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1 Introduction

Almost all of our methods for learning have been based off the function of “risk” and “loss”.
We have worked by picking some class of functions f(x) mapping from inputs to outputs.
We quantified how we wanted that function to behave in terms of the true risk

Rtrue(f) = E
p0

[

L(f(x),y)
]

=

ˆ ˆ

p0(x,y)L(f(x),y)dxdy, (1.1)

where p0 is the true (unknown) distribution. Then, we approximated this by an empirical
risk, fit the function f , and we were done. Gazing at Eq. 1.1, however, another possible
strategy comes to mind. Namely, why don’t we approximate p0 with some function p? Then,
when we need to make predictions for some specific input x, we can pick the best guess y′

by doing

min
y′

ˆ

p(x,y)L(y′,y)dy.

Then, assuming that we have approximated p0 perfectly, we could do everything exactly!

The fundamental question here is: when should we apply the loss function? In the traditional
strategy, we apply it at training time: the predictor f(x) is fit to give the best possible
performance, with the loss “baked in”. Now, we apply the loss function only at test time.
Notice that we could even change loss functions “on the fly”. We could also flip things around.
If we suddenly decided we would rather predict x from y, we could also do that.

This may seem very attractive. As we will see, however, there is a price to be paid for this
generality. However, we postpone discussion of all the tradeoffs until later. The immediate
question is more basic: how should we fit p?

(Note: when fitting p(x,y), notice that x and y are on an even footing. Thus, for simplicity,
we will usually write the variables together as a single vector x.)

2 Maximum Likelihood

There have been many methods proposed to fit distributions. In this class, we will focus
on the “maximum likelihood” method. Suppose that we are fitting a distribution p(x; θ),
parametrized by some vector θ. Where does this distribution p come from? You pick it.
How do you pick it? We will come back to that! Let the data be a set of vectors {x̂}.
The log-likelihood is



Probabilistic Learning 3

l(θ) = Ê log p(X; θ) =
∑

x̂

log p(x̂; θ).

The maximum likelihood method, surprisingly enough, consists of picking θ to maximize
the likelihood

θ∗ = arg max
θ

l(θ).

This method has some nice properties, but before worrying about them, let’s try some
examples. You may have seen these before in a statistics class.

3 Examples of Maximum Likelihood

3.1 Binomial

A binomial distribution is a distribution over a binary variable, with x ∈ {0, 1}, given by

p(x; θ) = θx(1 − θ)1−x.

Given some training data, we can calculate

l(θ) =
∑

x̂

log p(x̂; θ) =
∑

x̂

(

x̂ log θ + (1 − x̂) log(1 − θ)
)

Now, we can maximize this by setting the derivative with respect to θ to zero. We have

dl

dθ
= 0 =

∑

x̂

(

x̂
1

θ
− (1 − x̂)

1

1 − θ

)

= #[x̂ = 1]
1

θ
− #[x̂ = 0]

1

1 − θ
,

where #[x̂ = 1] is the number of points in the training data with x̂ = 1. This equation is
solved by

θ =
#[x̂ = 1]

#[x̂ = 1] + #[x̂ = 0]
.

Thus, the maximum likelihood estimate is that the binomial distribution has the same prob-
ability of being 1 as in the training data. This is quite intuitive.
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3.2 Uniform Distribution

Consider the distribution uniform on 0 to θ.

p(x; θ) =
1

θ
I[0 ≤ x ≤ θ]

The log likelihood is, as ever,

l(θ) =
∑

x̂

log p(x̂, θ).

If θ is less than any value x̂, then the probability of that point is zero, and we can think of
the log-likelihood as being −∞. On the other hand, suppose that

θ > x̂, ∀x̂.

Then, we have that

l(θ) =
∑

x̂

log
1

θ
= −

∑

x̂

log θ.

Thus, the likelihood is maximized by setting

θ = max
x̂

x̂.

3.3 Univariate Gaussian

A univariate gaussian distribution is defined by

p(x, µ, σ2) =
1√

2πσ2
exp

(

−1

2

(x − µ)2

σ2

)

.

