Convergence Guarantees for Variational Inference
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Inference: Given p(z,x) and observed data x, approximate p(z|x)
Variational inference: ...by choosing some family ¢,,(z) and minimizing KL (q,,(z)| p(z|x))

Black box variational inference: ...while only evaluating log p(z,x) or V_log p(z,x).



Black box VI in practice

o Let gy(z) be the set of dense Gaussians
e Inialize w somehow.

@ Repeat:

» Get stochastic estimate g of V,,KL(q,(z)||p(z|x)).
» Take gradient step: w <+ w—17g.
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@ Repeat:
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Black box VI in practice

o Let gy(z) be the set of dense Gaussians
e Inialize w somehow.
@ Repeat:

» Get stochastic estimate g of V,,KL(q,(z)||p(z|x)).
» Take gradient step: w <+ w—17g.
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Easy to find g via autodiff, seems to work well in practice.

This talk: But can we prove anything?
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ELBO suboptimality
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Results on fires with exact gradients, initialized with £ = COCJ.




Bad news

Can we guarantee anything? If p(z,x) could be anything, then no.



Bad news

Can we guarantee anything? If p(z,x) could be anything, then no.

Best we can hope for: If p is “nice” then BBVI optimization is “nice”.
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How p might be nice

Plausible properties for f(z) = —log p(z,x):
o Convex (V2f(z) = 0)
e Strongly convex (V2f(z) = cI)
e Smooth (V2f(z) < MI)

p(z,x) convex strongly covex smooth
Gaussian v v v
Bayesian linear regression v v v
Bayesian logistic regression v v v
Heirarchical logistic regression v X v



But is optimization nice?

min F(w) := E)[—logp(z,X)H qﬂ%z)long(Z)
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Assume henceforth that g,,(z) = A4 (z|m,CCT), w= (m,C).

How stochastic optimization guarantees usually work:
@ Prove that gradient has bounded noise (either IE||gH% <bor V[g] <b)
@ Prove that objective is convex or strongly convex

© Prove that objective is Lipschitz smooth.



But is optimization nice?

min F(w) := E)[—logp(z,x)H q@z)long(Z)

w qw(z

-~

"energy" I(w) "neg-entropy" h(w)

Assume henceforth that g,,(z) = A4 (z|m,CCT), w= (m,C).

How stochastic optimization guarantees usually work:
@ Prove that gradient has bounded noise (either IE||gH% <bor V[g] <b)
@ Prove that objective is convex or strongly convex

© Prove that objective is Lipschitz smooth.

Trouble: If p(z|x) = 47(2|0,]), then 1 and 3 are false!



Table of properties

F(w):= E [~logp(z,x)]+ E logg.(z)

4w (Z qw Z)

"energy" I(w) "neg-entropy" h(w)

Condition on —logp(z,x) Consequence

none

convex
c-strongly convex

M-smooth
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Neg-entropy

Theorem
h(w) is convex, but not strongly convex and not smooth.




Neg-entropy

Theorem

h(w) is convex, but not strongly convex and not smooth.

Proof.
h(w) = —log |detC| + 4 log(2e)




Neg-entropy

Theorem

h(w) is convex, but not strongly convex and not smooth.

Proof.
h(w) = —log|detC| + %log(Zn'e) = —Y,logc;(C) + const.

Blows up when singular values of C are small.



Table of properties

F(w):= E [~logp(z,x)]+ E logg.(z)

4w (Z qw Z)

"energy" I(w) "neg-entropy" h(w)

Condition on —logp(z,x) Consequence

none h(w) convex (when C symmetric or triangular)
h(w) not strongly convex, not smooth

convex
c-strongly convex

M-smooth
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(Strong) convexity

Theorem

If —log p(z,x) is convex, then I(w) is also convex.

Theorem

If —log p(z,x) is c-strongly convex, then l(w) is also c-strongly convex.




(Strong) convexity

Theorem

If —log p(z,x) is convex, then I(w) is also convex.

Theorem

If —log p(z,x) is c-strongly convex, then l(w) is also c-strongly convex.

Proof.

Easy.

(Convexity result due to Titsias and Lazaro-gredilla (2014))

(Strong convexity result (D., 2019) generalizes Challis and Barber (2013))




Smoothness

Theorem
If log p(z,x) is M-smooth, then l(w) is also M-smooth.




