Statistical Machine Learning Notes 2
Empirical Risk Minimization and Optimization

Instructor: Justin Domke

1 Empirical Risk Minimization

Empirical Risk Minimization is a fancy sounding name for a very simple concept. Supervised
learning can usually be seen as picking one function f from a set of possible functions F'.
An obvious questions is, how can we tell a good function f from a bad one? These notes
introduce a general framework that applies for

First, we introduce the concept of a loss function L. Given some particular pair of inputs
x and outputs y,

L(f(x),y)

tells us how much it “hurts” to make the prediction f(x) when the true output is y.

Now, let us define the (true) risk

Ruwelf) = B, [L(/(%).y)] = / / p(%, ¥)L(f (%), y)dxdy.

Here p is the true distribution over the inputs x and y. The risk measures how much, on
average, it hurts to use f as our prediction algorithm.

This can all be made clear by considering an example. Suppose we want to fit a function for
predicting if it will rain or not. The input x will be the sky: CLEAR, CLOUDY, or MIXED.
The output y will be either, RAIN (when it rains) or NOPE (when it doesn’t rain). The
loss function is now a function L : {RAIN,NOPE}? — R.

What loss function is appropriate? It is important to realize that this cannot be answered
by math. The loss function depends on the priorities of the user. For example, if you are a
person who really hates getting wet, but doesn’t particularly mind carrying an umbrella on
a clear day, you might use a loss function like:

v;\Y> RAIN NOPE
Lhate—rain (1/1, YVZ) RAIN 0 1
NOPE 25 0
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Meaning you hate getting rained on 25 times as much as carrying an umbrella on a clear day.
On the other hand, someone who loses things frequently might hate carrying an umbrella on
a clear day. They might have a loss function more like:

Y1\Ys RAIN NOPE
Lhate—umbrellas (Yi 3 }/2) RAIN 0 1
NOPE 1 0

Now, let’s suppose that the true distribution p is given as follows:

x\y  RAIN NOPE
CLEAR [ 0 1/4
PY) croupy [1/4 0
MIXED [ 1/6 | 1/3

Let’s consider two possible prediction functions

(CLEAR  NOPE
fi(x) = { CLOUDY RAIN
| MIXED  NOPE

(CLEAR  NOPE
fo(x) = { CLOUDY RAIN
| MIXED  RAIN

If we use Lyaterain, it is easy to calculate that R(f;) = 1/6-25, and R(fs) = 1/6 -1, and so
fo has the lower risk. Meanwhile, if we use Lyate-umbrellas, We can calculate R(f;) = 1/6 -1,
and R(f2) =1/3-1, and so f; has the lower risk.

So, it sounds like the thing to do is to pick f to minimize the risk. Trouble is, that is
impossible. To calculate the risk, we would need to know the true distribution p. We don’t
have the true distribution— if we did, we wouldn’t be doing machine learning. So, what
should we do?

Since the data D comes from p, we should be able to get a reasonable approximation

BL(6.¥) ~ 1 Y0 L), 9) (L)

The right hand side of Eq. 1.1 is called the empirical risk.
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R(P) = 5 S LU).9)

Picking the function f* that minimizes it is known as empirical risk minimization.

f* = argmin R(f)

Two points of caution here: First, how well the empirical risk approximates the true risk,
obviously, will depend on the amount of data. Second, notice that empirical risk minimization
has no safeguards to resist overfitting. When used in practice, it is usually necessary to
perform some sort of model selection or regularization to make empirical risk minimization
generalize well to new data. We will talk about these things much more later on, when
discussing specific classifiers.

2 Convex Optimization

The rest of these notes discus specific algorithms for optimization. From now on, f(x) denotes
a generic function we want to optimize. Notice that this is different from the previous section,
which used f(x) to denote a possible predictor. The clash of notation is unfortunate, but
both of these usages are very standard (and used in the supplementary readings).

A generic optimization problem is of the form

min.  f(x) (2.1)

X

s.t. x e C.

That is, one should minimize the function f, subject to the constraint that x is in the set
C. The trouble with a problem like this is that it is very easy to write down optimization
problems like in Eq. 2.1 that are essentially impossible to solve. Convex optimization is a
subset of optimizations that, roughly speaking, we can solve.

