
Statistical Machine Learning Notes 3

Linear Methods

Instructor: Justin Domke

1 Introduction

Linear methods are the workhorse of statistics and machine learning. The fundamental idea
of linear methods is deceptively simple: a linear map from inputs to outputs:

f(x) = w · x =
∑

i

wixi

How much could there be to say about such a simple idea? There are many issues relating
to using linear methods in practice.

• Loss Functions. Suppose we are doing linear regression. Do we want to fit f to

minimize the sum of squares differences
∑

ŷ,x̂

(

ŷ−f(x̂)
)2

, or perhaps the sum of absolute
differences

∑

ŷ,x̂ |ŷ−f(x̂)|? It also turns out to be very natural to adapt linear methods
for the purpose of classification, with other loss functions.

• Regularization. Unless you have a huge amount of data, it is usually necessary
to “regularize” the model. This is done by adding a penalty λh(w) to the empirical
risk when fitting to favor “small” w. Depending on how you define “small” different
regularizers can be used.

• Algorithms. Linear methods are frequently the method of choice when we have very
large datasets. In this setting, it is important that we have a fast algorithm for finding
the best w. The fastest algorithms are based on specific loss functions and specific
types of regularization.

• Cross-Validation. We saw in the first notes how important it is to properly penalize
complexity to prevent overfitting. When doing regularization, this amounts to properly
selecting the penalty parameter λ alluded to above. The obvious way of doing this is
to pick a bunch of possible values (say, 0.1, 0.2, ..., 10) and fit the weights for each. The
only problem with this is that it is rather computationally expensive. In some cases,
clever “regularization path” algorithms can be designed that, once they are complete,
can give you the weights corresponding to any particular λ very quickly.

1

Linear Methods 2

• Doing nonlinear stuff with linear methods. There are several ways to adapt
linear methods to do apparently nonlinear things. (For example, linear methods were
used to fit the polynomials in the first set of notes). In addition, linear methods form
the base for more advanced methods, such as neural networks and Support Vector
Machines.

2 Generic Linear Method

We can phrase all of the linear methods we will discuss as specializations of one framework.

Generic Linear Method:

1. Input

• The training data D = {(ŷ, x̂)}.
• A loss function L.

• A regularization function h(w)

• A regularization constant λ.

2. Optimize, to find w∗ = arg min
w

∑

(ŷ,x̂)

L(w · x̂, ŷ) + λh(w).

3. Output f(x) = w∗ · x.

Depending on what the training data is, what the loss function is, what regularizer you
use, this framework can become many different specific methods, both for regression, and for
classification. As well as choosing all these, there are many possible algorithms for performing
the optimization in step 2. All of this flexibility means there are a huge variety of linear
methods. In this class, we just

3 Linear Regression

To begin these notes, we will phrase different regression methods in terms of the optimization

problems that they solve. We will worry about the actual algorithms for performing the
optimizations later on.

name function

Least Squares L(w · x̂, ŷ) =
(

w · x̂− ŷ
)2

Least Absolute Deviation L(w · x̂, ŷ) = |w · x̂− ŷ|

Linear Methods 3

We begin with the simplest method, linear regression. The classic method, least squares

regression, fits the weights w to minimize the sum of squares errors. So our loss function
is

Llsq(w · x̂, ŷ) =
(

w · x̂− ŷ
)2

.

If we have a dataset D = {(ŷ, x̂)}, we seek w to minimize the empirical risk

R(w) =
∑

ŷ,x̂

Llsq(w · x̂, ŷ) =
∑

ŷ,x̂

(

w · x̂− ŷ
)2

.

It is worth looking at an example. Consider the dataset

x̂ ŷ

1 1
3 2.5

3.5 6.5
7 7
9 9

0 2 4 6 8 10
0

2

4

6

8

10

The least-squares solution is w∗ = 1.059113.

Linear Methods 4

0 2 4 6 8 10
0

2

4

6

8

10

w=[1.059113]

However, of course, we don’t have to minimize the sum of squares. We could also minimize,
for example, the sum of absolute differences, called least absolute deviation regression,

Llad (w · x̂, ŷ) = |w · x̂− ŷ|.

Minimizing this on the above training set, we see something very interesting. The solution
is for the weights to be exactly one.