Smoothness

Theorem

If log p(z,x) is M-smooth, then l(w) is also M-smooth.

Proof.

Define inner-product space + Bessel's inequality + various exact calculations.
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Table of properties

F(w):= E [~logp(z,x)]+ E logg.(z)

qw(2) qw(2)

"energy" I(w) "neg-entropy" h(w)

Condition on —logp(z,x) Consequence

none h(w) convex (when C symmetric or triangular)
h(w) not strongly convex, not smooth

convex I(w) convex
c-strongly convex I(w) c-strongly convex

M-smooth I(w) M-smooth
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@ Proximal gradient descent



Challenge: Non-smooth objective

F(w):= E [~logp(z,x)]+ E loggw(z)
qw(2) qw(2)

"energy" I(w) "neg-entropy" h(w)

Problem: £ is not smooth. So F is (probably) not smooth.



Gradient descent (need [+ h smooth)

w = w—y(VI(w)+Vh(w))

1
= argmin/(w)+h(w)+ (VI(w)+ Vh(w), v—w)+ 2y [v—wl3
' local affine approximation of /(v)+h(v) —

penalty term



Gradient descent (need [+ h smooth)

w = w—y(VI(w)+Vh(w))

1
= argmin/(w)+h(w)+ (VI(w)+ Vh(w), v—w)+ 2y [v—wl3
' local affine approximation of /(v)+h(v) —

penalty term

Proximal gradient descent: (only need / smooth)

. 1
w = argmin [(w)4 (VI(w), v—w) + h(v) +— |lv—w]|3
v ~~ 27/
local affine approximation of I exact h ="
penalty term

= prox [w—yVi(w)]
vh
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. 1
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vh

Computing prox,, [w] = argmin, A(v) + %/ Hw—v||§ is easy when C is triangular.



Gradient descent (need [+ h smooth)

w = w—y(VI(w)+Vh(w))

1
= argmin/(w)+h(w)+ (VI(w)+ Vh(w), v—w)+ 2y [v—wl3
' local affine approximation of /(v)+h(v) —

penalty term

Proximal gradient descent: (only need / smooth)

. 1
w = argmin [(w)4 (VI(w), v—w) + h(v) +— |lv—w]|3
v ~~ 27/
local affine approximation of I exact h ="
penalty term

= prox [w—yVi(w)]
vh

Computing prox,, [w] = argmin, A(v) + %/ Hw—v||§ is easy when C is triangular.

Standard theory: Converges if [ is (strongly) convex and smooth.
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© Projected gradient descent



Solution guarantees
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@ Maybe the singular values of C can't be too small at the solution?



Solution guarantees

F(w):= E [~logp(z,x)|+ E logg.(z)

(2 qu(z
"ener;;" I(w) "neg-entropy" h(w)
Hmmmm...
e h(w) = —log|detC|+ const. is smooth except when singular values of C are small.

@ h(w) also becomes really large when the singular values of C are small.
@ Maybe the singular values of C can't be too small at the solution?

@ And maybe we can exploit that somehow?
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Wny {(m,C)|O'min(C) 2 \/%/I}

Theorem
If log p(z,x) is M-smooth and w* minimizes [(w)+ h(w), then w* € #j. (D. 2020, Thm. 7) J
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Theorem

If log p(z,x) is M-smooth and w* minimizes [(w) + h(w), then w* € #j. (D. 2020, Thm. 7)

v

Lemma
h(w) is M-smooth over #. ;. (D. 2020, Lemma 12)




1
Wy = ,C Ohmin C > —
ini= { 1.0l (©) > -}
Theorem
If log p(z,x) is M-smooth and w* minimizes [(w)+ h(w), then w* € #j. (D. 2020, Thm. 7)

v

Lemma
h(w) is M-smooth over #. ;. (D. 2020, Lemma 12)

Projected gradient descent:
w' = projy, [w—y(VI(w) + Vh(w))]

Projy;, (w] = argmin,, ¢y, [lw—w/|l



1
Wy = ,C Ohmin C > —
ini= { 1.0l (©) > -}
Theorem
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Lemma
h(w) is M-smooth over #. ;. (D. 2020, Lemma 12)

Projected gradient descent:
w' = projy, [w—y(VI(w) + Vh(w))]

projy;, [w] = argmin, ;.. ||w—w'||, is easy to compute but requires an SVD of C.
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Theorem
If log p(z,x) is M-smooth and w* minimizes [(w)+h(w), then w* € #j. (D. 2020, Thm. 7)

<

Lemma
h(w) is M-smooth over #. ;. (D. 2020, Lemma 12)

Projected gradient descent:
w' = projy, [w—y(VI(w) + Vh(w))]

projy;, [w] = argmin, ;.. ||w—w'||, is easy to compute but requires an SVD of C.