A set (' is convex if for x;,x5 € C,

9X1+(1—9)X2€C,0§9§1.

This has a simple geometrical interpretation: Given any two points in the set, the line
segment joining them must be in the set. So the set below on the left is convex, while the
one on the right is not.
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Now, a function f(x) is convex over C if for x;,x5 € C,

f(0x1+ (1 —0)x3) <Of(x1)+ (1 —0)f(x2), 0 <6 <1.

Geometrically, this means the line joining any two function values must lie above the function
itself.

x1

Notice that a linear function is convex.

A function is called strictly convex if the inequality is strictly satisfied for all points not
at the ends.

FOx1+ (1= 0)x) < 0f(x1) + (1 — 0)f(x2), 0 < 0 < 1.

A linear function is not strictly convex.

Convex optimization problems can usually be solved reliably. The basic reason is that if you
identify a local minima in a convex optimization problem, there is no possibility that some
other, better, minima exists elsewhere.
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3 Unconstrained Optimization

In this section, we discuss some standard algorithms for unconstrained problems. We also
assume below that the function f we are optimizing is twice differentiable. Ignore this
assumption at your peril! If you apply these methods to a seemingly innocent function like
f(x) = |x|1 = >, |xi|, they will not work.

Aside: One of the common ways of dealing with non-differentiable unconstrained opti-
mization problems is to reformulate them as differentiable constrained optimizations. For
example, instead of minimizing f(x) above, we could minimize (with respect to both z and
x) f(z) =), 2, st. z>x,z > —x. We will see some examples of this when we talk about
Kernel Methods.

3.1 Descent Methods

In these notes, we will discuss a few basic optimization algorithms. All of these algorithm
can be seen as slight variants of a descent method.

Generic Descent Method

Repeat:

e ['ind a descent direction Ax.
e Find a step size t.

e X — X +tAx

A direction Ax is called a descent direction at x if the angle between Ax and the gradient
V f is less than 90 degrees, or equivalently if

AxTV f(x) < 0.

The way to understand this is that for very small ¢, f(x +tAx) ~ f(x) +tAx'V f(x). So, a
descent direction ensures that we can find a positive ¢ that we make progress in reducing f.

Here, we will always choose steps ¢ in the same way, through a...

Backtracking Line Search (0 < o < % ,0< /<)

o t«— 1

e While f(x +tAx) > f(x) + atVf(x)TAx :
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— Set t «— [t

The intuition for this is that we start with ¢ = 1, and keep making it smaller by a factor of 3
until we are “happy”. When should we be happy? We expect that for small ¢, f(x +tAx) ~
f(x) + tAXTV f(x). We are willing to tolerate less improvement than this, and so we add
the factor of a.

Here is an example with a = 7 and § =

t=0.125000 selected in 4 tries

——f(x)+a t (O A X) |
- ——f(x +tAX)

o @ # G oS = @

In some special circumstances, it is possible to choose steps through an exact line search,
finding min, f(x+tAx). When it can be done, this does make optimization somewhat faster.

3.2 Gradient Descent

We will discuss three algorithms in these notes. The only difference between these is in how
the descent direction Ax is selected. Gradient descent takes the simplest approach, of using
the negative gradient of f

Ax = =V f(x).

This is the direction that most quickly decreases f in the immediate neighborhood of x.
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Now, let the specific values of x that are generated by the algorithm be x(@, x™ x®) etc.
It can be shown that, for strictly convex functions, for gradient descent

Fx®) —p* <e(f(x*V) —pY). (3.1)

This is called linear convergence. Here, 0 < ¢ < 1 is a number that depends (a lot) on
properties of the function f and (a little) on the parameters of the line search. To understand
this, we can think of f(x®)) — p* as how suboptimal the function is at iterate k. At each
iteration, this gets multiplied by a number less than one, and so will eventually go to zero.

10°

0 20 40 60 80 100
iterations

At first glance, Eq. 3.1 looks very nice. And, it is true, in many real problems, gradient
descent works well. It may be that, owing to its simplicity, it is the single most widely used
optimization algorithm in the world. Unfortunately, on many other problems, ¢ is very close
to 1, and so gradient descent is slow slow as to be unusable.

