
Statistical Machine Learning Notes 5

Template Methods

Instructor: Justin Domke

1 Learning by Memorization

Do we really need these complex learning methods we have been talking about? One philos-
ophy is to forget all that and “just use the data”. Let’s recall our example from the empirical
risk minimization notes. We take an input x, which is either CLEAR, CLOUDY, or MIXED,
and want to predict and output y, either RAIN, or NOPE.

Our training data would be a set of cloud conditions, with the actual outcome on each day,
for example,

{(CLEAR, NOPE), (MIXED, NOPE), (MIXED, RAIN), ...}.

A very simplistic approach for this problem would be the following: on a new input x, look
up all the training elements with the same conditions. Then, predict the most common
outcome on that set. Suppose we need to predict for the conditions MIXED. If it rained
67% of the time in our training data when we had mixed conditions, then we would predict
RAIN.

We might have a more complex input. In addition to the conditions, we might have the tem-
perature, LOW or HIGH. Now, if we want to predict if it will rain on input (MIXED, LOW)
we restrict ourselves to the days matching that input.

How well will this work? If we have a lot of data, and only a few possible inputs like above,
it will work very well. The approach makes no assumptions about the relationship between
inputs and outputs, and so will converge to the optimal predictor as the dataset gets larger.

However, we run into trouble if there are many inputs. If x has d binary attributes, there
are a total of 2d possible input vectors. This means that, for large d, we will need an
exponentially increasing amount of data to accurately predict if it will rain in all possible
situations. Thus, we pay a huge variance price for the low bias of simple memorization.
This is our first glimpse of a problem called the “Curse of Dimensionality”, which plagues
attempts to fit high-dimensional predictors with out making simplifying assumptions– (that
is, with out increasing bias).

1

Template Methods 2

Another problem is what to do if the input is not discrete. What if we measure the tem-
perature in Kelvins, instead of LOW/HIGH? If x is a general real vector, we can’t assume
that the exact same input should ever occur more than once. One approach would be to
discretize x somehow, and then apply learning by memorization. This can work reasonably
well, but introduces several issues. For example, how big should the grid be? Below, we
explore a more elegant solution working directly in the real space.

2 K-Nearest Neighbors Methods

Nearest-neighbor methods can be used for either regression or classification. Given some
dataset D = {(x̂, ŷ)} let Nk(x) be the set of k closest “neighbors” of x, as measured by
Euclidean distance. (Originally, these notes introduced a bunch of equations to try to define
this formally, but this appears to create more problems than it solves.)

For regression, the standard k-nearest-neighbors predictor is

f(x) =
1

k

∑

{(x̂,ŷ)}∈Nk(x)

ŷ.

Operationally, we input the new point x, find the k closest points to x in the dataset, and
output the mean of these.

Recall our one-dimensional dataset from the cross-validation notes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Here, we plot f(x) for k = 1, 2, ..., 21.

Template Methods 3

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

We can see that the graphs gets progressively smoother for larger k. If we plot the error on
a large test set, we see that the minimum is at k = 5. This looks intuitively plausible from
the graphs above.

0 5 10 15 20 25
2

3

4

5

6

7x 10
−3

k

T
es

t E
rr

or

Template Methods 4

For classification, k-NN generally uses the rule

f(x) = arg max
y

∑

{(x̂,ŷ)}∈Nk(x)

I[y = ŷ].

Again, here, the notation seems much more complicated than the recipe it describes. Oper-
ationally, we find the k closest points Nk, and then output the most common class in that
set.

Notice that this applies easily to multiclass classification. We can still use this algorithm if
there are, say, 10 classes.

A bothersome detail is that we can encounter “ties”. For binary classification, this can be
avoided by setting k to be an odd number, but for multiclass classification this is unavoidable.
In general, we can break ties randomly.

