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Putting the pieces together (projected gradient descent)

Assume log p is smooth l is smooth

Assume � log p is
(strongly) convex l is (strongly) convex

gent and gSTL are
quadratically bounded

h is convex

BBVI with stochastic
projected gradient de-
scent converges

w⇤ 2WM

h is smooth over WM
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Inference: Given p(z,x) and observed data x, approximate p(z|x)

Variational inference: ...by choosing some family qw(z) and minimizing KL(qw(z)‖p(z|x))

Black box variational inference: ...while only evaluating log p(z,x) or ∇z log p(z,x).
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Black box VI in practice

Let qw(z) be the set of dense Gaussians
Inialize w somehow.
Repeat:

I Get stochastic estimate g of ∇wKL(qw(z)‖p(z|x)) .
I Take gradient step: w← w− γg.

Easy to find g via autodiff, seems to work well in practice.

This talk: But can we prove anything?
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Results on fires with exact gradients, initialized with Σ =C0C>0 .



Bad news

Can we guarantee anything? If p(z,x) could be anything, then no.

Best we can hope for: If p is “nice” then BBVI optimization is “nice”.
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How p might be nice

Plausible properties for f (z) =− log p(z,x):

Convex (∇2
z f (z)� 0)

Strongly convex (∇2
z f (z)� cI)

Smooth (∇2
z f (z)�MI)

p(z,x) convex strongly covex smooth
Gaussian X X X
Bayesian linear regression X X X
Bayesian logistic regression X X X
Heirarchical logistic regression X × X
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But is optimization nice?

min
w

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Assume henceforth that qw(z) = N (z|m,CC>), w = (m,C).

How stochastic optimization guarantees usually work:
1 Prove that gradient has bounded noise (either E‖g‖2

2 ≤ b or V[g]≤ b)
2 Prove that objective is convex or strongly convex
3 Prove that objective is Lipschitz smooth.

Trouble: If p(z|x) = N (z|0, I), then 1 and 3 are false!
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Table of properties

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Condition on − log p(z,x) Consequence

none

convex
c-strongly convex

M-smooth
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Neg-entropy

Theorem
h(w) is convex, but not strongly convex and not smooth.

Proof.
h(w) =− log |detC|+ d

2 log(2πe)

=−∑i logσi(C)+ const.

Blows up when singular values of C are small.



Neg-entropy

Theorem
h(w) is convex, but not strongly convex and not smooth.

Proof.
h(w) =− log |detC|+ d

2 log(2πe)

=−∑i logσi(C)+ const.

Blows up when singular values of C are small.



Neg-entropy

Theorem
h(w) is convex, but not strongly convex and not smooth.

Proof.
h(w) =− log |detC|+ d

2 log(2πe) =−∑i logσi(C)+ const.

Blows up when singular values of C are small.



Table of properties

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Condition on − log p(z,x) Consequence

none h(w) convex (when C symmetric or triangular)
h(w) not strongly convex, not smooth

convex
c-strongly convex

M-smooth



Outline

1 Introduction

2 The neg-entropy

3 The energy

4 Proximal gradient descent

5 Projected gradient descent

6 Gradient variance

7 Real convergence guarantees

8 Discussion



(Strong) convexity

Theorem
If − log p(z,x) is convex, then l(w) is also convex.

Theorem
If − log p(z,x) is c-strongly convex, then l(w) is also c-strongly convex.

Proof.
Easy.
(Convexity result due to Titsias and Lázaro-gredilla (2014))
(Strong convexity result (D., 2019) generalizes Challis and Barber (2013))
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Smoothness
Theorem
If log p(z,x) is M-smooth, then l(w) is also M-smooth.

Proof.
Define inner-product space + Bessel’s inequality + various exact calculations.
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Challenge: Non-smooth objective

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Problem: h is not smooth. So F is (probably) not smooth.