Through a bunch of manipulation, we can take the logarithm of this, and then the derivatives
of the logarithm.

First of all, we will use the fact that

log
√

2πσ2 =
1

2
log(2πσ2).
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Then, taking the logarithm and then derivatives, we have

log p(x; µ, σ2) = −1

2

(x − µ)2

σ2
− 1

2
log σ2 − 1

2
log 2π

d

dµ
log p(x; µ, σ2) =

(x − µ)

σ2

d

dσ2
log p(x; µ, σ) =

1

2

(x − µ)2

(σ2)2
− 1

2

1

σ2
.

Now, we want to do maximum likelihood estimation. That is, we need to maximize

max
µ,σ2

l(µ, σ2)

We can do this by solving the two equations

d

dµ
l(µ, σ2) =

∑

x̂
d
dµ

log p(x̂; µ, σ) = 0

d

dσ2
l(µ, σ2) =

∑

x̂
d

dσ2 log p(x̂; µ, σ) = 0

From the first condition, it is easy to see that

µ = meanx̂x̂

From the second condition, we can then find

0 =
∑

x̂

(1

2

(x̂ − µ)2

(σ2)2
− 1

2

1

σ2

)

=
∑

x̂

((x̂ − µ)2

σ2
− 1

)

=
∑

x̂

(

(x̂ − µ)2 − σ2
)

σ2 = meanx̂(x̂ − µ)2
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3.4 Multivariate Gaussian

A multivariate Gaussian is defined by

p(x; µ, Σ) =
1

(2π)d/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

log p(x; µ, Σ) = −1

2
(x − µ)T Σ−1(x − µ) − d

2
log(2π) +

1

2
log |Σ−1|.

It is an unfortunate, but firmly established convention to use the symbol “Σ” to denote the
covariance matrix. It is important not to get this confused with a sum. (In these notes, the
difference is indicated by the size of the symbol, as well as context.)

First off, let’s calculate some properties of this distribution. It is not hard to see that, by
symmetry,

E
p
[x] = µ.

It can also be shown that

E
p
[(x − µ)(x − µ)T ] = Σ.

Thus, it makes sense to call µ the “mean” and Σ the “covariance matrix”. In order to calculate
the maximum likelihood estimate, we will need some derivatives. Using the fact that Σ−1 is
symmetric,

d

dµ
log p(x; µ, Σ) = Σ−1(x − µ)

Using the fact that d
dX

aT Xa = aaT and the strange but true fact that d log |X|
dX

= X−T , and
again assuming that Σ is symmetric, we have

d

dΣ−1
log p(x; µ, Σ) = −1

2
(x − µ)(x − µ)T +

1

2
Σ.

Now, as ever, when doing maximum likelihood estimation, our goal is to accomplish the
maximization
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max
Σ,µ

l(Σ, µ) = max
Σ,µ

∑

x̂

log p(x̂; µ, Σ).

Setting dl/dµ = 0, we have

∑

x̂

d

dµ
log p(x̂; µ, Σ) =

∑

x̂

Σ−1(x̂ − µ) = 0

µ = meanx̂x̂.

Setting dl/dΣ−1 = 0, we have

∑

x̂

d

dΣ−1
log p(x̂; µ, Σ) =

∑

x̂

(

−1

2
(x − µ)(x − µ)T +

1

2
Σ

)

Σ = meanx̂(x̂ − µ)(x̂ − µ)T .

Again, this is all very intuitive. The mean is the empirical mean, and the covariance matrix
is the empirical covariance matrix. However, this is not unbiased. (Recall to estimate the
variance of a scalar variable, we should use the formula 1

n−1

∑n
i=1(xi − µ)2, rather than the

empirical variance 1
n

∑n
i=1(xi−µ)2.) So maximum likelihood will tend to slightly overestimate

the variance when the number of data is small.

3.5 Spherical Multivariate Gaussian

A spherical Gaussian is just a Gaussian distribution where we constrain the covariance matrix
to take the form

Σ = aI

for some constant a. Using the fact that |aI| = ad, this is

p(x; µ, a) =
1

(2π)d/2ad/2
exp

(

− 1

2a
(x − µ)T (x − µ)

)

.

