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ABSTRACT
While a tremendous amount of effort has been devoted to localiza-
tion, the orientation of a device, especially in 3D space, is seldom
explored. Although many sensor-based methods utilizing gyro-
scope, accelerometer, and magnetometer have been proposed to
measure 3D orientation, these methods generally suffer from high
cumulative errors and performance degradation when the device
is moving. In this paper, we present MOM, the first microphone-
based system that estimates the 3D orientation of a device. The
key idea of MOM is to employ free sound sources in our surround-
ing environment as anchors. The prior knowledge of these sound
sources, including the signal waveform and the locations of the
sound sources, is not required to be known. In particular, we pro-
pose an angle-of-arrival (AoA) extraction algorithm that compares
fine-grained time delays over microphones at a low computational
cost. We implement our system on three platforms including a 6-
microphone array Seeed Studio ReSpeaker, a commodity earphone
Sennheiser AMBEO smart headset and a commodity smartphone
Google Pixel 4. Extensive experiments show that MOM can achieve
significantly higher accuracy compared with status quo approaches
and is robust against cumulative errors. We apply MOM to two
real-life applications, i.e., head tracking and 3D reconstruction, to
demonstrate the applicability and generality of MOM in practice.

1 INTRODUCTION
Real-time knowledge of location of people or objects has become
essential for services in many fields including navigation [48], lo-
gistics [47], assembly line [17, 42], virtual reality (VR) [20] and
health care [16]. A tremendous amount of effort has been devoted
to improving the accuracy and enhancing the robustness of localiza-
tion [6, 38, 45, 46]. However, much less attention has been paid to
obtaining the orientation information of a device which is equally
important in many real-life applications. For example, the orienta-
tion of the Xbox game controller plays a crucial role in providing
users a rich experience in gameplay. In 3D reconstruction, multiple
photos are taken at different locations and orientations. The orien-
tation diversity presents critical information for 3D reconstruction.

The Left Speaker The Right Speaker

Figure 1: An example of MOM’s application in the game
room, where the device utilizes the sound from the stereo
speakers for 3D orientation measurement.

Though closely related, orientation tracking is very different
from localization in multiple aspects: (i) Location and orientation
information are orthogonal to each other. When a user is using
a smartphone, the location of the smartphone may remain un-
changed while the orientation can vary significantly. (ii) A device’s
orientation is usually described in the 3D space while most local-
ization systems only care about the device’s spatial information in
the azimuth 2D space. (iii) For a device with a small size, orienta-
tion can vary dramatically with a subtle movement. Therefore, the
decimeter-granularity which is fine enough for most localization
systems is too coarse for orientation estimation.

Traditionally, highly accurate 3D orientation information can
be obtained from multiple high-speed cameras carefully deployed.
Although the achieved accuracy is high, the extremely high cost
is a major barrier hindering its wide adoption. In this work, we
adopt such a camera-based system Qualisys [1] for ground-truth
measurement. The cost of this Qualisys system is around $40,000
and it needs to be well calibrated so it cannot be easily moved to a
new environment.

Using an inertial gyroscope is another way to measure the 3D
orientation of a device. A gyroscope canmeasure the instant angular
velocity of a device and the device’s orientation can be obtained
by taking the integral of the angular velocity. However, due to
hardware noise, the orientation estimated by the gyroscope inside
commodity devices is usually coarse and suffers from cumulative
errors [36, 51]. The cumulative error can quickly reach 30° within a
few minutes on a commodity smartphone [51].
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Figure 2: The AoA variations, including the elevation angles
and the azimuth angles, of two sound sources when the de-
vice rotates around X (a), Y (b) and Z (c) axes.

To address this cumulative error, recent works utilize other sen-
sors to either calibrate the readings from the gyroscope or measure
the device’s orientation directly [13, 14, 36, 42, 44, 51]. The most
widely used sensors are accelerometer [14, 51] and magnetome-
ter [13, 36, 51]. For the accelerometer, when the device’s orientation
varies, the gravitational acceleration at the X, Y and Z axes change
accordingly. By taking the direction of the gravitational accelera-
tion which is a constant as a reference, the orientation of the device
can be estimated. However, this method only works when the de-
vice is static. When the device moves with non-zero acceleration,
the measured acceleration is a summation of the gravitational ac-
celeration and the device’s moving acceleration. In this case, the
gravitational acceleration cannot be extracted from the measured
acceleration and used as a reference for orientation estimation. Sim-
ilarly, a magnetometer can also be used to measure the geomagnetic
field which can serve as a reference to infer the orientation of the de-
vice [36, 51]. A magnetometer can usually achieve a relatively good
performance in an environment with no ferromagnetic material.
However, a lot of daily-used electronic devices such as headphones
and smartphones contain ferromagnetic material whose magnetic
field can pollute the orientation estimates.