Gradient descent (need l +h smooth)

w′ = w− γ(∇l(w)+∇h(w))

= argmin
v

l(w)+h(w)+ 〈∇l(w)+∇h(w), v−w〉︸ ︷︷ ︸
local affine approximation of l(v)+h(v)

+
1
2γ
‖v−w‖2

2︸ ︷︷ ︸
penalty term

Proximal gradient descent: (only need l smooth)

w′ = argmin
v

l(w)+ 〈∇l(w), v−w〉︸ ︷︷ ︸
local affine approximation of l

+ h(v)︸︷︷︸
exact h

+
1
2γ
‖v−w‖2

2︸ ︷︷ ︸
penalty term

= prox
γh

[w− γ∇l(w)]

Computing proxγh[w] = argminv h(v)+ 1
2γ
‖w− v‖2

2 is easy when C is triangular.

Standard theory: Converges if l is (strongly) convex and smooth.
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Solution guarantees

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Hmmmm...

h(w) =− log |detC|+ const. is smooth except when singular values of C are small.
h(w) also becomes really large when the singular values of C are small.
Maybe the singular values of C can’t be too small at the solution?
And maybe we can exploit that somehow?
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WM :=
{
(m,C)|σmin(C)≥ 1√

M

}

Theorem
If log p(z,x) is M-smooth and w∗ minimizes l(w)+h(w), then w∗ ∈WM. (D. 2020, Thm. 7)

Lemma
h(w) is M-smooth over WM . (D. 2020, Lemma 12)

Projected gradient descent:

w′ = projWM
[w− γ(∇l(w)+∇h(w))]

projWM
[w] = argminw′∈WM

‖w−w′‖2

is easy to compute but requires an SVD of C.

Standard theory: converges if l +h is (strongly) convex and smooth.
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Table of properties

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Condition on − log p(z,x) Consequence
none h(w) convex (when C symmetric or triangular)

h(w) not strongly convex, not smooth
h(w) is M-smooth over WM

convex l(w) convex
c-strongly convex l(w) c-strongly convex

M-smooth l(w) M-smooth
w∗ ∈WM



Provable Smoothness Guarantees for Black-Box Variational Inference.

standardized for l(w) to preserve the strong-convexity or
smoothness constant of log p. For some distributions (e.g.
Gaussians) the common parameterization is standardized,
but the exact choice is significant. For example, if a Gaus-
sian is represented with a nonzero mean base distribution,
l may fail to be M -smooth. For other distributions (e.g.
the multivariate Student-T distribution) the typical parame-
terization is non-standardized because of the variance. We
show an example where this truly does cause the condition
number of l to worsen. An alternative parameterization us-
ing a standardized base distribution solves the issue.

Second Application: Solution Guarantees. Smoothness
or strong-convexity conditions can be used to give guaran-
tees for the parameters w that solve the optimization in Eq.
2. Intuitively, if log(z, x) is smooth, then we might expect
that the optimal parameters w would correspond to a dis-
tribution q(w) that is spread out. Conversely, if log p(z, x)
is sharply “peaked” around some optima, we might expect
that the optimal q(w) to be concentrated near z. The fol-
lowing result confirms both of these intuitions.

Theorem 3. Let q(w) be a location-scale family with a
standardized base distribution s. Suppose w = (m, C)
solves the optimization in Eq. (2) . If � log(z, x) is c-
strongly convex over z, then kCk2F + km� z⇤k22  d

c ,
where z⇤ = argmaxz log(z, x).

Regardless of convexity, if log(z, x) is M -smooth over z,
then CC> ⌫ 1

M I.

Intuitively, these results follow from the fact if w is a min-
imum, the gradients of l and h must cancel, so the gradient
of l(w) is known. But strong-convexity and smoothness
conditions mean that only certain gradients for l are possi-
ble at a given point in parameter space. Cor. 16 extends
this theorem to the case where s may be non-standardized.

Third Application; Convergence Guarantees. The usual
motivation for studying strong convexity and smoothness
is to provide convergence guarantees. We study conver-
gence in a model where the gradient of l can be evaluated
exactly. This is not (usually) realistic, but clarifies certain
challenges for optimization created simply by the structure
of l. (Better gradient estimators and variance bounds for
black-box VI are an active research topic.)