3 MNIST

Template Methods 5

The MNIST dataset is a set of 60,000 28×28 images of handwritten digits, along with 10,000
test images. A huge number of different algorithms have been applied to it1. Here, we treat
these simply as 728 dimensional vectors and apply 10 nearest neighbors. The figures above
show the ten nearest neighbors found for one test image from each of the 10 digits. In most
cases, there are several training images quite close the the test image. A 10-NN classifier
on this dataset has an error rate around 5%. This can be improved significantly by various
pre-processing heuristics, such as centering or blurring the data.

4 Synthetic Example

To try to understand the properties of linear methods, we will consider a simple “grid”
dataset2. Each component of x is distributed uniformly from 0 to 1. The class labels y are
binary, given by

ŷ = mod(
∑

i

⌊4x̂i⌋ , 2),

with noise consisting of 15% of labels flipped randomly. This looks complicated, but we can
understand it pretty easily by just looking at a 2-D plot. (Here, circles shows points with
y = 0, and pluses show points with y = 1.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x 2

The next set of figures show examples with datasets of size 50, 100, 250, 500, 1000 and 2500
with k = 1, 3, 5, and 25. The gray regions show the part of the plane with f(x) = 0, while
the white regions show the part of the plane with f(x) = 1.

1See http://yann.lecun.com/exdb/mnist/ for details.
2This is inspired by the synthetic data in section 13.3.1 of The Elements of Statistical Learning.

Template Methods 6

k=1 k=3 k=5 k=25

Template Methods 7

We will explore the average test error as a function of N (the training size), k (the number
of neighbors) and d (the number of dimensions for x). First, we freeze d = 2. The following
plots are averaged over many randomly generated training and test sets.

0 5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

0.6

64 data

128 data

256 data

512 data

2048 data
8192 data
Bayes

k

te
st

 e
rr

2−D

Since there are 15% randomly flipped labels, even a perfect classifier will suffer from at least
15% misclassification error. By tradition, the best possible classifier is called the Bayes

optimal classifier, and the corresponding error rate the Bayes error rate. This name
appears to descend from from Bayes’ rule of probability p(y|x) = p(x|y)p(y)/p(x), not from
anything having to do with Bayesian statistics. Thus, the Bayes error is a totally uncontro-
versial concept in both the frequentist and Bayesian worldviews.

There are several trends to observe here. Most obviously, more data reduces test error.
However, even with 8192 data, we are still noticeable above the Bayes error. Notice that
even though the curves represent exponentially increasing amounts of data they still appear
to get closer together. Thus, as we get closer to the Bayes error, more and more data is
required for improvement.

Secondly, we notice that for small amounts of data, the best results are given for small k,
while for larger amounts of data we do better with larger k. This is caused by a tradeoff
between two issues, which can be understood intuitively from the above plots.

1. With small k, the classifier that results is more “noisy”. Even with an infinite amount
of data, the 1-NN algorithm will not achieve the Bayes error. Consider the plots above

Template Methods 8

with the largest dataset. The optimal classifier is a perfect “checkerboard”. However,
a test point somewhere in a predominantly + region has a 15% chance of being closest
to an o. We can calculate that there is a .15 · .85 + .85 · .15 = .255 probability of error.
(15% chance of getting “wrong” label, in which case we have 85% probability of error,
plus 85% chance of getting the “right” label, in which case we have a 15% probability
of error.) As k gets bigger, we will have a near 100% probability of getting the “right”
label, with 15% probability of error.

2. With larger k, the classifier is more “smoothed”. Clearly, in the limit k → ∞, f(x)
will just be a constant, of whatever class happened to be more common in the dataset.
For finite k, we have a similar problem– the regions of a single class become larger and
larger.

Now, we switch gears, and compare error rates for varying dimensions. For these experiments,
there is no noise, and so the Bayes error is zero.

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

1−D

2−D

3−D

4−D

5−D
6−D

training set size

te
st

 e
rr

k = 1

We can see that, somehow, dimensionality is extremely harmful to the performance of the
algorithm. We will investigate the cause of this in the next section.

