Convergence Guarantees for Variational Inference

Justin Domke, University of Massachusetts Amherst

these slides: t.ly/sICHy or people.cs.umass.edu/domke/convergence.pdf

Outline

- Introduction
- 2 The neg-entropy
- 3 The energy
- 4 Proximal gradient descent
- Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- B Discussion

Inference:	Given $p(z,x)$ and observed data x , approximate $p(z x)$	

Inference: Given p(z,x) and observed data x, approximate p(z|x)

Variational inference: ...by choosing some family $q_w(z)$ and minimizing $KL(q_w(z)||p(z|x))$

Inference: Given p(z,x) and observed data x, approximate p(z|x)

Variational inference: ...by choosing some family $q_w(z)$ and minimizing $KL(q_w(z)\|p(z|x))$

Black box variational inference: ...while only evaluating $\log p(z,x)$ or $\nabla_z \log p(z,x)$.

- Let $q_w(z)$ be the set of dense Gaussians
- Inialize w somehow.
- Repeat:
 - ▶ Get stochastic estimate g of $\nabla_w KL(q_w(z)||p(z|x))$.
 - ► Take gradient step: $w \leftarrow w \gamma g$.

- Let $q_w(z)$ be the set of dense Gaussians
- Inialize w somehow.
- Repeat:
 - Get stochastic estimate g of $\nabla_w KL(q_w(z)||p(z|x))$.
 - ▶ Take gradient step: $w \leftarrow w \gamma g$.

- Let $q_w(z)$ be the set of dense Gaussians
- Inialize w somehow.
- Repeat:
 - Get stochastic estimate g of $\nabla_w KL(q_w(z)||p(z|x))$.
 - ▶ Take gradient step: $w \leftarrow w \gamma g$.

Easy to find g via autodiff, seems to work well in practice.

- Let $q_w(z)$ be the set of dense Gaussians
- Inialize w somehow.
- Repeat:
 - ▶ Get stochastic estimate g of $\nabla_w KL(q_w(z)||p(z|x))$.
 - ▶ Take gradient step: $w \leftarrow w \gamma g$.

Easy to find g via autodiff, seems to work well in practice.

This talk: But can we prove anything?

Results on fires with exact gradients, initialized with $\Sigma = C_0 C_0^{\top}$.

Bad news

Can we guarantee anything? If p(z,x) could be anything, then no.

Bad news

Can we guarantee anything? If p(z,x) could be anything, then no.

Best we can hope for: If p is "nice" then BBVI optimization is "nice".

How *p* might be nice

Plausible properties for $f(z) = -\log p(z,x)$:

How p might be nice

Plausible properties for $f(z) = -\log p(z, x)$:

- Convex $(\nabla_z^2 f(z) \succeq 0)$
- Strongly convex $(\nabla_z^2 f(z) \succeq cI)$
- Smooth $(\nabla_z^2 f(z) \leq MI)$

How p might be nice

Plausible properties for $f(z) = -\log p(z, x)$:

- Convex $(\nabla_z^2 f(z) \succeq 0)$
- Strongly convex $(\nabla_z^2 f(z) \succeq cI)$
- Smooth $(\nabla_z^2 f(z) \leq MI)$

p(z,x)	convex	strongly covex	smooth
Gaussian	√	✓	\checkmark
Bayesian linear regression	\checkmark	\checkmark	\checkmark
Bayesian logistic regression	\checkmark	\checkmark	\checkmark
Heirarchical logistic regression	\checkmark	×	\checkmark

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}) := \underbrace{\mathbb{E}_{q_{\boldsymbol{w}}(\boldsymbol{z})} [-\log p(\boldsymbol{z}, \boldsymbol{x})]}_{\text{"energy" } l(\boldsymbol{w})} + \underbrace{\mathbb{E}_{q_{\boldsymbol{w}}(\boldsymbol{z})} \log q_{\boldsymbol{w}}(\boldsymbol{z})}_{\text{"neg-entropy" } h(\boldsymbol{w})}$$

$$\min_{w} F(w) := \underbrace{\mathbb{E}_{q_{w}(z)}[-\log p(z,x)]}_{\text{"energy" } l(w)} + \underbrace{\mathbb{E}_{q_{w}(z)}\log q_{w}(z)}_{\text{"neg-entropy" } h(w)}$$

