obeys the constraints,
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L(x, λ, ν) ≤ f0(x).

That is to say, the Lagrangian can only “help” legal solutions. Thus, in particular, if x
∗ is

the optimum of the original problem

g(λ, ν) = inf
x

L(x, λ, ν) ≤ L(x∗, λ, ν) = p∗

For illegal solutions, however, this is not true. If x
′ violates some constraints, then for certain

settings of the Lagrange multipliers, L(x′, λ, ν) > f0(x
′). This is in fact the key to Lagrange

duality’s magic.

Given that the Lagrange dual function gives valid lower bounds for any ∀ν, ∀λ ≥ 0, it is
natural to try to get the best/tightest/highest lower bound. This is called the Lagrange
dual problem.

max g(λ, ν)

s.t. λ ≥ 0.

Call the optimal value of the Lagrange dual problem d∗. It is obvious that d∗ ≤ p∗, always.
But wouldn’t it be nice if d∗ = p∗? This is called strong duality. When does this hold? The
following theorem gives some sufficent conditions. (Note this is on top of our assumption of
convexity.)

Claim #2 (Slater’s Theorem):
Strong duality holds if there exists a strictly feasible point, i.e. some x

such that the inequality constraints are strictly satisfied, with

fi(x) < 0

hj(x) = 0.

This can be slightly strengthened. If some fi are affine (fi(x) = a · x + b), then they don’t
need to be strictly satisfied.
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Claim #3 (Slater’s Theorem++):
Strong duality holds if there exists a strictly feasible point, i.e. some x

such that the inequality constraints are strictly satisfied, with

fi(x) ≤ 0, fi affine

fi(x) < 0, fi non-affine

hj(x) = 0.

2 Discussion

Fundamentally, that is all you need to know about Lagrange duality for this course. However,
some discussion is helpful to appreciate the significance of Lagrange duality, and when it is
useful.

Another way of writing Lagrange duality, when strong duality holds, is:1

min
x:fi(x)≤0

hj (x)=0

f0(x) = max
ν,λ≥0

min
x

L(x, λ, ν).

Thus, we take a constrained problem, and convert it into a “maximin” problem. There are
two things that have happened

1. We have made the problem easier in the sense that the complex constraints fi, hj have
been replaced with the trivial constraint λ ≥ 0. This is almost always good.

2. We have made the problem harder in the sense that we now have two “nested”, and
“competing” optimization problems. This is possibly bad.

Though the above theory is always true, the usefulness of Lagrange duality depends greatly
upon how easy it is to solve minx L(x, λ, ν). There are a bunch of situations:

• Closed form solution. This is what we want, and most of what you will see in the
literature. This means that minx L(x, λ, ν) can be solved “symbolically”. Usually, this
is done by calculating the gradient dL/dx, setting it to zero, and solving for x in terms
of λ and ν. If we write our closed-form solution for x in terms of λ and ν as x

∗(λ, ν),
we have the optimization problem

max
ν,λ≥0

L(x∗(λ, ν), λ, ν).

1Here we sloppily replace inf with min. This is only correct, of course, if the infimum is bounded below. In

practice it often happens that for some ν, λ, infx L(x, λ, ν) = −∞. This is usually dealt with by constraining

ν and λ to be such that this doesn’t occur.
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When this is possible, Lagrange duality essentially turns a constrained problem into
an almost unconstrained one (“Almost” meaning the simple constraint that λ ≥ 0).

• Fast Algorithm. A less ideal case where Lagrange duality can still be useful is when
minx L(x, λ, ν) doesn’t have a simple symbolic solution, but does have a fast algorithm.
Depending on technical details of this algorithm (beyond the scope of this course), it
may still be possible to recover, for example d

dν
minx L(x, λ, ν), or d

dλ
minx L(x, λ, ν),

meaning an algorithm like gradient ascent might be used to solve the Lagrange dual
problem.

• No easy solution. If f0(x) is complicated enough, it is going to be very hard to solve
the inner minimization, not matter the constraints. Lagrange duality isn’t usually used
in these, though there are no hard and fast rules. Often, complicated functions can
be turned into simpler functions by creating new variables and new constraints. For
example min

x
|x| = min

x,z
z, s.t. z ≥ x, z ≥ −x. In less trivial situations, tricks like this

can make it possible to use Lagrange duality when originally the problem seems too
hard.

In this course, we will only encounter the best case, when closed-form solutions exist. Finally,
take an example of where we can find a closed-form solution. Take the problem

min
1

2
x · x

s.t. Ax = b.
This has the Lagrangian

L(x, ν) =
1

2
x · x + ν

T (Ax − b).

For fixed ν, it is easy to solve for the minimizing x. At the maximum, the derivative with
respect to x must be zero, and so

dL

dx
= 0 = x + AT

ν

x
∗ = −AT

ν

Substituting this, we have that

max
ν

min
x

L(x, ν) = max
ν

1

2
ν

T AAT
ν + ν

T (−AAT
ν − b).

= max
ν

−
1

2
ν

T AAT
ν − ν

T
b.

So we have transformed into an unconstrained quadratic maximization problem.