Standard theory: converges if [+ is (strongly) convex and smooth.



Table of properties

F(w):= E

qw(Z

)[—logp(z,x)H I%)long(Z)

qwlZ

Condition on —log p(z,x)

"energy" I(w) "neg-entropy" h(w)

Consequence

none

convex
c-strongly convex

M-smooth

h(w) convex (when C symmetric or triangular)
h(w) not strongly convex, not smooth

h(w) is M-smooth over #j;

I(w) convex

[(w) c-strongly convex

I(w) M-smooth
w* € WM
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Bayesian logistic regression. (“Exact” gradients by reducing evaluation of 1-D integral,
precomputed using numerical quadrature.)
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Summary so far

BBVI with proximal or projected gradient descent converges, assuming:
© —logp(z,x) is smooth
@ —logp(z,x) is (strongly) convex

© You can compute the exact gradient.



Summary so far

BBVI with proximal or projected gradient descent converges, assuming:
Q@ —logp(z,x) is smooth «— Sometimes true
@ —logp(z,x) is (strongly) convex <— Sometimes true

© You can compute the exact gradient. +— Almost never true



Estimating gradients

Can “reparameterize” using t,,(u) = Cu+m:

[w)=— E logp(z,x)=— E logp(t,(u),x).
(¥) =~ E logp(e) =~ E_logp(tu(u).
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[w)=— E logp(z,x)=— E logp(t,(u),x).
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Definition
Typical gradient estimator (for VI(w)):

8energy — —Vylogp (tw(u)’x)




Estimating gradients

Can “reparameterize” using t,,(u) = Cu+m:

[w)=— E logp(z,x)=— E logp(t,(u),x).
(¥) =~ E logp(e) =~ E_logp(tu(u).

Definition
Typical gradient estimator (for VI(w)):

8energy — —Vylogp (tw(u)’x)

Definition
Other gradient estimators (for VI(w)+ Vh(w)):

8ent = _VW logp (tw(u)ax) + th(w)
gSTL = _vw logp (tw(u)ax) + [Vw log‘h(tw(u))]v:w




Quadratic bounds

Stochastic optimization proofs often assume ]EHgH% (or V[g]) is uniformly bounded. Not true
for us!



Quadratic bounds

Stochastic optimization proofs often assume ]EHgH% (or V[g]) is uniformly bounded. Not true
for us!

Definition

A gradient estimator g for V¢ is quadratically bounded with parameters (a,b,w*) if
Elg] = V() and

2 2
Eliglz <alw—w"ll;+b.




Quadratic bounds

Stochastic optimization proofs often assume ]EHgH% (or V[g]) is uniformly bounded. Not true
for us!
Definition
A gradient estimator g for V¢ is quadratically bounded with parameters (a,b,w*) if
E[g] = Vé(w) and
E|lgll3 < allw—w[+.

Theorem

If log p(z,x) is M-smooth, then genergy, &ent, and gsti are all quadratically bounded (D., 2019,
D., Garrigos, and Gower, 2023)




Table of properties

F(w):= E

qw(Z

)[—logp(z,x)H I%)long(Z)

qwlZ

Condition on —log p(z,x)

"energy" I(w) "neg-entropy" h(w)

Consequence

none

convex
c-strongly convex

M-smooth

h(w) convex (when C symmetric or triangular)
not strongly convex, not smooth

is M-smooth over #j,

convex

c-strongly convex

~—

h(w
h(w
I(w
I

~—

w

~— —

I(w) M-smooth
w* € Wy
gradient estimators quadratically bounded
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An optimization “hole”

We have:

e Varying noise (quadratically bounded).

o Composite non-smooth objective.

@ Objective is smooth inside of #}, but not locally smooth.



An optimization “hole”

We have:

e Varying noise (quadratically bounded).
o Composite non-smooth objective.
@ Objective is smooth inside of #}, but not locally smooth.