The main convergence issue is that while the negative en-
tropy term h(w) is convex, it is not smooth, since the gra-
dient can change arbitrarily rapidly. This means that naive
gradient descent applied to l + h can fail to converge, even
if, e.g. l is smooth and strongly convex. We consider two
ways to deal with this. The first is to exploit Thm. 3, which
states that at the final solution, all eigenvalues of CC> are
at least 1/M . It can be shown (Theorem 5) that h is M -
smooth when restricted to such parameters. Thus, one can
perform gradient descent on l + h, projecting onto this re-

Figure 1. Convergence with difference initializations C = sI . If
the scaling constant is too small, naive optimization immediately
jumps up, then decreases. If the scaling is “just right” naive op-
timization performs similarly to proximal. If the scaling is too
large, all methods are slow. Notice the similarly for naive opti-
mization between the left and right figures.

stricted parameter set. An alternative is to use proximal
gradient descent which simply avoids computing the gradi-
ent of h.

These results are summarized in Theorem 6 which states
that if � log p is c-strongly convex and M -smooth, then
both proximal and projected gradient descent with a step-
size of � converge at a (1��c)k rate where k is the number
of iterations. Proximal descent has two advantages: First,
it can use a step-size up to 1/M whereas projected gradient
descent is only guaranteed for 1/(2M). Second, the proxi-
mal operator seems is computationally cheaper than projec-
tion. These results partially explain why, despite smooth-
ness concerns, gradient descent on l + h does often work
well in practice. First, if C is large then projection is un-
necessary. Second, h’s gradient is smooth when C is large,
so a regular gradient step can be very similar to a proxi-
mal step. We illustrate this on simple linear regression and
logistic regression problems.

3. Background
3.1. Location-Scale Families

A multivariate location-scale family (Geyer, 2011) is the
result of drawing a sample from a “base” distribution and
applying an affine transformation to it. Formally,

z ⇠ LocScale(m, C, s)() z
d
= Cu + m, u ⇠ s.

VI using these families was first studied by Titsias &
Lázaro-gredilla (2014). A simple example is the multi-
variate Gaussian, for which LocScale(m, C, N (0, I)) =
N (m, CC>). Many families are representable, e.g. el-
liptical distributions such as the multivariate Student-T or
Cauchy distributions. More generally, the base distribution
need not be symmetric.

Standardized Representations. We say that s is “stan-
dardized” if it has mean zero and unit variance, i.e.
Eu⇠s u = 0 and Vu⇠s u = I . When s is standardized,
the mean of the location-scale distribution is m while the

Bayesian logistic regression. (“Exact” gradients by reducing evaluation of 1-D integral,
precomputed using numerical quadrature.)
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Summary so far

BBVI with proximal or projected gradient descent converges, assuming:
1 − log p(z,x) is smooth

←− Sometimes true

2 − log p(z,x) is (strongly) convex

←− Sometimes true

3 You can compute the exact gradient.

←− Almost never true
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Estimating gradients
Can “reparameterize” using tw(u) =Cu+m:

l(w) =− E
qw(z)

log p(z,x) =− E
N (u|0,I)

log p(tw(u),x).

Definition
Typical gradient estimator (for ∇l(w)):

genergy =−∇w log p(tw(u),x)

Definition
Other gradient estimators (for ∇l(w)+∇h(w)):

gent = −∇w log p(tw(u),x)+∇wh(w)

gSTL = −∇w log p(tw(u),x)+ [∇w logqv(tw(u))]v=w
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Quadratic bounds

Stochastic optimization proofs often assume E‖g‖2
2 (or V[g]) is uniformly bounded. Not true

for us!

Definition
A gradient estimator g for ∇φ is quadratically bounded with parameters (a,b,w∗) if
E[g] = ∇φ(w) and

E‖g‖2
2 ≤ a‖w−w∗‖2

2 +b.

