(S 688 Graphical Models, Spring 2017

Justin Domke
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Agenda

Typo Corrector

It's all about the curse of dimensionality
Logistics

Prerequisites

What we will cover in the course
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Typo corrector

Suppose we have a big database of
< T letter words:

duck
pile
mark
an**
dive
dog*

rug*
file
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Typo corrector

Suppose we have a big database of Our problem: we see new words,

< T letter words: where 25% of the letters have been
randomly corrupted.

duck

pile frot

mark nice

an** v*he

lei qot*

dog vicn

rug* t

file sgii
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Probabilistic model

Step one: Build a distribution p(x) over all T -length sequences
x=(x1,X2,....,X7),eachx; € {a,b,...,x*}
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Probabilistic model

Step one: Build a distribution p(x) over all T -length sequences
x=(x1,X2,....,X7),eachx; € {a,b,...,x*}

p(a,a,a,a) = .000001
p(a, a,a, b) = .000002

p(t,a,c,0) = .051231

p(k, %, %, %) = .00004
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Probabilistic model

Step two: Build a distribution p(y|x) of "noisy" sequences y given "clean"
sequences X.
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Probabilistic model

Step two: Build a distribution p(y|x) of "noisy" sequences y given "clean"
sequences X.

What would this look like?
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Probabilistic model

Step two: Build a distribution p(y|x) of "noisy" sequences y given "clean"
sequences X.

What would this look like?

25
pO|x) = I(x, = yi) X 15 + 1(X; # Yr) X 26
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Probabilistic model

Step two: Build a distribution p(y|x) of "noisy" sequences y given "clean"
sequences X.
What would this look like?

25
pO|x) = I(x, = yi) X 15 + 1(X; # Yr) X 26

- 25
pOylx) = H (I(xt = Y) X715 + I1(x; # Y1) X 2_6)

=1

10/65



Probabilistic model

Now, we have p(x) (probability of a clean word) and p(y|x) probability of a
noisy word given a clean word.
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Probabilistic model

Now, we have p(x) (probability of a clean word) and p(y|x) probability of a
noisy word given a clean word.

Bayes' Equation tells us:

oxly) = PEPOI . p@pG1)
)46% Zx’ p(x’)p(ylxl)
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Probabilistic model

Now, we have p(x) (probability of a clean word) and p(y|x) probability of a
noisy word given a clean word.

Bayes' Equation tells us:

pOpGlx) _ pp(y|x)
P > P p(y|x")

pxly) =

For a given y could pick most likely x:

arg max p(xly) = arg max px)p(y|x)
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Probabilistic model

Now, we have p(x) (probability of a clean word) and p(y|x) probability of a
noisy word given a clean word.

Bayes' Equation tells us:

oxly) = PEPOI . p@pG1)
)46% Zx’ p(x’)p(ylxl)

For a given y could pick most likely x:

arg max p(xly) = arg max px)p(y|x)

But wait!

e How much time will this take?
e And how big does our dataset need to be?
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Brute-force approach

For all x,
Compute score(x) = p(x) p(y|x)
Return x with highest score

e How much time will the above algorithm take?
o 0Q27")

e Is there a smarter algorithm?
o No, not in general!

e How many free parameters does p(x) have?
o 277 — 1

e How many words do we need in our database to estimate these
parameters reliably?

o HA lotll
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Brute-force approach

19,683
531,441
14,348,907
387,420,489
10,460,353,203
282,429,536,481
7,625,597,484,987

© 205,891,132,094,649

R Ooo~NoOULTDWNER

16 /65



Brute-force approach

19,683
531,441
14,348,907
387,420,489
10,460,353,203
282,429,536,481
7,625,597,484,987

© 205,891,132,094,649

R Ooo~NoOULTDWNER

Lesson: For large 7', we need more structure.
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It's all about the curse of dimensionality
Logistics

Prerequisites

What we will cover in the course
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The curse of dimensionality

Graphical models assume that p(x) can be written in a factorized form.
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The curse of dimensionality

Graphical models assume that p(x) can be written in a factorized form.
E.g..

p(X1,x2,X3, ..., X9) = f(x1, X2)f (X2, X3)f (x3, X4)f (X3, X9)
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The curse of dimensionality

Graphical models assume that p(x) can be written in a factorized form.

E.g.
p(X1, X2, X3, ..., X9) = f(x1, X2)f (x2, x3)f (X3, X4)f (x5, X9)
What does this buy us?
o Helps with the statistical curse of dimensionality.

e Helps with the computational curse of dimensionality.
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The statistical curse of dimensionality

How many parameters does

p(x1,x2, ..., XT)

have? (T variables, each with K values)
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The statistical curse of dimensionality

How many parameters does

p(x1,x2, ..., XT)
have? (T variables, each with K values)

e KT — 1
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The statistical curse of dimensionality

How many parameters does
p(X1,Xx2,...,XT)
have? (T variables, each with K values)
e KT -1
How many parameters does
p(X1,x2,x3,...,XT) = f(x1,X2)f (X2, X3). ..

have?