Template Methods 9

5 The Curse of Dimensionality

With learning by memorization, as we saw in the first section, if we have d binary variables,
there are 2d joint configurations. Thus, to maintain a constant number of examples to
average for each configuration, we will need an amount of data exponential in d.

For non-discrete data, we face fundamentally the same problem, though understanding it is
not quite so straightforward as it requires a bit of understanding of the geometry of high-
dimensional spaces.

Consider the following experiment. For data of varying dimensionality P , generate a large
number of vectors xi, with each component uniformly distributed between 0 and 1. Then,
create histograms of the squared distances between all the points, divided by the number of
dimensions |xi − xj |

2/d. For high d, we see an increasingly clustering around 1
6
.

(Why 1
6
? For two variables drawn uniformly from [0, 1], the average squared distance

between them is
´ 1

x=0

´ 1

y=0
(x−y)2dxdy = 1

6
. For large P , we are averaging many such values.)

0 0.1 0.2 0.3 0.4 0.5
|x

i
−x

j
|2/P

1
2
3
4
5
10
15
20
25
50
100
250
500

Though it may not be obvious at first glance, this is terrible news. With high d, for a
particular query point, the distances to all points in the dataset tend to be about the same.
The nearest neighbor will have a distance of nearly 1

6
, just like the furthest neighbor. There

is so much “space” in high dimensions that if distribute points equally, it is hugely improbable

Template Methods 10

that any two of them will be close together. If all points are nearly equidistant, there is no
neighborhood structure to exploit, and so nearest neighbors breaks down.

Now, a word of caution. The above experiments are for data uniformly distributed in high
dimensions. For non-uniform data, nearest neighbors can and do sometimes continue to
work well. To understand why, suppose we have 100 dimensional data with x1 uniform on
[0, 1] and x2 = x3 = ... = x100 = .5. Since 99 of the 100 dimensions are constant, they will
contribute nothing to distances, and so a nearest neighbors method will behave exactly as if
we had data consisting of x1 alone.

More generally, suppose that

xi = Azi

where z is a q dimensional vector and A is a d × q matrix. Here again the data xi will only
lie in a q-dimensional subspace of ℜd, and so nearest neighbors is likely to work well if q is
small.

In practice, we usually don’t expect the data to exactly lie in a linear subspace, but only
“close to” some sort of low-dimensional “manifold”. For example, the following data in 2-D is
“almost” one-dimensional in nature. Nearest neighbors will “automatically” take advantage
of structure like this.

6 Relationship to Loss Functions

In our discussion so far, we have not mentioned loss functions. Do these have a place in an
understanding of nearest-neighbor methods? To get started, suppose we are doing regression.
Instead of predicting

f(x) =
1

k

∑

(x̂,ŷ)∈Nk(x)

ŷ = mean
(x̂,ŷ)∈Nk(x)

ŷ,

Template Methods 11

couldn’t we do some variation, like, say,

f(x) = median
(x̂,ŷ)∈Nk(x)

ŷ?

What does it mean to take the median instead of the mean? Are there other choices? How
does this reflect our priorities? As we will see, taking the mean can be seen as implicitly
reflecting a least-squares loss function, while the median implicitly reflects a least-absolute

deviation loss function.

The way to understand this is that nearest neighbor methods make a quick and dirty estimate
of the conditional probability of y given x. Then, these methods minimize the loss “on the
fly” for that particular point.

For example, if the neighbors are N3(x) = {(x̂, .2), (x̂, .5), (x̂, .9)}, 3-NN puts 1/3 probability
at .2, .5, and .9, and zero everywhere else. More generally, methods put 1/k probability
at each of the nearest neighbors. Of course, this isn’t a good estimate of the conditional
probability, but as long as we don’t do anything too fancy with it, we can hopefully get away
with this estimate.

