
Statistical Machine Learning Notes 1

Overfitting, Model Selection, Cross Validation, Bias-Variance

Instructor: Justin Domke

1 Motivation

Suppose we have some data that we want to fit a curve to:
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Here, we want to fit a polynomial, of the form

y = w0 + w1x + w2x
2 + ... + wpx

p.

In these notes, we are interested in the question of how to choose p. For various p , we can
find and plot the best polynomial, in terms of minimizing the squared distance to all the
points (ŷ, x̂)

min
w

∑

(ŷ,x̂)∈D

(

w0 + w1x̂ + w2x̂
2 + ... + wpx̂

p − ŷ
)2

. (1.1)

We will refer to this sum of squares distances as the training error.

∑

(ŷ,x̂)∈D

(

w0 + w1x̂ + w2x̂
2 + ... + wpx̂

p − ŷ
)2

1
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The question we address in these notes is: what p do we expect to generalize best? Specif-
ically, we will imagine that we will get some new data TEST from the same distribution.
We want to pick p to minimize the same sum-of-squares difference we used for fitting to the
training data. This is called the test data.

∑

(ŷ,x̂)∈TEST

(

w0 + w1x̂ + w2x̂
2 + ... + wpx̂

p − ŷ
)2

.

Our assumption here is that the elements of D and TEST are both “drawn from the same dis-
tribution”. What this means is that there is some “true” distribution p0(x, y). We don’t know
p0, but we assume all the elements of D and TEST are both drawn from it independently.

An example should make this clear. Suppose that x is a person’s height, and y is a person’s
age. Then (x̂, ŷ) ∼ p0(x, y) means that we got x̂ and ŷ by showing up at a random house on
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a random day, grabbing a random person, and measuring their height and age. If we got D

by doing this in Rochester, and TEST by doing this in Buffalo, then we would be violating
the assumption that D and TEST came from the same distribution!

Now, return to our example of choosing p. What will happen to the training error as p gets
bigger? Now, clearly, a larger p means more “power”, and so the training error will strictly
decrease. However, the high degree polynomials appear to display severe artifacts, that don’t
appear likely to capture real properties of the data. What is going wrong here?

2 The Bias-Variance xTradeoff

We now formally define the “riskiness1” K as the expected squared distance between the
curve that we fit, and a new point from the true distribution

K = E
[(

y − f(x; D
)2]

. (2.1)

Here, f is a function that denotes the following process:

• Take the training data D, fit it in a given manner. (For example by Eq. 1.1 with a
fixed p)

• Take that function, then output the predicted value for the single point x.

Notice that there are two random events here:

• The drawing of the training data D

• The drawing of a new datum (x, y) from the true distribution.

The expectation in Eq. 2.1 is with respect to both of these.

Now, define three terms, the “bias”

B = E
[

f(x; D) − E[y|x]
]

,

the “variance”

V = E
[

(

f(x; D) − E
[

f(x; D)
])2

]

,

1This would usually by called the “risk”, and written with an R. However, we will define a different (but
related) “risk” in the next notes, which we will use going forward. We will not see the “riskiness” again after
these notes.
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and the “intrinsic error”

I = E[(y − E[y|x])2].

Roughly speaking, the bias measures how different the average predicted value is from the
true average value, the variance measures how different the predicted value is from the av-

erage predicted value. The intrinsic error measures fundamental uncertainties (noise) of the
problem. Since nothing can be done about the intrinsic error, we usually don’t worry about
it too much. Notice that we could also have defined each of these quantities for a fixed x.

A lot of algebra can show what is called (with apologies to the intrinsic error) the bias-

variance decomposition,

K = I + B2 + V.