We can develop some intuition about gradient descent by considering some examples. Con-
sider the quadratic function

f(x) =

(:c% + ax%).

|~

Imagine we start at x = (1,1). The best direction to proceed towards the minimum is
(—1,—1). However, the negative gradient will point in the direction Ax = (—1,—a). If a
is very large, this means that the gradient will be almost orthogonal to the direction that
leads to the minimum, and so many iterations will be required to reach the minimum.

The above example shows that gradient descent is not invariant to linear transformations.
If we set f'(x) = f(Ax) for some linear transformation A, gradient descent might minimize
f quickly but f’ slowly.

Conclusions:
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e Gradient descent is simple, and is computationally fast per iteration.
e In many cases, gradient descent converges linearly.

e The number of iterations is hugely dependent on the scaling of the problem. Often it
works well. Other times, it doesn’t seem to converge at all. Playing around with the
scaling of the parameters can improve things a great deal.

One final note. One can often get away with running gradient descent with a fixzed step size
t. To understand this, consider all the step sizes that would be selected by the backtracking
line search for all points x. If there is a minimum, then this minimum will assure convergence
of the method. In practice, this step is usually selected by running gradient descent with a
few different step sizes, and picking one that converges quickly.

3.3 Newton’s Method

In Newton’s method, we choose the step by multiplying the gradient with the inverse Hessian.

0°f(x)

~ oxoxT

Ax = -H(x)"'Vf(x), H

If H is positive definite (one of the most common ways of demonstrating convexity), it is
easy to show that this is a descent direction®.

Why this? Let’s approximate our function with a second-order Taylor expansion. For small

V7
1
fx+v)~ f(x) +vIVf(x)+ §VTH(X)V.
It is easy to see? that the minimum of this is found when v = —H (x) "' Af(x).

Notice that if f actually is a quadratic, the Taylor approximation is exact, and so the x + Ax
will be the global minimum. This intuition is extremely valuable in understanding Newton’s
method.

Given some technical assumptions, it can be shown that Newton’s method goes through two
stages. In the first stage, the line search may choose ¢t < 1, and the objective is decreases
linearly. Eventually, the method switches into the second mode, and takes “pure” Newton
steps, with £ = 1. Once the second condition occurs, the first does not occur again.

IAXTV f(x) = =V f(x)TH 'V f(x) The definition of positive definite is that for all v, v Hv > 0.
Choosing v = H-'Vf, we have VfTH - THH'Vf = VfTH-'Vf > 0. (Alternatively, observe that a
positive definite matrix has a positive definite inverse, which was essentially proven in the previous sentence.)

2Take the derivative with respect to v. This must be zero, when v is minimum, so Vf(x) + H(x)v = 0.
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The second stage is quadratically convergent, meaning, roughly speaking, a downward slant-
ing parabola on a plot of iterations vs. error. Roughly speaking, this means the number
of correct digits doubles in each iterations. One practical implication of this is that if you
bother to run Newton’s method to any reasonable accuracy, it is pretty cheap to go ahead
and run it all the way to machine precision.

-200|

—250 ) ) )
0 20 40 60 80
iterations

10

One nice property of the Newton step is that it ¢s invariant to linear changes of coordinates.
If we define f'(y) = f(Ty) and run Newton’s method on f starting at x(® and f’ starting
at y(© = Tx(© then it can be shown that Ty*) = x*)_ Thus, the kind of playing around
with parameters suggested above for gradient descent is totally unnecessary.

(Optional remark: Notice, however, that Newton’s method is not invariant to, say, quadratic
changes of coordinates. One often finds a great deal of contempt thrown in Gradient De-
scent’s direction for not being invariant to linear changes of coordinates, with no mention
that Newton’s method is really just invariant to one higher order. One can design even
higher-order, faster converging, methods that make of the tensor of third order derivatives
0*f /0x;0x;0x— or higher. Your instructor is not aware of any examples of these meth-
ods being used in practice in machine learning, and couldn’t even determine if they had an
accepted name.)

So, Newton’s method sounds great. Why would we ever use gradient descent? The main
reason is that it can be very costly to create the Hessian matrix H and to solve the linear
system H 1V f(x) to get the Newton step. If x has N dimensions, H will be of size N x N,
and naive methods for solving the linear system take time O(N3). In very large systems,
this can be a huge cost.