Assume henceforth that $q_w(z) = \mathcal{N}(z|m, CC^\top), \quad w = (m, C).$

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}) := \underbrace{\mathbb{E}_{q_{\boldsymbol{w}}(\boldsymbol{z})}[-\log p(\boldsymbol{z}, \boldsymbol{x})]}_{\text{"energy" } l(\boldsymbol{w})} + \underbrace{\mathbb{E}_{q_{\boldsymbol{w}}(\boldsymbol{z})}\log q_{\boldsymbol{w}}(\boldsymbol{z})}_{\text{"neg-entropy" } h(\boldsymbol{w})}$$

Assume henceforth that $q_w(z) = \mathcal{N}(z|m, CC^{\top}), \quad w = (m, C).$

How stochastic optimization guarantees usually work:

- **1** Prove that gradient has **bounded noise** (either $\mathbb{E} \|g\|_2^2 \le b$ or $\mathbb{V}[g] \le b$)
- Prove that objective is convex or strongly convex
- Prove that objective is Lipschitz smooth.

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}) := \underbrace{\mathbb{E}_{q_{\boldsymbol{w}}(\boldsymbol{z})} [-\log p(\boldsymbol{z}, \boldsymbol{x})]}_{\text{"energy" } l(\boldsymbol{w})} + \underbrace{\mathbb{E}_{q_{\boldsymbol{w}}(\boldsymbol{z})} \log q_{\boldsymbol{w}}(\boldsymbol{z})}_{\text{"neg-entropy" } h(\boldsymbol{w})}$$

Assume henceforth that $q_w(z) = \mathcal{N}(z|m, CC^\top), \quad w = (m, C).$

How stochastic optimization guarantees usually work:

- Prove that gradient has **bounded noise** (either $\mathbb{E} \|g\|_2^2 \le b$ or $\mathbb{V}[g] \le b$)
- Prove that objective is convex or strongly convex
- Prove that objective is Lipschitz smooth.

Trouble: If $p(z|x) = \mathcal{N}(z|0,I)$, then 1 and 3 are false!

Table of properties

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Condition on $-\log p(z,x)$ Consequence

none

convex c-strongly convex

M-smooth

Outline

- Introduction
- 2 The neg-entropy
- 3 The energy
- 4 Proximal gradient descent
- 5 Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- B Discussion

Neg-entropy

Theorem

h(w) is convex, but not strongly convex and not smooth.

Neg-entropy

Theorem

$$h(w)$$
 is convex, but not strongly convex and not smooth.

Proof.

$$h(w) = -\log|\det C| + \frac{d}{2}\log(2\pi e)$$

Neg-entropy

Theorem

$$h(w)$$
 is convex, but not strongly convex and not smooth.

Proof.

$$h(w) = -\log |\det C| + \frac{d}{2}\log(2\pi e) = -\sum_i \log \sigma_i(C) + \text{const.}$$

Blows up when singular values of C are small.

Table of properties

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Condition on $-\log p(z,x)$ Consequence

none $h(w) \ {\rm convex} \ {\rm (when} \ C \ {\rm symmetric} \ {\rm or} \ {\rm triangular} {\rm)} \\ h(w) \ not \ {\rm strongly} \ {\rm convex}, \ not \ {\rm smooth}$

convex c-strongly convex

M-smooth

Outline

- Introduction
- 2 The neg-entropy
- The energy
- 4 Proximal gradient descent
- 6 Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- B Discussion

(Strong) convexity

Theorem

If $-\log p(z,x)$ is convex, then l(w) is also convex.

Theorem

If $-\log p(z,x)$ is c-strongly convex, then l(w) is also c-strongly convex.

(Strong) convexity

Theorem

If $-\log p(z,x)$ is convex, then l(w) is also convex.

Theorem

If $-\log p(z,x)$ is c-strongly convex, then l(w) is also c-strongly convex.

Proof.

Easy.

(Convexity result due to Titsias and Lázaro-gredilla (2014)) (Strong convexity result (D., 2019) generalizes Challis and Barber (2013))

Smoothness

Theorem

If $\log p(z,x)$ is M-smooth, then l(w) is also M-smooth.

Smoothness

Theorem

If $\log p(z,x)$ is M-smooth, then l(w) is also M-smooth.