24 [ 65



The statistical curse of dimensionality

How many parameters does
pX1,X2,...,XT)
have? (T variables, each with K values)
e KT -1
How many parameters does
p(X1,x2,x3,...,XT) = f(x1,X2)f (X2, X3). ..
have?

e (T-DxK?*=1)
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The statistical curse of dimensionality

First object of study in this course: The representational capacity of
factorized models.
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The statistical curse of dimensionality

First object of study in this course: The representational capacity of
factorized models.

e Question: When can a probabilistic model be written in a factorized
form?
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The statistical curse of dimensionality

First object of study in this course: The representational capacity of
factorized models.

e Question: When can a probabilistic model be written in a factorized
form?

e Answer: When conditional independencies hold between the random
variables

28 [ 65



The statistical curse of dimensionality

First object of study in this course: The representational capacity of
factorized models.

e Question: When can a probabilistic model be written in a factorized
form?

e Answer: When conditional independencies hold between the random
variables

We study two types of graphical models:
e Directed graphical models. (Bayesian networks, Markov models)

e Undirected graphical models. (Markov random fields, factor graphs)
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The statistical curse of dimensionality

First object of study in this course: The representational capacity of
factorized models.

e Question: When can a probabilistic model be written in a factorized
form?

e Answer: When conditional independencies hold between the random
variables

We study two types of graphical models:
e Directed graphical models. (Bayesian networks, Markov models)
e Undirected graphical models. (Markov random fields, factor graphs)

We understand very precisely how conditional indepdence assumptions can
reduce the statistical curse of dimensionality.

We can cover this in a few lectures.
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The computational curse of dimensionality.

Second object of study in the course: The computational tractability of
factorized models.
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The computational curse of dimensionality.

Second object of study in the course: The computational tractability of
factorized models.

o If the graph is a tree (or close to it) we can often compute exact result
using "message-passing"” algorithms.
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The computational curse of dimensionality.

Second object of study in the course: The computational tractability of
factorized models.

o If the graph is a tree (or close to it) we can often compute exact result
using "message-passing"” algorithms.

o Otherwise, we typically need to rely on approximate algorithms.
o Markov chain monte Carlo
o Approximate message-passing algorithms

o Variational methods
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The computational curse of dimensionality

This is subtle.

o Itis not true that just having a factorized model means we can do
everything efficiently.

e We don't have a simple recipe for the best method to use in each case.

e Bespoke algorithms can make an enormous difference.
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The computational curse of dimensionality

This is subtle.

o Itis not true that just having a factorized model means we can do
everything efficiently.

e We don't have a simple recipe for the best method to use in each case.
e Bespoke algorithms can make an enormous difference.

We will spend most of this class exploring these questions.
o What are the fundamental principles behind these different methods?

e When can we expect to be able to use graphical models efficiently?
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Recapitulation: Why should you care about
graphical models?

Probabilistic modeling is awesome.

e Natural and sometimes "optimal" way to solve problems.
e Can leverage lots of domain knowledge in setting up the problem.
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Recapitulation: Why should you care about
graphical models?

Probabilistic modeling is awesome.

e Natural and sometimes "optimal" way to solve problems.
e Can leverage lots of domain knowledge in setting up the problem.

Naive probabilistic modeling falls apart for high dimensions

e Too many parameters to estimate.
e Too much computational time needed.
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Recapitulation: Why should you care about
graphical models?

Probabilistic modeling is awesome.

e Natural and sometimes "optimal" way to solve problems.
e Can leverage lots of domain knowledge in setting up the problem.

Naive probabilistic modeling falls apart for high dimensions

e Too many parameters to estimate.
e Too much computational time needed.

Using a graphical model (factorized distribution) helps!

e Reduces number of parameters. (And we understand what we are

assuming)
e Can help with computational issues. (But it's complicated!)

38 /65



Agenda

Typo Corrector

It's all about the curse of dimensionality
Logistics

Prerequisites

What we will cover in the course
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Logistics

Most important logistic: Please ask questions.

e I make mistakes!
e And otherwise... why are we in the same room?
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Logistics

Most important logistic: Please ask questions.

e I make mistakes!
e And otherwise... why are we in the same room?

You do not need to have a super-specific technical question. Vague or broad
questions are particularly encouraged.
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Logistics

Most important logistic: Please ask questions.

e I make mistakes!
e And otherwise... why are we in the same room?

You do not need to have a super-specific technical question. Vague or broad
questions are particularly encouraged.