Questions:

@ Does proximal gradient descent work with quadratically bounded noise?

@ Does projected gradient descent work with quadratically bounded noise?



New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?



New optimization theory
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Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/+/T if smooth
and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)




New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?
Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/+/T if smooth
and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?



New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/+/T if smooth
and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/+/T if smooth
and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 10+11)
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Putting the pieces together (proximal gradient descent)

‘ Assume log p is smooth }—){ [ is smooth ‘

T
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proximal gradient de-

____—"scent converges

Assume —logp is

[ is (strongly) convex

(strongly) convex

’ h is convex
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Putting the pieces together (projected gradient descent)

‘ Assume log p is smooth [ is smooth

\ W*GWM

Zent and gsrL are

quadratically bounded

—— | BBVI with stochastic
projected gradient de-

____—"scent converges

Assume —logp is
(strongly) convex

[ is (strongly) convex /

’h is smooth over #j,

’ h is convex ‘




Putting the pieces together

Theorem

If —log p(z,x) is M-smooth and (strongly) convex, then stochastic proximal gradient descent
using the genergy €stimator with a dense Gaussian variational family with triangular C with an

appropriate stepsize sequence converges to the optimum of the ELBO at a 1/\/T (1/T) rate.
(D., Gairrigos, and Gower, 2023, Cor. 12)




Putting the pieces together

Theorem

If —log p(z,x) is M-smooth and (strongly) convex, then stochastic proximal gradient descent
using the genergy €stimator with a dense Gaussian variational family with triangular C with an
appropriate stepsize sequence converges to the optimum of the ELBO at a 1/\/T (1/T) rate.
(D., Gairrigos, and Gower, 2023, Cor. 12)

Theorem

If —log p(z,x) is M-smooth and (strongly) convex, then stochastic projected gradient descent
(projecting onto #jy) using either the gstL or gent €stimators with a dense Gaussian variational
family with symmetric C with an appropriate stepsize sequence converges to the optimum of
the ELBO at a 1/\/T (1/T) rate. (D., Gairrigos, and Gower, 2023, Cor. 13)
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© Discussion



Related work

e Kim et al. (2023) give a similar 1/T rate for proximal SGD using genergy With smoothness
and strong convexity.
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e Kim et al. (2023) give a similar 1/T rate for proximal SGD using genergy With smoothness
and strong convexity.

o Xu and Campbell (2023) give a 1/+/T rate for projected-SGD using gen with a particular
rescaling which is asymptotic in the number of observations (©) and local (®) but does
not require convexity (©).



Related work

e Kim et al. (2023) give a similar 1/T rate for proximal SGD using genergy With smoothness
and strong convexity.

o Xu and Campbell (2023) give a 1/+/T rate for projected-SGD using gen with a particular
rescaling which is asymptotic in the number of observations (©) and local (®) but does
not require convexity (©).

@ Lambert et al. (2022) give a 1/T rate for a VI-like SGD algorithm from a discretization of
a Wasserstein gradient flow with smoothness+strong convexity. Diao et al. (2023) give a
related proximal with a 1/T rate or 1/+/T with just convexity. These require the Hessian
of the log-posterior (®) but are very beautiful (©).
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Open questions

Why does regular SGD seem to work so well?

Guarantees with Adam instead of SGD?
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Open questions

Why does regular SGD seem to work so well?

Guarantees with Adam instead of SGD?

e Guarantees without assuming we know smoothness/strong convexity constants?
e Guarantees without assuming smoothness or (strong) convexity at all?

e Guarantees with more general variational families (e.g. normalizing flows)?

Is this “inference research” or “optimization research™?

Thank youl!

these slides: t.1y/sICHy or people.cs.umass.edu/domke/convergence.pdf
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Table of properties

F(w):= E

qw (Z

[—log p(z,x)] + ﬂ% log gy (2)

qw(Z

Condition on —log p(z,x)

"energy" I(w) "neg-entropy" h(w)

Consequence

none

convex
c-strongly convex

M-smooth

h(w) convex (when C symmetric or triangular)
h(w) not strongly convex, not smooth

h(w) is M-smooth over #j;

I(w) convex

I(w) c-strongly convex

IC[7 4 [lm—2z*[); < ¢ at solution

I(w) M-smooth

w e WM

gradient estimators quadratically bounded
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