Lemma 2. $(a,b) = \mathbb{E}_{m-1} a(u)^{\top} b(u)$ is a valid inner

Proof. The space of square integrable functions is

Since each component a (u) and h (u) is source-interruble

with respect to s(w) we know (by Cauchy-Schwarz) that

 \mathbb{E}_{-} , $\alpha_i(u)h_i(u) < \sqrt{\mathbb{E}_{-}}$, $\alpha_i(u)^2\sqrt{\mathbb{E}_{-}}$, $h_i(u)$ is finite and real. Therefore, we have by linearity of expectation that

 $(\alpha, \alpha) = 0$ es $\alpha = 0$. (Where 0(e) is a function that always

 $I_{\mathbf{G}}: \mathbb{R}^d \to \mathbb{R}^k \mid \mathbb{R}, \quad \sigma_i(u)^2 \leq \infty \ \forall i \in \{1, \dots, k\}\}$

product on converse interrebble $a : \mathbb{R}^d \to \mathbb{R}^k$

 $a, b, c \in V_s$

(a, a) > 0

 $\langle a, b \rangle = \langle b, a \rangle$

 $(\theta a, h) = \theta (a, h)$ for $\theta \in \mathbb{R}$

 $\langle a+b,c\rangle = \langle a,c\rangle + \langle b,c\rangle$

returns a vector of k zeros.)

Proof

Define inner-product space + Bessel's inequality + various exact calculations. Lemma 4. If s is standardized, then the functions $\{\alpha_i\}$ are


```
\sum_{i=1}^{k} \mathbb{E}_{i} a_{i}(u)b_{i}(u) = \mathbb{E}_{i} \sum_{i=1}^{k} a_{i}(u)b_{i}(u)
                                                                                                 Lemma 3. Let a_i(u) = -f_{in}(u). This is independent of
                                                                                                 as and \frac{d(w)}{d(w)} = \langle \alpha_i, \nabla f \circ f_{-i} \rangle.
                                                                                                 Proof. Now, we can write l(w) as
is finite and real for all a, b \in V_+. To show that (V_+, \langle \cdot, \cdot \rangle_+)
is a valid inner-resoluct space, it is easy to establish all the
```

necessary represents of the inner-product, namely for all Since $t_w(u) = Cu + m$ is an affine function, it's easy to see that both - f - f - (w) and - f - (w) are independent of w. Therefore, the gradient of l(w) can be written as $\nabla_{w} \cdot l(w) = \nabla_{w} \cdot \mathbb{E} f(t_{w}(u))$

 $= \mathbb{E} \nabla_{uv} \mathbf{t}_{uv}(u)^{\top} \nabla f(\mathbf{t}_{uv}(u))$. - (a. V/at-)

 $l(\mathbf{w}) = \mathbb{E} f(\mathbf{z}) = \mathbb{E} f(t_{\mathbf{w}}(\mathbf{u}))$

 $\mathbb{E}\left(\frac{d}{dr}t_w(u)\right)^{\top}\left(\frac{d}{dr}t_w(u)\right)$ $= \mathbb{E} u_i w_i \mathbf{e}^{\top} \mathbf{e}_k$ $=I[i=k] \mathbb{E} u_i u_i$ $= R(\epsilon + k)R(\epsilon + l)$ (since unit variance and zero mean)

> These three identities are equivalent to stating that $\{\alpha_i\}$ are orthonormal in (, ,) ...

where e. is the indicator vector in the i-th component. There-

 $\mathbb{E}\left(\frac{d}{dw}t_{w}(v)\right)^{\top}\left(\frac{d}{dw}t_{w}(v)\right)$

 $\mathbb{E}\left(\frac{d}{dt}t_{w}(u)\right)\left(\frac{d}{dt}t_{w}(u)\right)$

=I[i=i]

 $= \mathbb{E} u_j e_i^\top e_k$

 $=I[i-k] \times u$

orthonormal in (. .) Proof. It is easy to calculate that

fore, we have that

Lemma 5. If s is standardized, then $\mathbb{E}_{u \sim s} \| t_{us}(u) - t_{v}(u) \|_{2}^{2} = \| \mathbf{w} - \mathbf{v} \|_{2}^{2}$. Proof. Let Am and AS denote the difference of the m and S parts of w, respectively. We want to calculate $\mathbb{E} \| t_{vv}(u) - t_{v}(u) \|_{*}^{2}$

 $= \mathbb{E} \|\Delta C \epsilon + \Delta m\|^2$ $= \mathbb{E} \left(||(\Delta C)u||^2 + 2\Delta m^\top \Delta C u + ||\Delta m||^2 \right)$

It is easy to see that the expectation of the middle term is norm and the last is a constant. The expectation of the first

 $\mathbb{E} \|(\Delta C)u\|_{2}^{2} = \mathbb{E} u^{\top}(\Delta C)^{\top}(\Delta C)u$ = $\mathbb{E} \operatorname{tr} (\mathbf{u}^{\top} (\Delta C)^{\top} (\Delta C)\mathbf{u})$

 $= \mathbb{E} \operatorname{tr} ((\Delta C)^{\top} (\Delta C) u u^{\top})$ = $\operatorname{tr} ((\Delta C)^{\top} (\Delta C)) = \|\nabla C\|_{F}^{2}$ (since zero mean and unit variance)