0 2 4 6 8 10
0

2

4

6

8

10

w=[1.000000]

Of course, we could create many other loss functions. Which is right? The answer, as ever,
is that the “best” loss function depends on the priorities of the user.

4 Regularization

Suppose that we have a dataset with 20 points, with inputs of dimension 7. If we fit a
linear regression model as above, with less than 3 points per parameter, we are essentially
guaranteed to overfit. How can we deal with this? The standard solution for preventing

Linear Methods 5

overfitting is regularization. Since we know that the empirical risk will underestimate the
true risk, add a penalty to complex functions f to try to compensate for this1. Then, instead
of minimizing (over f)

R(w) =
∑

ŷ,x̂

L(w · x̂, ŷ),

instead minimize

R(w) + λh(w).

Notice that we can rephrase this unconstrained linear optimization as an constrained opti-
mization. For any given λ there is a c such that the same solution can be obtained from

min
f

R(w)

s.t h(w) ≤ c.

(Warning: It is probably easier to convince yourself of this than slog through the following
details. Nevertheless, here is a proof sketch if you want it. First, consider the solution f ∗

from the first optimization corresponding to some λ. It is not hard to see that f ∗ will also be
a solution to the second optimization if c = h(f ∗). (If there is some other f ′ with h(f ′) ≤ c,
but a better objective value than f ∗, then this would also be a better solution to the first
optimization– which is impossible.))

The following table shows a variety of regularizers. In the context of linear regression, we
will consider three regularizers: the number of nonzero weights (the l0 norm), the sum of
absolute values of weights (the l1 norm), and the sum of squares of weights (the l2 norm
squared2). The elastic net and l∞ regularizers are shown for variety.

name function
l0 / Best Subset h(w) = |w|0 =

∑

i I[wi 6= 0]
l1 / Lasso h(w) = |w|1 =

∑

i |wi|
l22 / Ridge h(w) = |w|22 = w ·w =

∑

i w
2
i

Elastic Net h(w) = |w|1 + α|w|22 =
∑

i |wi|+ α
∑

i w
2
i

l∞ h(w) = |w|∞ = maxi |wi|
1This sounds rather ad-hoc. To some degree it is, though we will see more principled methods when we

talk about learning theory.
2The weights that results from the two are the same, but for different regularization constants. (A

constant of C for ridge is equivalent to a constant of
√

C for l2.) Using the l2 norm complicates a lot of
algebra.

Linear Methods 6

The l0 penalty may be the easiest to understand. If we are doing least-squares regression,
the weights will be selected by

min
w

∑

ŷ,x̂

(w · x̂− ŷ)2 (4.1)

s.t
∑

i

I[wi 6= 0] ≤ c.

This just says to find the weights minimizing the squared error, subject to the restriction
that only c of the weights can be nonzero. Once the nonzero indices of w are chosen, finding
the actual weights is essentially nonregularized least squares. This is very natural– if we
don’t have enough data to fit all of the parameters, just fit as many as we can afford.

Though natural, this is not so frequently done. There are two basic reasons for this, one
computational and one statistical.

• The computational issue is that Eq. 4.1 is a highly nonconvex optimization, meaning
we cannot use techniques like gradient descent or Newton’s method to solve it. With
d variables, there are 2d subsets, meaning a brute-force approach is also impractical
when d is big. There are clever branch-and-bound techniques that are faster than a
full search, but even these cannot tackle problems with d > 50 or so. There are also
obvious heuristics that start with w = 0, and greedily add indices, or start with the
unregularized solution and greedily (stingily?) subtract indices. These will provide
suboptimal solutions to the above optimization problem, but they won’t necessarily
give worse results. (Why? Think about the first notes.)

• The statistical issue is that subset selection can be unstable. Sometimes a tiny change
in the data leads to a large change in the estimated weights. For example, if we might
find w = (1.1, 0, 2.0), but a small change in x2 leads to it being selected in favor of x1,
with the results of w = (0, 1.2, 2.5), say.