This turns out to have a maximum likelihood solution of

µ = meanx̂x̂.
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a =
1

d
meanx̂(x̂ − µ)T (x̂ − µ).

4 Properties of Maximum Likelihood

Here we will informally discuss some of the properties of maximum likelihood.

4.1 Maximum Likelihood is Consistent

If the data is actually being generated by a distribution

p(x; θ0),

for some vector θ0, then (absent pathological conditions) as the amount of data goes to
infinity, the parameters θ recovered by maximum likelihood will converge to θ0. This is a
definitely a good property, as we probably would consider any method lacking it to be, more
or less, broken.

4.2 Maximum Likelihood is Equivariant

Another nice property of the likelihood is that it is “equivariant”. This just means that we
can reparameterize without affecting the solution. Specifically, suppose we are considering
estimating some distribution

p(x; θ).

Suppose the maximum likelihood estimate of θ on some dataset is θ∗. Now, we choose to
instead parametrize our function by φ, which is some nonlinear transformation of θ.

θ = g(φ)

Now, if we define

q(x; φ) = p
(

x; g(φ)
)

and do maximum likelihood estimation of φ, we will recover φ∗ such that
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θ∗ = g(φ∗).

(Proving this is quite easy.) Again, this is a reassuring property: The exact details of how
we have parametrized our function don’t matter. Failing to be equivariant wouldn’t seem to
be quite so disqualifying as failing to be consistent, but it is certainly comforting.

4.3 Maximum Likelihood is Efficient

Perhaps the strongest argument in favor of maximum likelihood is that it is asymptotically
efficient. Suppose the data is actually being generated by a distribution

p(x; θ0),

for some vector θ0. As discussed above, the maximum likelihood is consistent, in the sense
that it converges to θ0. The next question is, how fast does it do that? Is there some other
measure that converges faster?

Asymptotically, the answer is no. This result hinges on defining “faster” as the expected
squared distance between our estimate θ and the true parameters θ0. This follows from two
results that are described here informally. (For simplicity, these are stated here for a scalar
parameter θ.) These make use of a quantity called the Fisher information.

I(θ0) = E
p(X;θ0)

[(∂ log p(X; θ0)

∂θ

)2]

Intuitively, we can understand this. Consider a “landscape” of different values θ, in which
we seek to locate the true value θ0. If log-likelihood changes a lot in the region around θ0,
then we should expect the true parameters to be relatively easy to locate.

The two results showing the efficiency of maximum likelihood are:

1. The Cramer-Rao bound. This states that no unbiased estimator can have a variance

less than
1

nI(θ0)
. (Technically, maximum likelihood is not unbiased, but this is good

enough for our purposes, since we are looking for an asymptotic result anyway.)

2. The asymptotic normality the maximum likelihood. This shows that, as the amount of

data becomes large, the estimated parameters will be distributed with variance
1

nI(θ0)
.

Specifically, they will be distributed as a Gaussian distribution with this variance
centered at θ0.
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4.3.1 Proof of the Cramer-Rao bound

(This sub-sub-section may be considered recreational.) Consider any unbiased estimator
θ̂(X1, ..., Xn). By definition,

E
p(X1;θ)

E
p(X2;θ)

... E
p(Xn;θ)

(θ̂(X1, ..., Xn) − θ) = 0.

Written in integral form, this is

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ) (θ̂(x1, ..., xn) − θ) = 0.

If we differentiate this with respect to θ, noting that d log p(xi;θ)
dθ

= 1
p(xi;θ)

dp(xi;θ)
dθ

, we have

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)
(

∑

i

d log p(xi; θ)

dθ

)

(θ̂(X1, ..., Xn) − θ) = 1,

which, when squared, is

(

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)
(

∑

i

d log p(xi; θ)

dθ

)

(θ̂(X1, ..., Xn) − θ)
)2

= 1.

Now, we will define inner products as expectations. Let f and g be functions of x1, ..., xn,
and let the inner product between them be defined by taking an expectation over p of their
product, namely

f · g =

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)f(x1, ..., xn)g(x1, ..., xn).