Putting this together gives that

 $\mathbb{E} \|t_w(u) - t_v(u)\|_2^2 = \|\Delta C\|_F^2 + \|\Delta m\|_2^2$ $= \|w - v\|_{2}^{2}$

Proof of Thm. 1. Take two parameter vectors, w and v. Apply Lem. 3 to each component of the gradients $\nabla l(w)$ and $\nabla I(\mathbf{v})$ to get that

 $\|\nabla l(\mathbf{w}) - \nabla l(\mathbf{v})\|_{+}^{2}$ $= \sum ((\boldsymbol{a}_{i}, \nabla f \circ \boldsymbol{t}_{w})_{+} - (\boldsymbol{a}_{i}, \nabla f \circ \boldsymbol{t}_{v})_{+})^{2}$ $= \sum (a_i, \nabla f \circ t_m - \nabla f \circ t_n)^2$.

Lem. 4 showed that the functions (a.) are orthonormal in the inner-renduct (...) . Thus, by Bessel's inconstity $\|\nabla l(\mathbf{w}) - \nabla l(\mathbf{v})\|_{2}^{2} \le \|\nabla f \circ \mathbf{t}_{-} - \nabla f \circ \mathbf{t}_{-}\|_{2}^{2}$. (5) $= \mathbb{E} \|\nabla f(\mathbf{t}_{w}(\mathbf{u})) - \nabla f(\mathbf{t}_{u}(\mathbf{u}))\|_{2}^{2}$

where $||\cdot||_a$ denotes the norm corresponding to $\langle\cdot,\cdot\rangle$. Now apply the smoothness of f to get that

 $\|\nabla l(\mathbf{w}) - \nabla l(\mathbf{v})\|_{2}^{2} \le M^{2} \mathbb{E}_{\cdot} \|t_{\mathbf{w}}(\mathbf{u}) - t_{\mathbf{v}}(\mathbf{u})\|_{2}^{2}$ (6) $= M^2 ||w - v||_2^2$. m

where the last equality follows from Lem. 5.

Table of properties

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Condition on $-\log p(z,x)$	Consequence		
none	h(w) convex (when C symmetric or triangular) $h(w)$ not strongly convex, not smooth		
convex c -strongly convex	l(w) convex $l(w)$ c -strongly convex		
M-smooth	l(w) M -smooth		

Outline

- Introduction
- 2 The neg-entropy
- 3 The energy
- Proximal gradient descent
- 5 Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- B Discussion

Challenge: Non-smooth objective

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Problem: h is not smooth. So F is (probably) not smooth.

Gradient descent (need l+h smooth)

$$w' = w - \gamma(\nabla l(w) + \nabla h(w))$$

$$= \underset{v}{\operatorname{argmin}} \underbrace{l(w) + h(w) + \langle \nabla l(w) + \nabla h(w), v - w \rangle}_{\text{local affine approximation of } l(v) + h(v)} + \underbrace{\frac{1}{2\gamma} \|v - w\|_{2}^{2}}_{\text{penalty term}}$$

Gradient descent (need l+h smooth)

$$w' = w - \gamma(\nabla l(w) + \nabla h(w))$$

$$= \underset{v}{\operatorname{argmin}} \underbrace{l(w) + h(w) + \langle \nabla l(w) + \nabla h(w), v - w \rangle}_{\text{local affine approximation of } l(v) + h(v)} + \underbrace{\frac{1}{2\gamma} \|v - w\|_{2}^{2}}_{\text{penalty term}}$$

Proximal gradient descent: (only need *l* smooth)

$$w' = \underset{v}{\operatorname{argmin}} \underbrace{l(w) + \langle \nabla l(w), v - w \rangle}_{\text{local affine approximation of } l} + \underbrace{h(v)}_{\text{exact } h} + \underbrace{\frac{1}{2\gamma} \|v - w\|_2^2}_{\text{penalty term}}$$

local affine approximation of
$$l$$
 exact h

$$= \operatorname{prox}\left[w - \gamma \nabla l(w)\right]$$

Gradient descent (need l+h smooth)

$$w' = w - \gamma(\nabla l(w) + \nabla h(w))$$

$$= \underset{v}{\operatorname{argmin}} \underbrace{l(w) + h(w) + \langle \nabla l(w) + \nabla h(w), v - w \rangle}_{\text{local affine approximation of } l(v) + h(v)} + \underbrace{\frac{1}{2\gamma} \|v - w\|_{2}^{2}}_{\text{penalty term}}$$