Least-squares regression with ridge penalty is called ridge regression. This is the most
popular method. In the unconstrained representation, one looks for the weights w that
minimize

∑

ŷ,x̂

(

w · x̂− ŷ
)2

+ λw ·w,

while in the constrained representation, one seeks the weights with the minimum squared
error, subject to the constraint that |w|22 ≤ c. This essentially means that the weights are
constrained to lie in an origin-centered sphere of some radius.

Linear Methods 7

Ridge regression has neither of the problems mentioned above for best-subset regression.
The weights can be found quite efficiently, and are stable with respect to changes in the
data. The main downside, of course, is that if you want weights with some of the indices set
to zero, ridge regression doesn’t do it.

Least-squares regression with l1 regularization is called lasso regression. This finds the
weights w that minimize

∑

ŷ,x̂

(

w · x̂− ŷ
)2

+ λ|w|1. (4.2)

The behavior of lasso regression is something between ridge and best subset. Like best
subset, for high enough λ, it does induce sparsity in w. However, Eq. 4.2 represents a
convex optimization, and so it is possible to design reliable and efficient algorithms to find
w, even with very high dimensionality.

The figures below compare ridge and lasso regression on a “famous” dataset. In this dataset,
ŷ is the MPG of a vehicle, while the inputs encode the number of cylinders, the engine
displacement, , the horsepower, the vehicle weight, acceleration speed, and origin (North
America, Europe, or Japan)3.

3This dataset also includes model year, but this was not used in these figures.

Linear Methods 8

Least Squares Regression + Ridge Penalty

10
0

10
2

−4

−3

−2

−1

0

1

2

3

4

λ
10

0
10

2
5

10

15

20

25

30

35

40

45

50

λ

minimum of 18.852996 at λ=10.483147

test
train

Least Squares Regression + Lasso Penalty

10
0

10
2

−4

−3

−2

−1

0

1

2

3

4

λ
10

0
10

2
0

10

20

30

40

50

60

70

λ

minimum of 17.917616 at λ=24.933267

test
train

Linear Methods 9

Least Absolute Deviation Regression + Ridge Penalty

10
0

10
2

−4

−3

−2

−1

0

1

2

3

4

λ
10

0
10

2
2

3

4

5

6

7

λ

minimum of 3.128253 at λ=0.806642

test
train

Least Absolute Deviation Regression + Lasso Penalty

10
0

10
2

−4

−3

−2

−1

0

1

2

3

4

λ
10

0
10

2
2

3

4

5

6

7

λ

minimum of 3.097829 at λ=3.010493

test
train

The next two pages show the same thing, but in terms of the constrained formulation
min
w

R(w) s.t. h(w) ≤ c. If we watch carefully, we see that these figures sweep through

the same paths as c : 0→∞ as the previous figures do as λ :∞→ 0. Note also that above
a certain c, nothing changes. This occurs for c ≥ h(w∗), where w∗ is the unregularized
solution.

Linear Methods 10

Least Squares Regression + Ridge Penalty

0 10 20 30 40 50

−4

−3

−2

−1

0

1

2

3

4

c
0 10 20 30 40 50

0

10

20

30

40

50

60

70

c

minimum of 18.852994 at c=12.350000

test
train

Least Squares Regression + Lasso Penalty

0 10 20 30 40 50

−4

−3

−2

−1

0

1

2

3

4

c
0 10 20 30 40 50

0

10

20

30

40

50

60

70

c

minimum of 17.917624 at c=8.750000

test
train

Linear Methods 11

Least Absolute Deviation Regression + Ridge Penalty

0 10 20 30 40 50

−4

−3

−2

−1

0

1

2

3

4

c
0 10 20 30 40 50

2

3

4

5

6

7

c

minimum of 3.128248 at c=17.450000

test
train

Least Absolute Deviation Regression + Lasso Penalty

0 10 20 30 40 50

−4

−3

−2

−1

0

1

2

3

4

c
0 10 20 30 40 50

2

3

4

5

6

7

c

minimum of 3.097939 at c=10.450000

test
train

Linear Methods 12

Naturally, for larger λ, all the weights go towards zero. For ridge regression they go towards
zero smoothly, only reaching zero as λ →∞. For the lasso, on the other hand, the weights
hit zero for a finite λ.