Conclusions:

e Newton’s method is considered the “gold standard” of optimization algorithms. If you
can run it, it will usually reliably recover the solution to high accuracy in few iterations.
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e The main downside of Newton’s method is the expense and inconvenience of dealing
with the Hessian matrix. For a dense matrix, the most reliable methods of finding the
Newton step take time O(N?3) per iteration.

3.4 Quasi-Newton Methods

Given that Newton’s method is so expensive, it is natural to try to find a cheaper and
more convenient method that still converges faster than gradient descent. The basic idea of
Quasi-Newton methods is to, at iteration k, approximate f by

PO V) = )+ AF0TV + ST By,

where B, is an approximation of the Hessian matrix that we will continuously update to try
to “track” the Hessian. The minimum of this approximation is at —B,_ 'V f(x), which we use
as the descent direction.

Ax = —B; 'V f(x)

Now, how should we update B;? Quasi-Newton methods do this by imposing that f*+!
should match the true gradient computed at the previous iteration, while remaining as
“close” to By, as possible. The condition that the gradients match turns out?® to be equivalent
to

By (x*D —x®) = v f(xE+) — v f(xV)

(Be careful with the (k) and (k+ 1) in this equation.) Quasi-Newton methods pick By, by

ming ||B — Byl| (3.2)
st. B=DB" B (x*) —x®) = vfxF - vf®)

Various matrix norms can be used in Eq. 3.2, which yield different algorithms.

From this description, we still have to compute B, "A f(x), which doesn’t seem like too much
of an improvement over Newton’s method. However, by applying a clever identity known

3

0 (x00) = V) - Byl x9) = 9 F(x9)
X
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as the Sherman-Morrison formula, it is possible to do all updates directly in terms of the
inverse of By, which we will denote by Fj. Then, the descent direction can be computed
simply as a matrix multiply as —F,V f(x) in time only O(N?).

The most popular Quasi-Newton method is known as BFGS after Broyden, Fletcher, Gold-
farb and Shanno, who all four independently published it in 1970!

Optional details: The exact update used in BFGS is

Frp = — pkskyg)Fk(I - pkyksg) + pksksf
where s, = Xpy1 — Xp, Yr = VA(XFD) — VF(x®), and pp = 1/yL sy

In general, Quasi-Newton methods converge faster than linearly, but not quadratically. How-
ever, given that they do not require computing the gradient, they are often the method of
choice in practice.

There is a variant of BFGS known as limited-memory BFGS. L-BFGS only stores the pre-
vious M gradients, and computes the descent direction Ax directly from these, using only
O(MN) time and space. Even using M = 10 often yields a significant over gradient descent
in practice, and is usually affordable, even if the number of variables is very large.

3.5 Examples

The section below shows the results of running gradient descent, Newton’s method, and
BFGS on three example objectives.
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This is a two-dimensional optimization, of the function f(x) = x? + 1023. Newton’s method
converges in a single iteration, while gradient descent is confused by the uneven scaling.

Gradient Descent

30 40 50 60
iteration

14 1.6 1.8 2
iteration

2 3 4 5 6 7
iteration
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This is a two-dimensional optimization, of the function f(x) = x? 4+ 1023 — .1log ;..

We see that because the model is non-quadratic, Newton’s method no longer converges in a
single iteration. BFGS is slow, but not by a great deal.

Gradient Descent

5 10 15 20 25 30
iteration

3 4 5 6
iteration

4 6 8 10 12
iteration
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14

This is a 100-dimensional optimization, of a function of the form f(x) = ¢’x—>" log(b— Ax).
where A is 500x100 and b is of length 100. Here, Newton’s method converges very quickly,
BFGS takes 40 times as long, and gradient descent takes an additional factor of 25.

Gradient Descent

10

100 ¢

*

107107

10*15

4000 6000 8000

iteration

0 2000

Newton’s Method

10

10000

100 ¢

*

10710 L

-15

10 . . .
4 6 8
iteration

o
N

BFGS

0 100 200 300 400
iteration

500
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4 Constrained Optimization via Projection

Recall our definition of an optimization problem:

m}}n . f(x)

s.t. x e C.