The following are completely fine questions:

e "What's the point of learning this? How does it fit into the larger course?"
o "I feel like I'm missing the point of message-passing."
e "What does the ¢ in x. stand for again?"
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Logistics

e What: This course: CS688 Graphical Models

e Where: CS 142

e When: Tuesday and Thursday 1:00pm to 2:15 pm.
e Who:

o Instructor: Justin Domke
o TA: Hang Su

e Office Hours: TBD

e URL: http://people.cs.umass.edu/~domke/courses/compsci688/

o Textbook: Kevin Murphy's Machine Learning: a Probabilistic Perspective
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http://people.cs.umass.edu/~domke/courses/compsci688/

Grades

Homework Assignments: 50%

Final Exam: 30%

Quizzes: 15%

Participation: 5% (including online)

44 [ 65



How to contact us

All questions should be done through Piazza:
e You should already be enrolled.
This allows for great knowledge sharing.

e Post questions for the class, not just for us!
e Answer any questions.
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How to contact us

All questions should be done through Piazza:
e You should already be enrolled.
This allows for great knowledge sharing.

e Post questions for the class, not just for us!
e Answer any questions.

What happens if you email us?

1. We reply "please post to piazza". &
2. We feel guilty. &
3. You feel annoyed. &
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When and where would you like office
hours?

Monday morning / afternoon
Tuesday before / after class
Wednesday morning / afternoon
Thursday before / after class
Friday morning / afternoon

There is a poll on Piazza!
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It's all about the curse of dimensionality
Logistics

Prerequisites

What we will cover in the course

48 | 65



Prerequisites

Question: Will this class focus on math?
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Prerequisites

Question: Will this class focus on math?

Short answer Yes.
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Prerequisites

Question: Will this class focus on math?
Short answer Yes.

Long answer Yyyyyyyeeeeeeeeessssssss!!!!
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Prerequisites

Question: Will this class focus on math?
Short answer Yes.
Long answer Yyyyyyyeeeeeeeeessssssss!!!!
Why?
e Machine learning is applied math.
o The goal of this course is to give you the foundations to do Al research.

e Goal is not how to use existing tools, but understand how to combine
them and invent new ones.
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Prerequisites

From course webpage:

[ will assume a strong working knowledge of Linear Algebra,
Probability theory, programming ability in some language (e.g.
Python) and that you have some familiarity with basic machine
learning methods.
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Prerequisites

From course webpage:

[ will assume a strong working knowledge of Linear Algebra,
Probability theory, programming ability in some language (e.g.
Python) and that you have some familiarity with basic machine
learning methods.

Take this seriously!

o Past experience with talented and hard-working students but weak
background: Struggle in this course.
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Example Questions (Probability)

Given a fair six-sided die, what is more probable?
A) Rolling

1,6,2,6,1

or

B) Rolling

2,2,2,2,2

?
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Example Questions (Probability)

Given a fair six-sided die, what is more probable?
A) Rolling one 2 and four 3s (in any order)
or

B) Rolling five twos?
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Example Questions (Probability)

Suppose that A and B are binary random variables.

PA=1)=1/2
PA=0)=1/2
P(B=A)=3/4
What is
P(B =1)?

5765



Example Questions (Probability)

Suppose that A and B are binary random variables.

PA=1)=1/2
P(A=0)=1/2
P(B = A) = 3/4

What is
PA=1|B=1)?
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Example Questions (Linear Algebra)

Suppose that

=1

Can you name an eigenvector of A?
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Example Questions (Linear Algebra)

Suppose that
0 1
A=
1 O
|
X =
1
What is
xT Ax?
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Typo Corrector

It's all about the curse of dimensionality
Logistics

Prerequisites

What we will cover in the course
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What we will cover

Directed models

o Bayesian Networks

Undirected models

o Markov Random Fields
o Conditional Random Fields

Maximum likelihood learning

o Optimization

Exact Inference: Message-Passing

Approximate Inference: Variational Inference

Approximate Inference: Markov Chain Monte Carlo Methods

Requests?
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Applications

e Speech recognition Evolutionary biology

e Image recognition and labeling Proteomics and Genomics

e Image modeling Medical decision making

e Action recognition Information extraction

e Modeling sensor networks

Text modeling

e Social network analysis Bayesian statistics

e Recommender systems
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Upcoming

e Reading:

o Your favorite linear algebra text
o Chapter 1 (or your favorite machine learning text)
o Sections 2.1-2.5

e Thursday: "Math Camp" taught by your TA, Hang Su

o Next Tuesday: For credit quiz on prerequisites, in class.
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Shameless request

Are you familiar with these things?

e HTML/Javascript latex renderers
o Mathjax
o Katex

o Markdown/Javascript based slides
o Remark.js
o React.js
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