To understand this, let’s picture the situation where the input x only has one dimension, and
so we are fitting a single weight w. Let’s start with ridge regression. The following figures
show the empirical risk, and regularized risk for a variety of λ. We can see that R(w)+λh(w)
is always just a quadratic function. For λ = 0 it is equivalent to the pure risk, minimized by
w = 2. As λ gets larger, the regularization term slowly comes to dominate. However, until
λ is infinite, the minimum of the quadratic will always be slightly greater than zero.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

w

Ridge Regression

R(w)
λ h(w)
R(w)+λ h(w)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

λ=0

λ=0.2

λ=0.5

λ=0.9

λ=1.5

λ=3

λ=8.8

λ=0

λ=0.2

λ=0.5

λ=0.9

λ=1.5

λ=3

λ=8.8

w

Ridge Regression

R(w)+λ h(w)

Compare this to the same picture for Lasso regression.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

w

Lasso Regression

R(w)
λ h(w)
R(w)+λ h(w)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ=0

λ=0.5

λ=1

λ=1.5

λ=2

λ=2.5

λ=3
λ=3.5

λ=4

λ=0

λ=0.5

λ=1

λ=1.5

λ=2

λ=2.5

λ=3
λ=3.5

λ=4

w

Lasso Regression

R(w)+λ h(w)

Linear Methods 13

We can see that the discontinuity in the regularizer means that that for large enough λ,
R(w) + λh(w) develops a “kink” at zero. For any λ greater than this, the optimum will be
exactly w = 0.

5 Geometrical visualization of linear regression

So, when doing regularized linear regression, we have to pick two things:

1. R(w): How to measure how closely w ·x matches to y. (Least squares, Least Absolute
Deviation)

2. h(w): How to penalize complexity. (Ridge, Lasso)

In a perfect world, we would like both of these to be small. Of course, we must ultimately
choose how to trade-off between the two. With out specifying a trade-off parameter, we
cannot choose the “best” solution w. However, we still can rule our most! Why? Consider
a set of weights w∗. If there exists another set of weights w′ such that R(w′) < R(w∗) and
h(w′) ≤ h(w∗), then say that w′ dominates w∗, meaning that w′ is as good as w∗ in every
way, and strictly better in at least one. The set weights not dominated in this way are the
only possible solutions. This is a general concept known as Pareto optimality.

This section visualises the different possible choices of R and h on a small two-dimensional
dataset, along with the set of weights that result from different tradeoffs between the two.

x̂ ŷ
(1, 5) 2
(4, 0) 4
(2, 4) 2
(0, 3) 5

The first set of figures show R(w) for both the least-squares loss, and the least-absolute-
deviation loss. The least-squares loss is simply a quadratic in the space of w, while least-
absolute-deviation is a more complex piecewise linear function. Notice that the minima are
in similar, but not identical positions.

Linear Methods 14

Least Squares Least Absolute Deviation

The next set of figures shows h(w) for both the Ridge and Lasso penalties. These are both
centered at (0, 0), but differ elsewhere.

Ridge Penalty Lasso Penalty

The next figures show each combination of the above risks (in green) along with the penalties
(in black). The red curve shows the possible weights in each situation. To understand these

Linear Methods 15

figures, think of the set {w : h(w) ≤ c}. This will be all w inside one black curve– a curve
close to the center for small c, further for large c. Inside this set, find the w that minimizes
R(w), meaning find the point that inside the smallest green curve. Repeating this process
for all C generates all the possible weights.

Least Squares + Ridge Penalty

0 0.5 1
0

0.2

0.4

0.6

0.8

1

C

w
1

w
2

Least Squares + Lasso Penalty

0 0.5 1
0

0.2

0.4

0.6

0.8

1

C

w
1

w
2

Linear Methods 16

Least Absolute Deviation + Ridge Penalty

0 0.5 1
0

0.2

0.4

0.6

0.8

1

C

w
1

w
2

Least Absolute Deviation + Lasso Penalty

0 0.5 1
0

0.2

0.4

0.6

0.8

1

C

w
1

w
2

Linear Methods 17

6 Linear Classification

Consider the binary4 classification problem: take real-valued vectors x as input as before,
but try to predict an output y that is either −1 or +1. At first glance, linear functions don’t
appear to apply: w ·x will be a general real number, not −1 or +1. The basic idea of linear
classification is to predict y to be the sign of w · x. As we will see, some methods also use
the magnitude of w · x to give the confidence of the prediction.

name function
0-1 Loss L0−1(w · x̂, ŷ) = I[ŷ w · x̂ > 0]
Hinge Lhinge(w · x̂, ŷ) =

(

1− ŷ w · x̂
)

+

Logistic Llog(w · x̂, ŷ) = log(1 + exp(−ŷ w · x̂))

The most obvious loss function is the 0-1 loss, so called because it is 0 if w classifies a point
correctly, and 1 if it misclassifies it.