Proximal gradient descent: (only need *l* smooth)

$$w' = \underset{v}{\operatorname{argmin}} \underbrace{l(w) + \langle \nabla l(w), v - w \rangle}_{\text{local affine approximation of } l} + \underbrace{h(v)}_{\text{exact } h} + \underbrace{\frac{1}{2\gamma} \|v - w\|_{2}^{2}}_{\text{penalty term}}$$
$$= \operatorname{prox} [w - \gamma \nabla l(w)]$$

Computing $\operatorname{prox}_{\gamma h}[w] = \operatorname{argmin}_{\nu} h(\nu) + \frac{1}{2\gamma} \|w - \nu\|_2^2$ is easy when C is triangular.

Gradient descent (need l+h smooth)

$$w' = w - \gamma(\nabla l(w) + \nabla h(w))$$

$$= \underset{v}{\operatorname{argmin}} \underbrace{l(w) + h(w) + \langle \nabla l(w) + \nabla h(w), v - w \rangle}_{\text{local affine approximation of } l(v) + h(v)} + \underbrace{\frac{1}{2\gamma} \|v - w\|_{2}^{2}}_{\text{penalty term}}$$

Proximal gradient descent: (only need *l* smooth)

$$w' = \underset{v}{\operatorname{argmin}} \underbrace{l(w) + \langle \nabla l(w), v - w \rangle}_{\text{local affine approximation of } l} + \underbrace{h(v)}_{\text{exact } h} + \underbrace{\frac{1}{2\gamma} \|v - w\|_2^2}_{\text{penalty term}}$$
$$= \underset{\gamma h}{\operatorname{prox}} [w - \gamma \nabla l(w)]$$

Computing $\operatorname{prox}_{\gamma h}[w] = \operatorname{argmin}_{v} h(v) + \frac{1}{2v} \|w - v\|_{2}^{2}$ is easy when C is triangular.

Standard theory: Converges if l is (strongly) convex and smooth.

Outline

- Introduction
- 2 The neg-entropy
- The energy
- 4 Proximal gradient descent
- 6 Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- B Discussion

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Hmmmm...

• $h(w) = -\log|\det C| + \text{const.}$ is smooth except when singular values of C are small.

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

- $h(w) = -\log|\det C| + \text{const.}$ is smooth except when singular values of C are small.
- h(w) also becomes really *large* when the singular values of C are small.

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

- $h(w) = -\log|\det C| + \text{const.}$ is smooth except when singular values of C are small.
- h(w) also becomes really *large* when the singular values of C are small.
- Maybe the singular values of C can't be too small at the solution?

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

- $h(w) = -\log|\det C| + \text{const.}$ is smooth except when singular values of C are small.
- h(w) also becomes really *large* when the singular values of C are small.
- Maybe the singular values of C can't be too small at the solution?
- And maybe we can exploit that somehow?

$$\mathscr{W}_M := \left\{ (m, C) | \sigma_{\min}(C) \ge \frac{1}{\sqrt{M}} \right\}$$

$$\mathscr{W}_M := \left\{ (m, C) | \sigma_{\min}(C) \ge \frac{1}{\sqrt{M}} \right\}$$

Theorem

If $\log p(z,x)$ is M-smooth and w^* minimizes l(w)+h(w), then $w^*\in \mathscr{W}_M$. (D. 2020, Thm. 7)

$$\mathscr{W}_M := \left\{ (m, C) | \sigma_{\min}(C) \ge \frac{1}{\sqrt{M}} \right\}$$

If $\log p(z,x)$ is M-smooth and w^* minimizes l(w)+h(w), then $w^*\in \mathscr{W}_M$. (D. 2020, Thm. 7)

Lemma

h(w) is M-smooth over $\mathcal{W}_{\mathcal{M}}$. (D. 2020, Lemma 12)

$$\mathscr{W}_M := \left\{ (m, C) | \sigma_{\min}(C) \ge \frac{1}{\sqrt{M}} \right\}$$

If $\log p(z,x)$ is M-smooth and w^* minimizes l(w)+h(w), then $w^*\in \mathscr{W}_M$. (D. 2020, Thm. 7)

Lemma

$$h(w)$$
 is M-smooth over $W_{\mathcal{M}}$. (D. 2020, Lemma 12)

Projected gradient descent:

$$w' = \operatorname{proj}_{W_M}[w - \gamma(\nabla l(w) + \nabla h(w))]$$

$$\operatorname{proj}_{\mathcal{W}_{M}}[w] = \operatorname{argmin}_{w' \in \mathcal{W}_{M}} \|w - w'\|_{2}$$

$$\mathscr{W}_M := \left\{ (m, C) | \sigma_{\min}(C) \ge \frac{1}{\sqrt{M}} \right\}$$