(Aside: Readers who took mathematical analysis– yes, yes, what I really mean is that there
are delta functions centered at .2, .5 and .9. Here we made a tactical decision not to bother
with that level of rigour since the basic idea can be made pretty clear with out it. Thank
you for noticing, though!)

Now, suppose we have to pick a single y to minimize the risk, using this rough estimate of
the conditional distribution. That is, we want to find

c∗ = arg min
c

Ep̂[L(c, y)],

where p̂ is our rough estimate of the conditional probability. This is equivalent to

c∗ = arg min
c

1

k

∑

(x̂,ŷ)∈Nk(x)

L(c, ŷ).

Let’s think about what is happening here. Back before, when fitting linear methods, we
would fit a single relatively complex model to try to fit all the data well. Here, we fit a very
simple model (a constant!) to try to predict just nearest neighbors of x. Thus, we trade a
powerful model for a simple one, but compensate for this by only fitting the model locally.

Let’s see how this works out with various loss functions. If we use the least-squares loss
L(c, y) = (c − y)2 for regression, we can set the derivative of

Template Methods 12

1

k

∑

(x̂,ŷ)∈Nk(x)

(c − ŷ)2

with respect to c to zero to find

c∗ =
1

k

∑

(x̂,ŷ)∈Nk(x)

ŷ.

If we use the least-absolute deviation loss, the non-differentiability of the loss prevents a
derivative analysis. However, it isn’t too hard to show (assuming k is odd) that

c∗ = median
(x̂,ŷ)∈Nk(x)

ŷ.

What about classification? If we need to minimize the 0 − 1 loss, we would do

c∗ = arg min
c

1

k

∑

(x̂,ŷ)∈Nk(x)

I[c 6= ŷ],

which is clearly minimized by setting c∗ to be the class that is most common in Nk(x). We
could also consider fancy loss functions that penalize different types of mistakes differently.
(For example predicting A when the true class is B has a higher loss then predicting B when
the true class is A). These can yield different decisions than always just picking the most
common class.

7 Extensions

We can extend K-NN in a bunch of ways.

• Pre-processing. As mentioned above with the MNIST data, one can often use domain
knowledge to pre-process data and improve results. This can be very useful to enforce
“invariants” that you may know about. For example, with the MNIST data, we know
that if we shift one of the images a few pixels in a given direction, it will still be the
same digit. Similarly, we can rotate an image a few degrees, and still represent the
same digit. One practical way to use this knowledge is to take each training image,
and rotate and shift it randomly a bunch of times. If we use the results as a new
“synthetic” dataset, we are likely to reduce errors.

• Distance Measures. Obviously, we don’t have to measure “nearest” by the Euclidean
distance. In some cases, another metric might be suggested by the problem. Alterna-
tively, one could pick a metric by cross-validation.

Template Methods 13

• Weighting. With regression above, we would take the mean of all the nearest neigh-
bors. Intuitively, however, it is natural to give more influence to the closest neighbors
than the furthest ones. One can assign weights r to each of the neighbors, giving more
weight to the closest ones. Then, the weighted mean is taken instead of the mean.

• Local fitting. Rather than just picking the mean of the nearest neighbors, why not
fit a local model to them, and then predict from that? We can write this as

f(x) = g(x), g = arg min
g∈F

∑

(x̂,ŷ)∈Nk(x)

r((x̂)) L(g(x̂), ŷ)

Let’s consider a few examples of this.

1. Uniform weights r = 1, the set of constant functions F = {g(x) : g(x) = c}, and the
squared loss. Then, we have

f(x) = c, c = arg min
c

∑

(x̂,ŷ)∈Nk(x)

(c − ŷ)2

which is equivalent to
f(x) = mean

(x̂,ŷ)∈Nk(x)
ŷ,

i.e. good old fashioned nearest neighbors.