L0−1(w · x̂, ŷ) = I[ŷ w · x̂ > 0]

This loss is almost never used. The major reason is that leads to a non-convex (in fact
non-differentiable) empirical risk.

A more tractable option is the hinge loss. This is defined by

Lhinge(w · x̂, ŷ) =
(

1− ŷ w · x̂
)

+
,

where (a)+ = max(0, a). To understand this, consider the case when w classifies the point
correctly, and with high confidence. Then, ŷw · x̂ will be large, and so the loss is zero.
Now, consider the case that w classifies the point incorrectly. Now the loss is positive, and
becomes larger with higher confidence.

As shown in the figure below, the hinge loss is an upper-bound on the 0-1 loss. Intuitively,
you can see that there is no way to make the hinge loss closer to the 0-1 loss, with out losing
convexity.

The final loss we will consider is the logistic loss.

Llog(w · x̂, ŷ) = log(1 + exp(−ŷ w · x̂)). (6.1)

4Real-world classification problems are usually non-binary. However, binary problems are easier to vi-
sualize and have somewhat simpler math. There are extensions of everything discussed here to multi-class
problems.

Linear Methods 18

Unlike the hinge loss, this is (twice) differentiable, which makes it somewhat easier to op-
timize. For historical reasons linear classification with the logistic loss is typically called
logistic regression even though we are doing classification, not regression. The logistic
loss was originated from a probabilistic perspective. Given an input x, we can think of the
model as predicting a probability that y is either −1 or +1 by

p(y|x) =
1

1 + exp(−y w · x)
.

You should check that p(−1|x) + p(+1|x) = 1 for all x. If we use the negative log likelihood
− log p(ŷ|x̂) as our loss function, and substitute this expression for p, the results simplify
into Eq. 6.1. We are free, however, to ignore this probabilistic perspective, and just think
of the logistic loss as an approximation to the 0-1 loss.

Warning: You need to be careful when reading about logistic regression in the literature,
as there are different variations of “logistic regression”, and no standard terminology to
differentiate them. For example, a different loss function results when y ∈ {0, 1} rather
than {−1, 1}. Logistic regression can also be extended to the multi-label setting where
y ∈ {0, 1, ..., L}, again in several different ways.

Since all the above loss functions only depend on ŷ w · x̂, we can compare them by plotting
them as a function of this quantity.

−5 0 5
0

1

2

3

4

5

6

y w ⋅ x

lo
ss

0−1
hinge
logistic

The figures below show the results of fitting linear models on the “SPECT heart” dataset5.
Notice that in these plots, we perform validation in terms of the same loss used for training.
If we are only using the logistic or hinge loss for computational convenience, we could also
validate in terms of the 0-1 loss, since we search though all the regularization strengths
explicitly.

5http://archive.ics.uci.edu/ml/datasets/SPECT+Heart

Linear Methods 19

Logistic Loss + Ridge Penalty

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

c
0 0.5 1 1.5 2 2.5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

c

minimum of 0.633618 at c=0.140000

test
train

Logistic Loss + Lasso Penalty

0 1 2 3 4 5
−1

−0.5

0

0.5

1

c
0 1 2 3 4 5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

c

minimum of 0.650033 at c=1.666667

test
train

Linear Methods 20

Hinge Loss + Ridge Penalty

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

c
0 0.5 1 1.5 2 2.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

c

minimum of 0.781116 at c=0.112000

test
train

Hinge Loss + Lasso Penalty

0 2 4 6 8
−1

−0.5

0

0.5

1

c
0 2 4 6 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

c

minimum of 0.811755 at c=1.236667

test
train

Here is an example dataset, along with the empirical risks for all three of the above loss
functions. Here, for the sake of visualization, (0, 0) is towards the lower-left.