If $\log p(z,x)$ is M-smooth and w^* minimizes l(w)+h(w), then $w^*\in \mathscr{W}_M$. (D. 2020, Thm. 7)

Lemma

h(w) is M-smooth over $W_{\mathcal{M}}$. (D. 2020, Lemma 12)

Projected gradient descent:

$$w' = \operatorname{proj}_{\mathcal{W}_M}[w - \gamma(\nabla l(w) + \nabla h(w))]$$

 $\operatorname{proj}_{\mathscr{W}_{M}}[w] = \operatorname{argmin}_{w' \in \mathscr{W}_{M}} \|w - w'\|_{2} \text{ is easy to compute but requires an SVD of } C.$

$$\mathscr{W}_M := \left\{ (m, C) | \sigma_{\min}(C) \ge \frac{1}{\sqrt{M}} \right\}$$

If $\log p(z,x)$ is M-smooth and w^* minimizes l(w)+h(w), then $w^*\in \mathscr{W}_M$. (D. 2020, Thm. 7)

Lemma

h(w) is M-smooth over $W_{\mathcal{M}}$. (D. 2020, Lemma 12)

Projected gradient descent:

$$w' = \operatorname{proj}_{W_{l,r}}[w - \gamma(\nabla l(w) + \nabla h(w))]$$

 $\operatorname{proj}_{W_M}[w] = \operatorname{argmin}_{w' \in W_M} \|w - w'\|_2$ is easy to compute but requires an SVD of C.

Standard theory: converges if l + h is (strongly) convex and smooth.

Table of properties

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Condition on $-\log p(z,x)$	Consequence
none	h(w) convex (when C symmetric or triangular)
	h(w) not strongly convex, not smooth
	$h(w)$ is M -smooth over \mathscr{W}_M
convex	l(w) convex
c-strongly convex	l(w) c -strongly convex
M-smooth	l(w) M -smooth
	$w^* \in \mathscr{W}_M$

Bayesian logistic regression. ("Exact" gradients by reducing evaluation of 1-D integral, precomputed using numerical quadrature.)

Outline

- Introduction
- 2 The neg-entropy
- The energy
- 4 Proximal gradient descent
- 6 Projected gradient descent
- **6** Gradient variance
- Real convergence guarantees
- B Discussion

Summary so far

BBVI with proximal or projected gradient descent converges, assuming:

- \bullet $-\log p(z,x)$ is smooth
- You can compute the exact gradient.

Summary so far

BBVI with proximal or projected gradient descent converges, assuming:

- \bullet $-\log p(z,x)$ is smooth \leftarrow Sometimes true
- You can compute the exact gradient. ← Almost never true

Estimating gradients

Can "reparameterize" using $t_w(u) = Cu + m$:

$$l(w) = - \underset{q_w(z)}{\mathbb{E}} \log p(z, x) = - \underset{\mathscr{N}(u|0, I)}{\mathbb{E}} \log p(t_w(u), x).$$

Estimating gradients

Can "reparameterize" using $t_w(u) = Cu + m$:

$$l(w) = - \underset{q_w(z)}{\mathbb{E}} \log p(z, x) = - \underset{\mathscr{N}(u|0, I)}{\mathbb{E}} \log p(t_w(u), x).$$

Definition

Typical gradient estimator (for $\nabla l(w)$):

$$g_{\text{energy}} = -\nabla_w \log p\left(t_w(u), x\right)$$

Estimating gradients

Can "reparameterize" using $t_w(u) = Cu + m$:

$$l(w) = - \underset{q_w(z)}{\mathbb{E}} \log p(z, x) = - \underset{\mathcal{N}(u|0, I)}{\mathbb{E}} \log p(t_w(u), x).$$

Definition

Typical gradient estimator (for $\nabla l(w)$):

$$g_{\text{energy}} = -\nabla_w \log p\left(t_w(u), x\right)$$

Definition

Other gradient estimators (for $\nabla l(w) + \nabla h(w)$):

$$g_{\text{ent}} = -\nabla_w \log p(t_w(u), x) + \nabla_w h(w)$$

$$g_{\text{STL}} = -\nabla_w \log p \left(t_w(u), x \right) + \left[\nabla_w \log q_v(t_w(u)) \right]_{v=w}$$

Quadratic bounds

Stochastic optimization proofs often assume $\mathbb{E}\|g\|_2^2$ (or $\mathbb{V}[g]$) is *uniformly* bounded. Not true for us!