2. Uniform weights r = 1, the set of linear functions, F = {g(x) : g(x) = w · x}, and the
squared loss, but use all the data, with k = |D|. Then, we have

f(x) = w · x, w = arg min
w

∑

(x̂,ŷ)

(w · x − ŷ)2.

This is just regular least-squares regression. Thus, we can see that this framework
generalizes both nearest-neighbors, and linear methods.

3. Uniform weights r = 1, the set of linear functions, and the squared loss. Then, we have

f(x) = w · x, w = arg min
w

∑

(x̂,ŷ)∈Nk(x)

(w · x̂ − ŷ)2

i.e. we just fit a linear function to the nearest neighbors, then use this to predict the
new point.

4. The set of linear functions F again. Use all the data, k = |D|, but give more weight
to neighbors via Gaussian weights like

r(x̂) = exp
(1

2σ2
||x̂− x||2

)

.

Template Methods 14

Locally weighted regression is sometimes called LOESS or LOWESS. Of course, all these
things could be combined with different loss functions, different weights, etc.

The following plots compare traditional K-NN (left) with unweighted local regression (mid-
dle), and weighted local regression with σ2 = 1

250
(right).

1 1 1

2 2 2

3 3 3

3 3 3

4 4 4

5 5 5

10 10 10

15 15 15

20 20 20

Here we show the test errors for the three methods. Unweighted local regression does best for
a larger k than standard K-NN. Further, weighted local regression does best if we allow an
essentially unlimited number of neighbors. This has the effect of considering more neighbors

Template Methods 15

in dense areas, since the number of neighbors with significant weight depends on the sampling
density. It is important, however, to set σ2 appropriately.

0 5 10 15 20 25
2

3

4

5

6

7x 10
−3

k

T
es

t E
rr

or

0 5 10 15 20 25
2

3

4

5

6

7x 10
−3

k

T
es

t E
rr

or

0 5 10 15 20 25
2

3

4

5

6

7x 10
−3

k

T
es

t E
rr

or

8 Nearest Neighbors vs. Linear Methods

The great advantage of nearest neighbors is that it makes few assumptions about how x

is related to y beyond smoothness. However, we pay a price in variance for this. Thus,
linear methods tend to perform better with high dimensions and few data, while nearest
neighbors commonly performs better with low dimensions and many data. (Note that these
are heuristic guidelines only.)

In training time, nearest neighbors has an unbeatable time complexity of O(0). (If you
assume the data has already been written down somewhere, there is literally nothing to do.)

At test time, however, linear methods can be much faster. With d dimensions, we can com-
pute w · x in time O(d). With nearest neighbors methods, however, we must compute the
distance of a query point to each point in the dataset. Done naively, this has a complexity of
O(Nd). In large-scale applications, Nd might represent gigabytes of data, and so this can be
prohibitive. In low dimensions, algorithms exist to do this faster (e.g. in time logarithmic in
N). In high dimensions there have been very exciting recent results in the theoretical algo-
rithms community to produce randomized approximation algorithms for nearest neighbors–
algorithms that usually find a point close to the nearest. For one such method, search for
“Locality Sensitive Hashing”.

As we will see when we get to SVMs, there are hybrid methods that blur the line between
template methods and linear methods.

Template Methods 16

9 A Theoretical Claim

If you read about nearest neighbor methods almost anywhere, you will soon encounter some
variant of the following claim:

Asymptotically, the 1-NN algorithm has an error rate no worse than twice the
best possible of any algorithm.

This is true. However, without an understanding of why this is true, one can get the impres-
sion that nearest-neighbor methods posses magical powers. In particular, the origin of the
factor of two is rather mysterious.

To try to give an explanation for why this is true, let’s first consider a much simpler situation,
namely a game in which we want to predict rolls of a fair but biased N-sided die. The true
distribution gives a weight of pi to side i of the die.