(It is easy to verify that this obeys the necessary notions of an inner product, i.e. that
f · g = g · f , (cf) · g = c(f · g), (f + g) · h = f · h + g · h, and f · f ≥ 0, where f , g, and h are
functions, and c is a real number.)

The Cauchy-Scharz inequality states that (f · g)2 ≤ (f · f)(g · g). Applying this to our above
equation gives us

(

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)
(

∑

i

d log p(xi; θ)

dθ

)2)

×
(

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)(θ̂(X1, ..., Xn) − θ)2
)

≥ 1. (4.1)
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Now, attack the first part of the equation. This is

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)
∑

i

∑

j

d log p(xi; θ)

dθ

d log p(xj ; θ)

dθ

=
∑

i

ˆ

xi

p(xi; θ)
(d log p(xi; θ)

dθ

)2
+

∑

i

ˆ

xi

p(xi; θ)
d log p(xi; θ)

dθ

∑

j 6=i

ˆ

xj

p(xj; θ)
d log p(xj ; θ)

dθ
.

However, we know that,

ˆ

x

p(x; θ)
d log p(x; θ)

dθ
=

ˆ

x

p(x; θ)
1

p(x; θ)

dp(x; θ)

dθ
=

d

dθ

ˆ

x

p(x; θ) = 0,

and so, we have

ˆ

x1

...

ˆ

xn

p(x1; θ)...p(xn; θ)
(

∑

i

d log p(xi; θ)

dθ

)2
= np(x; θ)

(d log p(xi; θ)

dθ

)2
= nI(θ).

Next, it is easy to see that the second part of the left-hand side of Eq. 4.1 is equal to
E(θ̂ − θ)2. Thus, we have the Cramer-Rao bound,

E
p(X1;θ)

... E
p(Xn;θ)

(θ̂(X1, ..., Xn) − θ)2 ≥ 1

nI(θ)
.

Note: the Fisher information is sometimes defined in slightly different ways, in which the n
in the above equation would be absorbed into the information I.

4.4 Maximum Likelihood Assumes a Whole Lot

Now, suppose the true distribution is

p0(x).

Most of the above properties have hinged on the assumption that there exists a vector θ0

such that

p0(x) = p(x; θ0).

Another way of stating this is that we have a well-specified model.
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You might ask: how could we ever know this? The brief answer is that we probably don’t.
Now, we can create somewhat contrived situations where it is true. It is hard to see how a
binary variable can fail to be Binomial! In general, however, making a model tends to be an
educated guess of sorts.

4.5 Maximum Likelihood is Empirical Risk Minimization of the

KL-divergence

All of the discussion has depended on the assumption that the true data-generating dis-
tribution is known. As this is almost never true is practice, it might seem like maximum
likelihood could almost never be used!

Unfortunately, without the assumption of a well-specified model, almost of the above prop-
erties disappear. After all, how can θ converge to θ0 if θ0 doesn’t exist?

On the other hand, intuitively, it seems like the maximum likelihood should still do some-
thing reasonable if the model is “almost” well-specified. That is, if there exists some vector
of parameters θ̃ such that p0(x) ≈ p(x; θ̃), shouldn’t maximum likelihood converge to some-
thing close to p0? After all, in the previous case, the data could have come from parameters
θ̃– how could the maximum likelihood even “know” it did not?

In fact, maximum likelihood does behave reasonably in the face of minor misspecification.
To understand this, we must first introduce the The Kullback-Leibler divergence.

KL(p0||p) =

ˆ

x

p0(x) log
p0(x)

p(x)

This is a sort of “divergence measure between probability distributions”. Its origins come
from information theory1. The important thing to note about the KL-divergence is that it
is non-negative, and zero only when p0 = p. Note also that it is not actually a distance
measure, as it is not symmetric.

Suppose that there is some region of points where p0 is significant, but p is near zero. As
the KL-divergence measures the logarithm of p, this region leads to a large divergence.

The following figures show several base distributions p0 (shown as dotted lines). For each
distribution, the Gaussian is computed that minimizes the KL-divergence (shown as solid
lines).