Quadratic bounds

Stochastic optimization proofs often assume $\mathbb{E}\|g\|_2^2$ (or $\mathbb{V}[g]$) is *uniformly* bounded. Not true for us!

Definition

A gradient estimator g for $\nabla \phi$ is quadratically bounded with parameters (a,b,w^*) if $\mathbb{E}[g] = \nabla \phi(w)$ and

$$\mathbb{E} \|g\|_2^2 \le a \|w - w^*\|_2^2 + b.$$

Quadratic bounds

Stochastic optimization proofs often assume $\mathbb{E}\|g\|_2^2$ (or $\mathbb{V}[g]$) is *uniformly* bounded. Not true for usl

Definition

A gradient estimator g for $\nabla \phi$ is quadratically bounded with parameters (a,b,w^*) if $\mathbb{E}[g] = \nabla \phi(w)$ and

$$\mathbb{E} \|g\|_2^2 \le a \|w - w^*\|_2^2 + b.$$

Theorem

If $\log p(z,x)$ is M-smooth, then g_{energy} , g_{ent} , and g_{STL} are all quadratically bounded (D., 2019, D., Garrigos, and Gower, 2023)

Table of properties

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Condition on $-\log p(z,x)$	Consequence
none	h(w) convex (when C symmetric or triangular)
	h(w) not strongly convex, not smooth
	$h(w)$ is M -smooth over \mathscr{W}_M
convex	l(w) convex
c-strongly convex	l(w) c -strongly convex
$\emph{M} ext{-smooth}$	l(w) M -smooth
	$w^* \in \mathscr{W}_M$
	gradient estimators quadratically bounded

Outline

- Introduction
- 2 The neg-entropy
- The energy
- 4 Proximal gradient descent
- 5 Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- 8 Discussion

An optimization "hole"

We have:

- Varying noise (quadratically bounded).
- Composite non-smooth objective.
- Objective is smooth inside of \mathcal{W}_M , but not *locally* smooth.

An optimization "hole"

We have:

- Varying noise (quadratically bounded).
- Composite non-smooth objective.
- Objective is smooth inside of \mathcal{W}_M , but not *locally* smooth.

Questions:

- Does proximal gradient descent work with quadratically bounded noise?
- Does projected gradient descent work with quadratically bounded noise?

Does stochastic proximal gradient descent work with quadratically bounded noise?

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or $1/\sqrt{T}$ if smooth and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or $1/\sqrt{T}$ if smooth and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Does stochastic proximal gradient descent work with quadratically bounded noise?

Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or $1/\sqrt{T}$ if smooth and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 7+8)

Does stochastic projected gradient descent work with quadratically bounded noise?

Theorem

Yes. Converges at a 1/T rate if objective is smooth and strongly convex, or $1/\sqrt{T}$ if smooth and merely convex. (D., Gairrigos, and Gower, 2023, Thms. 10+11)

Putting the pieces together (proximal gradient descent)

Putting the pieces together (proximal gradient descent)

Putting the pieces together (projected gradient descent)

Putting the pieces together (projected gradient descent)

Putting the pieces together

Theorem

If $-\log p(z,x)$ is M-smooth and (strongly) convex, then stochastic proximal gradient descent using the $g_{\rm energy}$ estimator with a dense Gaussian variational family with triangular C with an appropriate stepsize sequence converges to the optimum of the ELBO at a $1/\sqrt{T}$ (1/T) rate. (D., Gairrigos, and Gower, 2023, Cor. 12)

Putting the pieces together

Theorem

If $-\log p(z,x)$ is M-smooth and (strongly) convex, then stochastic proximal gradient descent using the $g_{\rm energy}$ estimator with a dense Gaussian variational family with triangular C with an appropriate stepsize sequence converges to the optimum of the ELBO at a $1/\sqrt{T}$ (1/T) rate. (D., Gairrigos, and Gower, 2023, Cor. 12)

Theorem

If $-\log p(z,x)$ is M-smooth and (strongly) convex, then stochastic projected gradient descent (projecting onto \mathscr{W}_M) using either the g_{STL} or g_{ent} estimators with a dense Gaussian variational family with symmetric C with an appropriate stepsize sequence converges to the optimum of the ELBO at a $1/\sqrt{T}$ (1/T) rate. (D., Gairrigos, and Gower, 2023, Cor. 13)

Outline

- Introduction
- 2 The neg-entropy
- 3 The energy
- 4 Proximal gradient descent
- Projected gradient descent
- 6 Gradient variance
- Real convergence guarantees
- 8 Discussion

Related work

• Kim et al. (2023) give a similar 1/T rate for proximal SGD using $g_{\rm energy}$ with smoothness and strong convexity.