In this paper, we present MOM, a system that utilizes micro-
phones widely available inside smart devices to measure their ori-
entation. A lot of sound sources available in our surrounding envi-
ronment can be used as anchors for device orientation estimation.
Our proposed system has two unique advantages:

• We do not need to deploy a dedicated sound source to trans-
mit controlled signals for orientation tracking.

• There is no need to know the location of the sound source.
This makes our system flexible for real-world adoption.

The basic idea of MOM is that when a device rotates, the angle-
of-arrivals (AoAs) of signals from fixed sound sources change ac-
cordingly as illustrated in Fig. 2 and therefore the device orien-
tation information can be obtained. As demonstrated in our ex-
periments (Sec. 4), with just two microphones, the AoAs of the
sound source can be extracted and the orientation of the device in
2D can then be obtained. With a third microphone, MOM can ob-
tain the 3D orientation information. One observation favoring our
design is that many existing smartphones are equipped with two
microphones and some of them such as iPhone XR even have three
built-in microphones. In addition, most smart speakers have 3-7

microphones [4]. We demonstrate that, without adding any extra
hardware, the proposed microphone-based approach outperforms
traditional inertial sensor-based orientation tracking approaches.

To extract the AoA of a sound source, we cannot directly adopt
traditional AoA extraction schemes [24, 41]. There are two main
categories of methods that can obtain the AoA of acoustic sig-
nals: phase-based and distance-based. Phase-based methods can
be applied to not just acoustic signals but also RF signals. On the
other hand, distance-based methods are only applicable to acous-
tic signals owing to the extremely low propagation speed in the
air (340 m/s). In this work, we do not use any dedicated sound
source to emit high-frequency ultrasound but utilize free acoustic
sources in our environment and hence, we have no control of the
sound sources. In this case, the frequency of the acoustic signal is
usually low and varies frequently. Therefore, no stable phase read-
ings can be obtained for phase-based AoA estimation and we adopt
the distance-based method in our design. For distance-based meth-
ods, AoA estimation accuracy depends on the microphone sampling
rate and the spacing between adjacent microphones. Specifically, a
higher sampling rate presents more fine-grained distance measure-
ments. Larger spacing between the microphones means a longer
extra distance for the signal to reach the second microphone and a
more accurate estimation of the extra distance. The higher accuracy
of distance estimation implies a more accurate AoA estimation.

Hereby, we design an AoA extraction algorithm in Sec. 3.2 by
measuring the distance difference of two microphones from the
sound source, which is equivalent to measuring the time delay of
the signals arriving at the two microphones. To capture this delay,
we adopt the trial and error method. We try a possible AoA and
calculate the corresponding delay. We then shift one signal by this
corresponding delay and compare the similarity between the shifted
signal and the other signal using correlation. When the correct AoA
is tried, the correlation generates a high peak.

Note that we are not able to shift a signal by an arbitrarily small
amount in the time domain due to the sampling rate limit. We
address this issue based on one key observation: the signal fre-
quency of sound sources in the surrounding environment has a
much lower frequency (below 8 kHz) compared to those ultra-
sound signals (18-21 kHz) adopted in existing works. Therefore,
the Nyquist frequency is much lower than the sampling rate sup-
ported by commodity smartphones (48 kHz). Thus, we can adopt
the well-knownWhittaker-Shannon interpolation formula (WS for-
mula) [43] to interpolate signal sample points for more fine-grained
time shifts and more accurate AoA estimation accordingly. How-
ever, the WS formula is a signal processing scheme that incurs a
high computational cost. To address this issue, we only calculate
the correlations for a few AoAs and estimate the correlations for
other AoAs based on the observation that the correlations change
smoothly. In this way, the computation cost is greatly reduced and
the high accuracy of AoA estimation is still retained.

We also identify a practical issue associated with the proposed
system. As we do not use any dedicated sound source, the uncon-
trolled signals can vary dramatically in reality. Fortunately, in a
typical environment, usually more than five sound sources can be
identified. For 3D orientation tracking, two sound sources are re-
quired and for 2D tracking, one sound source suffices. We therefore
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Figure 3: The spatial illustrations for Euler angle (a) and spa-
tial angle (b).

can select the most reliable sound sources among many available
ones in the surrounding environment for orientation tracking.

We summarize our contributions as follows:
• We involve orientation tracking into the ecosystem of acous-
tic sensing. We exploit microphones that are widely avail-
able in commodity devices and free sound sources in our
surrounding environment to track the orientation of a device.

