
Statistical Machine Learning Notes 12

Trees

Instructor: Justin Domke

Contents

1 Regression Trees 1

2 Fitting Regression Trees 2

3 Controlling complexity 4

4 Examples 5

5 Conclusion 14

6 Fast threshold selection 15

1 Regression Trees

Tree-based methods can be seen as fitting a model that is piecewise constant over some
disjoint number of regions Rm.

f(x) =
∑

m

cmI[x ∈ Rm]

This can also be written as

f(x) = cm, x ∈ Rm.

In trees, the regions Rm are usually defined by means of binary splits. For example, the tree
below corresponds to the following group of regions.

1



Trees 2

x1 ≥ .5

x2 ≥ .75 x2 ≥ .5

R1 R2 x1 ≥ .75 R5

R3 R4

R1

R2

R3 R4

R5

2 Fitting Regression Trees

Suppose we have some dataset D = {(x̂, ŷ)}. We would like to pick the regions Rm and the
constants cm to minimize the squared error

∑

x̂,ŷ∈D

(

f(x̂) − ŷ
)2

.

Suppose, first, that the regions Rm are fixed, and we want to fit the constants cm. We
can pretty easily obtain the intuitive result that cm should be the average of the values ŷ

corresponding to inputs x̂ in region Rm.



Trees 3

arg min
cm

∑

x̂,ŷ∈D

(

f(x̂) − ŷ
)2

= arg min
cm

∑

(x̂,ŷ)

(

∑

n

cnI[x ∈ Rn] − ŷ
)2

= arg min
cm

∑

(x̂,ŷ):x̂∈Rm

(

cm − ŷ
)2

= mean
(x̂,ŷ):x̂∈Rm

ŷ

Now, how to fit the regions Rm? Or, equivalently, how to select all the binary splits?
Unfortunately, this turns out to be intractable to do exactly. Instead, we are forced to rely
on greedy heuristics. We start with a single node tree, and find the single split such that the
training error is minimized. We then recursively split subregions.

Now, if we have D dimensions, and there are N training elements, how can we find the best
split? Define

R1(d, s) = {x : xd ≤ s}, R2(d, s) = {x : xd > s}

The goal is to find a dimension d and a threshold s to do the optimization

min
d,s

(

min
c1

∑

(x̂,ŷ):x̂∈R1(d,s)

(ŷ − c1) + min
cd

∑

(x̂,ŷ):x̂∈R2(d,s)

(ŷ − c2)
)

.

As we saw above, the minimizations over c1 and c2 are accomplished by just setting each to
be the mean of all the values ŷ corresponding to the region. The question remains, how to
optimize over d and s?

Since there are a finite number of dimensions, we can just search over all of them. If we
allow s to be a real number, there are an infinite number of possible thresholds. However,
there are only a finite number of effective thresholds. Given dimension d, take the values x̂d

in sorted order. Then, we can consider

s =
1

2
x̂1

d +
1

2
x̂2

d

s =
1

2
x̂2

d +
1

2
x̂3

d

...

s =
1

2
x̂N−1

d +
1

2
x̂N

d .



Trees 4

Thus, we have a total of ND pairs (d, s) to consider. Done by brute-force, we could com-
pute the value of the least-squares error for each in time O(N), for a total time complex-
ity of O(N2D). However, as we will see below, for the least-squares error, a clever al-
gorithm can compute the function values for all the thresholds in a particular dimension
in time O(N log N) (the complexity of sorting), and so reduces the overall complexity to
O(ND log N).

Notice that we cannot use a simple strategy like a binary search to find the best s, since the
objective is nonconvex in s.

0 10 20 30 40 50
−4

−2

0

2

4
a

t.eps

3 Controlling complexity

In linear methods, we generally controlled complexity by regularizing parameters. How
should we control complexity with trees? There are a number of possibilities that seem to
be used in practice:

• Grow trees to a fixed depth. For example, only allow a total of 5 splits from the origin
to a leaf, meaning a total of 25 leaf nodes.

• Grow trees to a fixed number of leaf nodes. When growing a tree, one can use various
criteria to choose what node to next “split”. If these are chosen intelligently, choosing
a fixed number (e.g. 25 leaf nodes). generally yields a non-balanced tree. (Note that
in many computational contexts, having unbalanced trees is a very bad thing. Here,
however, it is not a problem.)

• Only split nodes with a given number of points in them. For example, we might refuse
to split nodes with less than 50 data points falling into them.

Because trees are grown greedily, it is generally thought better to grow the tree out to some
significant depth, and then “prune” it to avoid overfitting. The reason is that a split that



Trees 5

initially appears to only slightly decrease training error may emerge to be very useful further
down the tree. For example, consider the following dataset:

×

×

×

×
× ×

×

×

×

× ×

o

o

o

o

o o

o

o

o

o
o o

Any single split will produce only a small decrease in training error. However, by splitting
twice, we can achieve a classification error of zero.