Related work

- Kim et al. (2023) give a similar 1/T rate for proximal SGD using $g_{\rm energy}$ with smoothness and strong convexity.
- Xu and Campbell (2023) give a $1/\sqrt{T}$ rate for projected-SGD using $g_{\rm ent}$ with a particular rescaling which is *asymptotic* in the number of observations (\odot) and *local* (\odot) but does not require convexity (\odot).

Related work

- Kim et al. (2023) give a similar 1/T rate for proximal SGD using $g_{\rm energy}$ with smoothness and strong convexity.
- Xu and Campbell (2023) give a $1/\sqrt{T}$ rate for projected-SGD using g_{ent} with a particular rescaling which is *asymptotic* in the number of observations (\odot) and *local* (\odot) but does not require convexity (\odot).
- Lambert et al. (2022) give a 1/T rate for a VI-like SGD algorithm from a discretization of a Wasserstein gradient flow with smoothness+strong convexity. Diao et al. (2023) give a related proximal with a 1/T rate or $1/\sqrt{T}$ with just convexity. These require the Hessian of the log-posterior (\odot) but are very beautiful (\odot).

• Why does regular SGD seem to work so well?

- Why does regular SGD seem to work so well?
- Guarantees with Adam instead of SGD?

- Why does regular SGD seem to work so well?
- Guarantees with Adam instead of SGD?
- Guarantees without assuming we know smoothness/strong convexity constants?

- Why does regular SGD seem to work so well?
- Guarantees with Adam instead of SGD?
- Guarantees without assuming we know smoothness/strong convexity constants?
- Guarantees without assuming smoothness or (strong) convexity at all?

- Why does regular SGD seem to work so well?
- Guarantees with Adam instead of SGD?
- Guarantees without assuming we know smoothness/strong convexity constants?
- Guarantees without assuming smoothness or (strong) convexity at all?
- Guarantees with more general variational families (e.g. normalizing flows)?

- Why does regular SGD seem to work so well?
- Guarantees with Adam instead of SGD?
- Guarantees without assuming we know smoothness/strong convexity constants?
- Guarantees without assuming smoothness or (strong) convexity at all?
- Guarantees with more general variational families (e.g. normalizing flows)?
- Is this "inference research" or "optimization research"?

- Why does regular SGD seem to work so well?
- Guarantees with Adam instead of SGD?
- Guarantees without assuming we know smoothness/strong convexity constants?
- Guarantees without assuming smoothness or (strong) convexity at all?
- Guarantees with more general variational families (e.g. normalizing flows)?
- Is this "inference research" or "optimization research"?

Thank you!

these slides: t.ly/sICHy or people.cs.umass.edu/domke/convergence.pdf

Citations

- D. Provable gradient variance guarantees for black-box variational inference. NeurIPS 2019.
- D. Provable smoothness guarantees for black-box variational inference. ICML 2020.
- D., Gairrigos, and Gower. Provable convergence guarantees for black-box variational inference. NeurIPS 2023.
- Kim, Oh, Wu, Ma, and Gardner. On the convergence and scale parameterizations of black-box variational inference. NeurIPS 2023.
- Xu and Campbell. The computational asymptotics of gaussian variational inference and the laplace approximation. Stat Comput, (32), 2023.
- Lambert, Chewi, Bach, Bonnabel, and Rigollet. *Variational inference via Wasserstein gradient flows*. NeurIPS 2022.
- Diao, Balasubramanian, Chewi, and Salim. Forward- backward Gaussian variational inference via JKO in the Bures-Wasserstein space. ICML 2023.

Table of properties

$$F(w) := \underbrace{\mathbb{E}_{q_w(z)}[-\log p(z,x)]}_{\text{"energy" }l(w)} + \underbrace{\mathbb{E}_{q_w(z)}\log q_w(z)}_{\text{"neg-entropy" }h(w)}$$

Condition on $-\log p(z,x)$	Consequence
none	h(w) convex (when C symmetric or triangular)
	h(w) not strongly convex, not smooth
	$h(w)$ is M -smooth over \mathscr{W}_M
convex	l(w) convex
\emph{c} -strongly convex	l(w) c -strongly convex
	$\ C\ _F^2 + \ m - z^*\ _2^2 \le \frac{d}{c}$ at solution
M-smooth	l(w) M -smooth
	$w^* \in \mathscr{W}_M$
	gradient estimators quadratically bounded