1Where it can be thought of as measuring “the expected number of bits wasted if you build a code for x

assuming that the distribution is p when the actual distribution is p0”
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p(x)
arg minq KL(p||q)

Now, consider the KL-divergence between the true distribution p0, and the one that we fit,
p.

arg min
p

KL(p0||p) = arg min
p

∑

x

p0(x) log p0(x) −
∑

x

p0(x) log p(x)

= arg max
p

∑

x

p0(x) log p(x)

≈ arg max
p

∑

x̂

log p(x̂)

In third line we have made essentially an empirical approximation of the true risk above.

The way to understand this is that if the true distribution is any of the dotted curves above
and we fit a Gaussian then, as the amount of data increases, we will recover the solid curve.

5 Bayesian Methods

Suppose we have a big jar full of bent coins. We happen to know that, inside of this bin,
there are 75 coins of type A with probability 60% and 25 coins of type B that come up with
probability 40%. Now, we pick a coin at random out of the jar. We flip it 8 times, and
observe 3 heads, followed by 5 tails. What is the probability that we have in our hands coin
of type A?
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One approach to this is to apply Bayes’ theorem.

Pr(X|Y ) =
Pr(Y |X)Pr(X)

Pr(Y )

In our case, we want to calculate the probability that we have a coin of type A, given that
we have observed 3 heads in 10 coin flips.

Pr(A|Data) =
Pr(Data|A)Pr(A)

Pr(Data)

Pr(B|Data) =
Pr(Data|B)Pr(B)

Pr(Data)

Now, in our case, we know that we have a 75% chance of grabbing a coin of type A.

Pr(A) = .75

Pr(B) = .25

Now, if we had a coin of type A, we would have probability

Pr(Data|A) = .63 · .45 ≈ 0.00221

Pr(Data|B) = .43 · .65 ≈ 0.00498

Thus, we have

Pr(A|Data) = 0.00165/Pr(Data)

Pr(B|Data) = 0.00124/Pr(Data).

Now, notice that we don’t need to go through too much calculation to recover Pr(Data).
Since we know that

Pr(A|Data) + Pr(B|Data) = 1,

we can just normalize and calculate
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P (A|Data) = .57

P (B|Data) = .43.

Thus, there is a 57% chance we have a coin of type A.

Now, all of the above may seem quite uncontroversial. However, when we say there is a
57% chance our coin is of type A, what exactly does that mean? After all, we picked one
particular coin. It is either of type A or it isn’t. What probabilities exactly are we talking
about here? The traditional view holds that talking about such probabilities is meaningless.
On the other hand, forced to bet, wouldn’t everyone choose A2? There are philosophical
issues here about the meaning of probability. We won’t get too deeply into these, however,
just note that they exist, and are a part of the debate in statistics between Bayesian and
traditional frequentist methods.

Now, let’s try to formalize the process that we used above and scale it up to larger problems.
Instead of just two types of coins (two different binomial distributions), imagine we have
a set of potential probability distributions p. Imagine also that we have, by some prior
knowledge, a distribution Pr(p) over these distributions. What happens is the following:

• Some distribution p is picked, with probability proportional to Pr(p).

• A bunch of samples {x̂} is drawn from p.

• We get to see {x̂}, and need to make predictions about the future.

The simplest way to approach this situation is to again apply Bayes’ equation

Pr(p|{x̂}) =
Pr({x̂}|p)Pr(p)

Pr({x̂}) .

Now, it makes sense to try to recover the most probable p. This means searching for

arg max
p

Pr(p|{x̂}) = arg max
p

Pr({x̂}|p)Pr(p)

= arg max
p

log Pr({x̂}|p) + log Pr(p)

= arg max
p

log
∏

x̂

p(x̂) + log Pr(p)

= arg max
p

∑

x̂

log p(x̂) + log Pr(p).

2Is it a contradiction to choose A and yet reject the idea of probabilities like this?
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(In the first line, we exploit the fact that Pr({x̂}) is constant with respect to p and so does
not affect the maximizing p. In the second line, we take the logarithm. In the third line, we
use the fact that Pr({x̂}|p) =

∏

x̂
Pr(x̂|p) =

∏

x̂
p(x̂). The fourth line is just algebra.)