I + B2 + V = E[(y − E[y])2] + (E[f ] − E[y])2 + E[(f − E[f ])2]

= E[y2] − 2E[y]2 + E[y]2 + E[f ]2 − 2E[f ]E[y] + E[y]2 + E[f 2] − 2E[f ]2 + E[f ]2

= E[y2] − 2E[f ]E[y] + E[f 2]

= E[y2 − 2fy + f 2]

This decomposition takes advantage of a sort of coincidence in the squared error. However,
it helps to motivative a more informal idea, the bias-variance tradeoff. This is commonly
thought of by drawing a picture like this:

B

V

K

low

complexity

high

complexity

2

This shows the bias, variance, and riskiness of a range of different learning methods, for a
given amount of training data. It shows the common situation in practice that (1) for simple
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models, the bias increases very quickly, while (2) for complex models, the variance increases
very quickly. Since the riskiness is additive in the two, the optimal complexity is somewhere
in the middle. Note, however, that these properties do not follow from the bias-variance
decomposition, and need not even be true.

There has been some effort to create more general bias-variance decompositions that apply
to, e.g., classification, but there is not consensus so far. (In your lecturer’s opinion, there
is no particular reason to think that risk should always be a linear function of bias and
variance.) However, bias-variance tradeoffs are seen very frequently, in all sorts of problems.
We can very often understand the differences in performance between different algorithms
as trading off between bias and variance. Usually, if we take some algorithm, and change it
to reduce bias, we will also increase variance. This doesn’t have to happen, though. If you
work hard, you can change an algorithm in such a dopey way as to increase both bias and
variance.

3 Cross Validation

Let us return to our initial problem of trying to pick the right degree p for our polynomial.
The first idea that springs to mind is to pick that p that fits the data best. If we plot

mean
(ŷ,x̂)∈D

(

w0 + w1x̂ + w2x̂
2 + ... + wpx̂

p − ŷ
)2

.

for each p, we see something disturbing:
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Clearly this is not what we want. Instead, suppose we had a giant pile of 100,000 extra point
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drawn from the same distribution as the training error. We will call this test data, and the
average error on it the test error.
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Things blow up after p = 13. (This is intuitively plausible if you look at the plots of the
polynomials above.)

Now, what would you do if you don’t happen to have a spare 100,000 extra data sitting
around? The first idea that comes to mind is to “hold out” some of our original training
data.

1. Split D into Dtrain and Dtest. (e.g. half in each)

2. Fit each model to Dtrain, and evaluate how well it does on Dtest

3. Output the model that has the best score on Dtest.

This can work reasonably well, but it “wastes” the data by only training on half, and only
testing on half. We can make better use of the data by making several different splits of the
data. Each datum is used once for testing, and the other times for training. This algorithm
is called K-fold cross validation.

1. Split D into K chunks

2. For k = 1, 2, ..., K:

(a) Set Dtest to be the kth chunk of data, and Dtrain to be the other K − 1 chunks.

(b) Fit each model to Dtrain and evaluate how well it does on Dtest.
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3. Pick the model that has the best average test score.

4. Retrain that model on all of D, and output that.

If we do 5-fold cross validation on our original set of 60 points, we get:
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We can see that this picks p = 3, rather than the optimal p = 12. Clearly, cross validation is
no substitute for a large test set. However, if we only have a limited training set, it is often
the best option available.

In this case, cross-validation selected a simpler model than optimal. What do we expect to
happen on average? Notice that with 60 points, 5-fold cross validation effectively tries to
pick the polynomial that makes the best bias-variance tradeoff for 48 (60 · 4

5
) points. If we

had done 10-fold cross validation, it would instead try to pick the best polynomial for 54
(60 · 9

10
) points. Thus, cross validation biases towards simpler models. We could reduce this

to the minimum possible by doing 60-fold cross validation. This has a special name: leave-

one-out cross validation. In complex models, this can be expensive, though there has
been research on clever methods for doing leave-one-out cross validation with out needing
to recompute the full model. In practice, we usually don’t see too much benefit for doing
more then 5 or 10 fold cross validation. In this particular example, 60-fold cross validation
still selects p = 3.
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Cross validation is a good technique, but it doesn’t work miracles: there is only so much
information in a small dataset.

Though cross validation is extremely widely used, there has been difficulty proving that it
actually works better than just using a single hold-out set of 1

K
th of the data! There is even

a $500 bounty. See: http://hunch.net/?p=29 http://hunch.net/?p=320