What is the best way to guess rolls of the die? Clearly, this is to just repeatedly guess the
side of the die with highest probability.

Guess Best

Always guess i = arg maxi pi.

An alternative (less good) procedure, would be to guess randomly. If you have your own die,
with the same probabilities, you just roll that die, and predict whatever comes up.

Guess Randomly

Guess side i with probability pi.

Now, what will the errors of these two procedures be? Let p∗ be the probability of the most
likely face. It is pretty easy to see that the Guess Best procedure will have an error of

1 − p∗

since it will be wrong whenever the most likely side doesn’t come up. Now, we can also
calculate that Guess Randomly will have an error rate of

∑

i

pi(1 − pi).

Through some algebra, we can show that Guess Randomly’s error rate is at most twice Guess
Best’s. The key idea is to consider the “worst case”: for a given p∗, what is the worst possible

Template Methods 17

way to set all the other pi in order to maximize Guess Randomly’s error rate. It turns out
that the worst case is to just set all the other pi equally. This is pretty intuitive. You can
see that Guess Randomly will do much better with a die with probabilities (.5, .5, .0)T (error
rate .5) than one with probabilities (.5, .25, .25)T (error rate .875). Allocating equally means
setting pi = 1

N−1
(1− p∗). Intuitively, take the remaining 1− p∗ probability after giving p∗ to

the best face, and allocate equal chunks for the other N − 1 faces of the die. Then, we have

∑

i

pi(1 − pi) = p∗(1 − p∗) + (N − 1)
1

N − 1
(1 − p∗)

(

1 −
1

N − 1
(1 − p∗)

)

= p∗(1 − p∗) + (1 − p∗)
(N − 1

N − 1
−

1 − p∗

N − 1

)

= p∗(1 − p∗) + (1 − p∗)
N − 2 + p∗

N − 1

= (1 − p∗)
(

p∗ +
N − 2 + p∗

N − 1

)

= (1 − p∗)
(p∗N − p∗

N − 1
+

N − 2 + p∗

N − 1

)

= (1 − p∗)
(p∗N − 1

N − 1
+

N − 1

N − 1

)

= (1 − p∗)
(p∗N − 1

N − 1
+ 1

)

≤ 2(1 − p∗)

The details are presented here for your enjoyment, but you don’t really need to follow
everything in full. From the first line to the second to last line is just algebra. In the last
step, we exploit the fact that p∗ ≤ 1, and so p∗N ≤ N .

The bottom line is that Guess Randomly makes at most twice as many errors as Guess Best.

So! That was fun, but what does this all have to do with nearest neighbors? Imagine
trying to guess the class y corresponding to an input x. If we had the true conditional
distribution p(y|x), the best bet would be to pick y∗ = arg maxy p(y|x), which will be wrong
with probability 1−max p(y|x). You can easily see that this is the best possible procedure.
Now, a less optimal strategy would be to draw y′ randomly from p(y|x) and then guess y′.
This will be wrong with probability

∑

y p(y|x)(1−p(y|x)). By our reasoning above with the
dice, the sampling approach will make at most twice as many errors as the optimal approach.

How do we connect this to nearest neighbors? Well, in the infinite data limit, picking a 1-NN
is the same thing as sampling from p(y|x)! (Under some very mild technical conditions.)

Let’s think about this in practice. Suppose the inputs x are 1000x1000 grayscale images
of human faces, while y is the sex of the person in the image. The above theory basically
claims that if we have enough data, we can predict the sex of a new person by simply finding

Template Methods 18

a near-identical image in the database, and outputting the sex of that person. This is true,
but wow will we need a lot of data to do it!

Thus, we can think of this claim in two parts:

1. In the infinite-data limit, 1-NN is equivalent to sampling from p(y|x).

2. Sampling from p(y|x) makes at most twice as many errors as optimal guessing.

The first is true, but of unknown value in practice where we have finite data. The second is
a relatively mundane observation about probability.