Thus, in the last line, we just have the log-likelihood plus the log priod Pr(p). Searching for
p to maximize Pr(p|{x̂}) is known as maximum a posteriori (MAP) estimation.

Notice the similarity to regularized maximum likelihood estimation. For example, it is
common to parameterize p by some vector θ, and set Pr(p) = Pr(θ) to be a Gaussian
centered at the origin. It is easy to show that doing this results in log Pr(θ) = −a||θ||2,
where a depends on the covariance of the Gaussian. Similarly, it can be shown that the
lasso penalty corresponds to a distribution of the form Pr(θ) ∝ exp

(

−a||θ||1
)

. Thus, many
Bayesians view regularized maximum likelihood estimation as “implicit” MAP estimation.

We should note, though, that “real” Bayesians do not do MAP estimation. To understand
why not, suppose that we have a probability distribution parameterized by a scalar, and the
postereior Pr(θ|{x̂}) looks something like the following:

P (θ)

θ
θ(1) θ(2)

MAP estimation will choose θ(1) as the most probable set of parameters. However, this
doesn’t look so good, since most of the probability is in the area of θ(2).

What real Bayesians do is not estimate one particular distribution p, but rather, make
predictions directly from the posterior Pr(p|Data).

How is this done? Let’s look at an example. Suppose we need to guess one single value for
x. Consider the loss of some guess x′:

min
x′

ˆ

x

L(x′,x)Pr(x|Data)dx.

Now, we can calculate the probability of some particular output x by integrating over the
possible
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Pr(x|Data) =

ˆ

θ

Pr(x, θ|Data)dθ

=

ˆ

θ

Pr(x|θ)Pr(θ|Data)dθ

∝
ˆ

θ

Pr(x|θ)Pr(Data|θ)Pr(θ)dθ.

Thus, finally, the true Bayesian chooses their best guess x′ by the problem

min
x′

ˆ

x

ˆ

θ

L(x′,x)Pr(x|θ)Pr(Data|θ)Pr(θ)dxdθ. (5.1)

The question is, how to do this integral? In some situations, this can be done in closed
form. In general, however, one must resort to Markov chain Monte Carlo techniques for
approximately doing the integral3. This can be quite computationally challenging, which
can be a major drawback of Bayesian methods.

Let’s consider the advantages and disadvantages of the Bayesian approach.

• The major advantage of this is that it is, in a certain sense, the optimal method. If
the true distribution is drawn from Pr(θ) then, on average, no method for making
predictions can have lower loss than Eq. 5.1. To make this precise, suppose that
we repeatedly get parameters θ from the distribution Pr(θ), sample some data from
Pr(Data|θ), make a predicted x′, then measure the loss L(x′,x) on some new x drawn
from p(x, θ). The above recipe will have the lowest average loss of any method. For this
reason, many people feel that Bayesian methods are the one, true way to do machine
learning.

• A disadvantage of Bayesian methods is that they can often be quite computationally
expensive. As mentioned above, in complex problems, it is common to use MCMC
techniques to do inference. These techniques do have guarantees of eventually con-
verging to the right answer, but these guarantees are usually asymptotic in nature.
Thus, given a finite amount of running time, one can be unsure how close the current
answer is to the best one. Research is ongoing on faster MCMC methods with an eye
on Bayesian inference.

• The most obvious issue with Bayesian methods is the need to specify the prior Pr(θ).
In real applications, where does this prior come from? This is similar to issue we faced
when doing (non-Bayesian) probabilistic modeling– we needed to specify a correct
parametric model p(x; θ). While specifying the prior may appear to be a drawback of

3See “Introduction to Monte Carlo methods” by David MacKay for a good tutorial on these techniques.
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Bayesian methods, it is also something of an advantage. If you have a lot of knowledge
about a particular domain, and you are able to specify this knowledge as a prior,
Bayesian methods provide a nice framework to combine your knowledge with knowledge
gained from data. Note also that, in the view of some, techniques like regularization
are essentially MAP estimation in all but name.

There is a great deal of material out there on the debate between frequentist and Bayesian
statistics.
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