Theorem
If log p(z,x) is M-smooth, then genergy, gent, and gSTL are all quadratically bounded (D., 2019,
D., Garrigos, and Gower, 2023)
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Table of properties

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Condition on − log p(z,x) Consequence
none h(w) convex (when C symmetric or triangular)

h(w) not strongly convex, not smooth
h(w) is M-smooth over WM

convex l(w) convex
c-strongly convex l(w) c-strongly convex

M-smooth l(w) M-smooth
w∗ ∈WM

gradient estimators quadratically bounded
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An optimization “hole”

We have:
Varying noise (quadratically bounded).
Composite non-smooth objective.
Objective is smooth inside of WM, but not locally smooth.

Questions:
Does proximal gradient descent work with quadratically bounded noise?
Does projected gradient descent work with quadratically bounded noise?
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New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 10+11)



New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 10+11)



New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 10+11)



New optimization theory

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Theorem
Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or 1/

√
T if smooth

and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 10+11)



Putting the pieces together (proximal gradient descent)

Assume log p is smooth l is smooth

Assume − log p is
(strongly) convex l is (strongly) convex

genergy is quadratically
bounded

h is convex

BBVI with stochastic
proximal gradient de-
scent converges
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Putting the pieces together (projected gradient descent)

Assume log p is smooth l is smooth

Assume − log p is
(strongly) convex l is (strongly) convex

gent and gSTL are
quadratically bounded

h is convex

BBVI with stochastic
projected gradient de-
scent converges

w∗ ∈WM

h is smooth over WM
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Putting the pieces together

Theorem
If − log p(z,x) is M-smooth and (strongly) convex, then stochastic proximal gradient descent
using the genergy estimator with a dense Gaussian variational family with triangular C with an
appropriate stepsize sequence converges to the optimum of the ELBO at a 1/

√
T (1/T ) rate.

(D., Gairrigos, and Gower, 2023, Cor. 12)

Theorem
If − log p(z,x) is M-smooth and (strongly) convex, then stochastic projected gradient descent
(projecting onto WM) using either the gSTL or gent estimators with a dense Gaussian variational
family with symmetric C with an appropriate stepsize sequence converges to the optimum of
the ELBO at a 1/

√
T (1/T ) rate. (D., Gairrigos, and Gower, 2023, Cor. 13)
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Related work

Kim et al. (2023) give a similar 1/T rate for proximal SGD using genergy with smoothness
and strong convexity.

Xu and Campbell (2023) give a 1/
√

T rate for projected-SGD using gent with a particular
rescaling which is asymptotic in the number of observations (§) and local (§) but does
not require convexity (©).

Lambert et al. (2022) give a 1/T rate for a VI-like SGD algorithm from a discretization of
a Wasserstein gradient flow with smoothness+strong convexity. Diao et al. (2023) give a
related proximal with a 1/T rate or 1/

√
T with just convexity. These require the Hessian

of the log-posterior (§) but are very beautiful (©).
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Open questions

Why does regular SGD seem to work so well?

Guarantees with Adam instead of SGD?

Guarantees without assuming we know smoothness/strong convexity constants?

Guarantees without assuming smoothness or (strong) convexity at all?

Guarantees with more general variational families (e.g. normalizing flows)?

Is this “inference research” or “optimization research”?

Thank you!
these slides: t.ly/sICHy or people.cs.umass.edu/domke/convergence.pdf
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Table of properties

F(w) := E
qw(z)

[− log p(z,x)]︸ ︷︷ ︸
"energy" l(w)

+ E
qw(z)

logqw(z)︸ ︷︷ ︸
"neg-entropy" h(w)

Condition on − log p(z,x) Consequence
none h(w) convex (when C symmetric or triangular)

h(w) not strongly convex, not smooth
h(w) is M-smooth over WM

convex l(w) convex
c-strongly convex l(w) c-strongly convex

‖C‖2
F +‖m− z∗‖2

2 ≤ d
c at solution

M-smooth l(w) M-smooth
w∗ ∈WM

gradient estimators quadratically bounded
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