Surprisingly enough, the most common way in practice to control complexity may be to limit
the tree to a single split! Such “stumps” are widely used in the context of boosting, as we
will see later on.

4 Examples

These examples show some two-dimensional datasets. To simultaneously visualize the loca-
tions x̂ and values ŷ, we use a Voronoi diagram. Each pixel in the plane is colored with an
intensity proportional to the value ŷ corresponding to the nearest point x̂.

In these examples nodes that contain 10 or less data points are not further split.



Trees 6

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 7

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 8

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 9

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 10

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 11

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 12

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 13

data 1 split 2 splits

3 splits 4 splits 5 splits

6 splits 10 splits 15 splits



Trees 14

5 Conclusion

The advantages of tree-methods are that they are:

• Fast to learn.

• Fast to evaluate.

• Interpretable. Even in high dimensions, we can draw a tree, and understand it quite
well.

• Invariant to affine scalings. That is, if we take all the inputs x̂, and set x̂
′ through

some affine scaling x̂′
i = aix̂i + bi, exactly the same tree will be learned, with the split

points correspondingly transformed. This means it is totally unnecessary to center or
rescale the data, as is important with linear methods.

• Somewhat tolerant of missing data. If some variables x̂d are unknown, decision
trees can still sometimes make use of the dth dimension. The way this is done is merely
to refuse to split on a dimension with hidden data. Further down the tree, there will
be less data at a given node. If the variable is available in all those, it can still be made
use of.

Some of the disadvantages of tree-methods are:

• They are aligned to the coordinate axes. As we saw above with the “grid” data,
regression trees struggled to deal with diagonal structure in the regression function.
One can design methods that try to fit more general splitting criteria like [v · x ≤ t].
However, recall that above we used a brute-force search over d to deal with only splits
of the form [êd · x ≤ t]. Thus, dealing with the large computational problem to find
the best v is difficult. There have been several heuristics proposed for doing this.
Note also, of course, that we will pay a variance penalty for using these more powerful
functions.

• They are not very smooth. That is, the function value changes discontinuously be-
tween the different regions.

• We have to learn them greedily. Trees are strongly reliant on the greedy heuristics
used to grow them. As we saw above on the “grid” data where the optimal tree is
of 4 nodes, with splits at x1 ≤ .5 and x2 ≤ .5, the algorithm failed to find this tree.
The reason is that each of these splits, alone, does not cause much decrease in the
training error. It is possible to design more expensive tree-growing procedures that
“look ahead” more than a single split down the tree, which can combat these problems
to some degree, though at a significant cost.



Trees 15

6 Fast threshold selection

Consider the following problem. We have a sorted list of numbers, a1, a2, ..., aN . We want to
find a threshold t such that we can minimize

∑

i≤t

(ai − mean
i≤t

ai)
2 +

∑

i>t

(ai − mean
i>t

ai)
2.

Now, we can obviously find this threshold with complexity O(N2). Just try t = 1, t = 2, ...,
t = N −1. For each threshold, compute the two means, and then compute the total function
value. However, can we do better O(N2)?

It turns out that we can reduce the complexity to O(N). The key idea is the following
recursion1:

mean
i≤n+1

ai =
1

n + 1

(

an+1 + nmean
i≤n

ai

)

.

(This can also be done in reverse to produce the means over all i > n).

Which we can use to compute all the means in time O(N). Next, note that

∑

i≤t

(ai − mean
j≤t

aj)
2 =

∑

i≤t

(

a2
i − 2aimean

j≤t
aj + (mean

j≤t
aj)

2
)

=
∑

i≤t

a2
i − 2

(

∑

i≤t

ai

)

mean
j≤t

aj + t(mean
j≤t

aj)
2.

There is a similar equation for the sums over i > t. Putting it all together, we have the
following fast threshold selection algorithm.

• Input a1,a2, ..., aN .

• For all t, compute
∑

i≤t ai and
∑

i>t ai.

1Want proof? Here is the algebra.

∑

i≤n+1

ai = an+1 +
∑

i≤n

ai

(n + 1)mean
i≤n+1

ai = an+1 + n mean
i≤n

ai

mean
i≤n+1

ai =
1

n + 1

(

an+1 + nmean
i≤n

ai

)



Trees 16

• For all t, compute
∑

i≤t a
2
i and

∑

i>t a
2
i .

• For all t, compute mean
i≤t

ai and mean
i>t

ai

• For all t, compute ft =
∑

i≤t(ai − mean
i≤t

ai)
2 +

∑

i>t(ai − mean
i>t

ai)
2.

• Select t∗ = arg mint ft.