We can only use the algorithms above when we have no constraints, or C' = R". What to
do if C' is not so trivial?

In general, constrained optimization algorithms are more complex than unconstrained ones.
The most popular and powerful techniques are probably interior-point methods. Roughly
speaking, these methods reduce the constrained problem to a series of unconstrained ones,
in such a way that the unconstrained problems approximate the constrained ones more and
more tightly. Explaining these techniques is beyond the scope of these notes.

Here, we discuss one of the simplest techniques for constrained optimization, known as
projected gradient descent. This algorithm has many of the properties of regular gradient
descent. Namely, it is simple, and works best only on well-scaled problems. Additionally, as
we will see below, projected gradient descent cannot always (practically) be used. The set
C needs to be simple in the sense that given an arbitrary point x*, there is a fast procedure
to find the closest point to x* in C.

The basic idea is to do gradient descent with a fixed step size but, after each iteration,
project the solution into the constraint set C.

Projected Gradient Descent
Repeat:

o x* — xF —tVf(xF)

o xhtl

 arg min |x — x'||
Instead of doing a line search, the version of projected gradient descent here uses a fixed step

size t. If this is too big, the procedure will not converge. If it is too small, many iterations
will be required.

Let’s consider a simple example, with C' = {x : ||x|| < r}, i.e. C is the sphere of radius r
centered at the origin. It is not hard to see that

x* x|l <

. el
argggg\\x x*|| { -

T ] otherwise
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Here are results with step sizes of .01 and .1. The blue lines show the gradient steps, while
the red lines show the projection steps. The black circle contains C'

Meanwhile, here are the results of projecting onto the so-called [; ball. (These require
a somewhat more complicated algorithm to project.) Interestingly, the exact solution is
identified with 4 and 2 iterations for step sizes of .01 and .1, respectively.

The main issues with projected gradient descent are:

e As with regular gradient descent, convergence can be slow for poorly scaled problems.

e Projected gradient descent is only attractive when there is an efficient algorithm for
projecting onto C'. In many realistic problems, C' might be very complicated, for
example, C' = {x : Ax < b}. In general, there is no efficient algorithm to project onto
sets like this, and so more advanced methods must be used.

5 Stochastic Gradient Descent

If we are doing empirical risk minimization, we typically encounter objective functions of the
form
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R= L(f(x),¥).
(x;3)eD

That is, the objective is a sum of function, one for each training element. If n is very large
(e.g. 10° — 10%) it might take a huge amount of time to even evaluate this function and
its gradient once. Meanwhile, for any particular datum, we can evaluate L(f(X),y) very
quickly. Is there any way to take advantage of this special form of optimization? Can we do
better than forgetting about this special structure and just using a standard optimization?
One method that sometimes shows huge orders of improvement is stochastic gradient
descent. In the context of machine learning, one can write this method like

e Fork=1,2,..., 00:

— Pick an element (x,y) of the data.

- w e w— L L(f(%),¥).

Here, t), is a pre-determined step size. It is possible to show that for ¢ of the form a/(b-+ty)
the algorithm will, as k& — oo, converge to the optimal w.

The advantage of stochastic gradient descent are its simplicity, and the fact that it can
sometimes converge much more quickly than batch methods. To understand why, imaging
taking a dataset D, and creating a new dataset D’, which consists of 100 copies of all the
elements in D. If we do empirical risk minimization on D', all of the above “batch” methods
will slow by a factor of 100. Stochastic gradient descent, on the other hand, will operate as
before. Many real-world datasets appear to display a great deal of “redundancy” like this.

The disadvantage is that the speed of convergence is often highly dependent on the values
of a and b. There are no good guidelines for tuning these parameters in practice. Thus,
getting good results out of stochastic gradient descent requires more manual “babysitting”
than traditional optimization methods. Additionally, of course, stochastic gradient descent
will only work on problems that are reasonably well-scaled.

Improving stochastic gradient descent is an active research area. Some work considers spe-
cializations of the algorithm for specific problems, while other work considers generic, prob-
lem independent modification of stochastic gradient descent, usually to try to add some
second-order aspects to the optimization.