Linear Methods 21

Data 0-1

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Hinge Logistic

The 0-1 loss is clearly unsmooth. Below we show the full regularization path for the hinge
and logistic risks, with the ridge and lasso penalties. As we see above, the logistic risk
closely resembles the least-squares risk we saw above. So, it is not too surprising that the
regularization paths also look similar.

Linear Methods 22

Logistic + Ridge Penalty

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

C

w
1

w
2

Logistic + Lasso Penalty

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

C

w
1

w
2

The hinge loss, however, gives quite complicated curves.

Linear Methods 23

Hinge + Ridge Penalty

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

C

w
1

w
2

Hinge + Lasso Penalty

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

C

w
1

w
2

7 Algorithms for linear regression and classification

Above, we have talked about what optimization problems different loss functions and regu-
larizers produce, but we have not talked about how to solve them. A very general strategy

Linear Methods 24

would be to apply a “stock” convex optimization solver, which will work for any combination
of the above losses and regularization penalties (except the 0-1 classification loss). The main
disadvantage of this is that it can be quite slow. Research is still ongoing to find faster
algorithms tailored to specific situations. We will discuss just a few examples here.

First, consider unregularized least-squares regression. The goal is to find w to minimize

R(w) =
∑

ŷ,x̂

(

w · x̂− ŷ
)2

.

If we set the gradient dR/dw to zero, we find

∑

ŷ,x̂

x̂x̂Tw −
∑

ŷ,x̂

x̂ŷ = 0,

and so

w =
(

∑

ŷ,x̂

x̂x̂T
)

−1(
∑

ŷ,x̂

x̂ŷ
)

.

Thus, the weights can be recovered by solving one linear system. Now, suppose that we were
doing ridge regression. The goal is now to minimize

R(w) + λh(w) =
∑

ŷ,x̂

(

w · x̂− ŷ
)2

+ λ
1

2
w ·w.

Again, if we want to minimize this with respect to w, we can just set the derivative to zero.
This gives us

∑

ŷ,x̂

x̂x̂Tw −
∑

ŷ,x̂

x̂ŷ + λw = 0,

with the solution

w =
(

λI +
∑

ŷ,x̂

x̂x̂T
)

−1(
∑

ŷ,x̂

x̂ŷ
)

.

Again, we can recover the weights by solving one linear system. However, what if we want
to solve this for a large range of different λ, say λ = .01, .02, ..., 10? Does this mean we
have to suffer the computational expense of solving 1000 linear systems? Actually, through

Linear Methods 25

appropriate cleverness, we can avoid this and essentially solve the system for all the λ in the
same expense as solving for one. First, recall the definition of Singular Value Decomposition.
This is a factorization of a matrix A into the product of three matrices, A = USV T . SVD is
useful because U, S, and V are all our favorite kinds of matrices. U and V are orthonormal,
and S is diagonal. It turns out that for symmetric matrices, U = V . Now, what happens if
we have an SVD of the matrix

∑

ŷ,x̂ x̂x̂T ? We can do a bunch of algebra, and get

w =
(

λI + USUT
)

−1(
∑

ŷ,x̂

x̂ŷ
)

=
(

λUUT + USUT
)

−1(
∑

ŷ,x̂

x̂ŷ
)

=
(

U
(

λI + S
)

UT
)

−1(
∑

ŷ,x̂

x̂ŷ
)

= U
(

λI + S
)

−1
UT

(

∑

ŷ,x̂

x̂ŷ
)

. (7.1)

This last line is great news. Since the two matrices inside the inverse are diagonal, the inverse
is trivial to compute. Thus, for any given λ, we have more or less a “closed-form” solution
for the weights. Computing the SVD to obtain S and U will be far more expensive than
doing the matrix-vector multiplies necessary to recover w from Eq. 7.1. This is an example
of what is called a “regularization path” algorithm, because it computes the entire “path” of
w as λ changes. There are some recent algorithms that can compute regularization paths in
some other situations, for example lasso regularization.

Unfortunately, the above analysis above basically only works for ridge regression. What
we did above is set the derivative of the risk (or regularized risk) with respect to w to
zero, and then solve. However many of the losses (least absolute deviation, hinge) and
regularizers (lasso) we discussed are non-differentiable, meaning this strategy cannot work.
The logistic loss, while smooth, does not admit a simple closed-form solution. For the
logistic loss under ridge regularization, we can solve the problem quite well using standard
unconstrained optimization tools (gradient descent or Newton’s method). For almost all the
other cases, we have to deal with non-differentiablity. We discuss some of the solutions here:

1. Quadratic programming. Any of the combination of the least-squares, least absolute
deviation, and hinge losses and the ridge, lasso, elastic net, and l∞ regularization
penalties can be reformulated as a quadratic program or QP, for which specialized
solvers have been developed. A QP is a quadratic objective, to be minimized under

Linear Methods 26

linear equality and inequality constraints, for example,

min
x

1

2
xT Qx + cTx (7.2)

s.t. Ax ≤ b

Ex = d.

When Q is positive semidefinite (meaning xT Qx ≥ 0 for all x) these problems can be
solved reliably. Notice that here we have written the problem as a function of a single
variable x, but problems involving multiple variables are fundamentally the same. For
example, if we have a problem involving variables y and z, we can re-express it in the
form of Eq. 7.2 by writing x = (y, z), and creating Q, c, etc. correspondingly. Most
standard QP software requires that problems be input in the “standard form” of Eq.
7.2, which can be inconvenient. In this class, we will not worry about transforming to
standard form. Any problem with a quadratic objective and linear constraints is a QP.

Let’s consider an example, least absolute deviation regression under the ridge penalty.
This is

min
w

∑

i

|yi −w · xi|+ λw ·w,

which doesn’t immediately look like a QP. However, if we define zi, we can constrain it
to be at least as large as |yi−w·xi| by enforcing that zi ≥ yi−w·xi and zi ≥ −yi+w·xi.
Then, noting that λw ·w = wT (λI)w, we have the problem

min
w,z

wT (λI)w + 1Tz,

s.t. zi ≥ yi −w · xi

zi ≥ w · xi − yi.

(Here zi is free to be larger than |yi − w · xi|, but since the problem is to minimize
1Tz, there is no profit in doing this at the solution.) In general, QP solvers are quite
robust, so tranforming a problem into this form is reliable. However, in many cases
faster methods are possible. (This was the method used to generate the figures in these
notes, some of which took several hours to run.)

2. Projected Gradient Descent. Recall from the optimization notes that projected
gradient descent solves a problem of the form

min
x

f(x)

s.t. x ∈ C,

by iteratively taking a gradient step and then projecting back into the constraint set C.
This method is attractive when there happens to exist a fast algorithm for projecting

Linear Methods 27

onto the set C, that is finding min
x∈C
||x− y||. This can be profitably applied to problems

with ridge, lasso, or l∞ regularization, where we use C = {w : h(w) ≤ c}. The methods
for ridge and l∞ regularization are pretty simple, while the lasso is less obvious. It was
also recently shown6 that this can be done for elastic net regularization.

3. Coordinate Descent. The basic idea of coordinate descent is to minimize some
function f(x) by iterating through the “coordinates” xi of x and repeatedly setting xi

to minimize f .
xi ← arg min

x′

i

f(x1, x2, ..., xi−1, x
′

i, xi+1, ..., xN).

This is usually most attractive when the minimizing over a single variable like this can
be done quickly and exactly. Like gradient descent, coordinate descent doesn’t usually
converge at the fastest rate, in terms of the number of iterations. Also like gradient
descent, it can still be faster than more sophisticated optimization methods when each
iteration can be completed much more quickly. Some care needs to be taken to prove
that coordinate descent will converge to the optimum value7.

6http://www.cs.berkeley.edu/~jduchi/projects/proj_elastic_net.pdf
7Tseng (1988, 2001) showed that coordinate descent converges for problems of the form f(x) = f0(x) +

∑

i
fi(xi) when fi are convex, and f0 is differentiable and convex. Thus, coordinate descent can tolerate

non-differentiability, as long as it is along the directions of the coordinates. (Of course, coordinate descent
is not guaranteed not to converge on problems violating these conditions.)