• We adopt a distance-based method for AoA estimation and
effectively utilize the signal’s lower-frequency property to
achieve accurate AoA estimation without incurring a high
computational cost.

• The proposed system is flexible to be deployed in real-world
settings. It works with various sound sources in the environ-
ment such as a vibrating razor and it does not need to know
the locations of the sound sources.

• We implement MOM on three platforms, a 6-microphone ar-
ray Seeed Studio ReSpeaker, a commodity earphone Sennheiser
AMBEO headset and a commodity smartphone Google Pixel
4. Comprehensive experiments demonstrate the robustness
of the proposed schemes under various conditions.

2 PRELIMINARIES
In this section, we present the preliminary knowledge of 3D orien-
tation related to our design.

2.1 3D Orientation and Rotation
A device’s orientation is usually measured in 3D space, and the
orientation of an object has 3 degree-of-freedoms (DoFs). This
means the orientation of a target can be fully characterized by a
minimum of 3 variables. Similarly, the rotation of an object, i.e., the
difference between two orientations, also has 3 DoFs. The rest of
this section briefly introduces two different representation schemes
which are widely used to describe 3D orientation and rotation: Euler
angle and rotation matrix.

Euler Angle. As Fig. 3(a) illustrates, the Euler angle uses a vector
with 3 angles to describe the 3D orientation of a device:

[𝛼, 𝛽,𝛾], (1)

where 𝛼 , 𝛽 and 𝛾 are the angles that the object rotates around its X,
Y and Z axis respectively. Note that the order matters and different
axis orders can bring different results. In this paper, we use the
intrinsic X-Y-Z sequence for Euler angle representation, where the

object rotates around its X, Y and Z axis successively. Euler angle
is a visually intuitive representation to describe the orientation.

Rotation Matrix. A rotation matrix R is a 3 by 3 matrix that
satisfies the following equations:

RR𝑇 = I, |R| = 1. (2)
One vector point in the 3D space can be represented in different
coordinates (e.g., the world reference coordinate𝐶𝑊 and the device
reference coordinate 𝐶𝐷 in our system). The 3D representations of
the vector point in 𝐶𝑊 and 𝐶𝐷 are denoted as v𝑊 and v𝐷 respec-
tively. We can then use a rotation matrix from the world reference
coordinate𝐶𝑊 to the device reference coordinate𝐶𝐷 ,R𝑊𝐷 , to char-
acterize the relationship between the two coordinates and transfer
a vector point from one coordinate to the other.

v𝐷 = R𝑊𝐷v𝑊 . (3)
The rotation matrix is a convenient representation for calculation
and we use this representation in formulas.

2.2 3D Direction
The 3D direction describes the direction of the signal source (trans-
mitter) to the receiver. 3D Direction is usually represented by the
spatial angle or the direction vector.

Spatial Angle. Different from 3D orientation, 3D direction can
be fully characterized by two parameters and has only 2 DoFs. In
this paper, we define spatial angle as a combination of an elevation
angle𝜓 and an azimuth angle 𝜑 , shown in Fig. 3(b). For our system,
the upper semi-space is symmetrical to the lower semi-space and
we only present the information of upper semi-space. Thus, the
range of the elevation angle𝜓 goes from 0° to 90° and the range of
the azimuth angle 𝜑 goes from 0° to 360°.

Direction Vector. A direction vector n is a 3D vector whose
norm is 1. The transformation from the spatial angle (𝜓,𝜑) to the
direction vector n is as below:

n = [𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜑, 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑, 𝑠𝑖𝑛𝜓 ]𝑇 . (4)
Similar to the rotation matrix, the direction vector is convenient to
be used in formulas.

3 SYSTEM DESIGN
In this section, we first present the system overview following by
the details of each design component.

3.1 System Overview
There are three modules in the proposed system, as shown in Fig. 4:
AoA extraction, sound source selection and orientation estimation.

AoA Extraction. AoA extraction module extracts the AoAs of
the sound sources in the environment. The input of this module
is the acoustic signals 𝑠1 (𝑡), 𝑠2 (𝑡), . . . , 𝑠𝑁 (𝑡) recorded by 𝑁 micro-
phones over time. The received acoustic signal is a mixture of
multiple uncontrolled sound sources in the environment. The AoA
extraction algorithm divides recorded acoustic signals into time
windows T𝑖 and examines each time window to obtain the AoA
information. The instant AoA can be assumed as unchanged within
a small time window (e.g., 10 ms). In each time window, the AoA
extraction algorithm extracts AoAs (𝜓1, 𝜑1), (𝜓2, 𝜑2), . . . , (𝜓𝑀 , 𝜑𝑀 )
of the M signal sources in the environment. Each AoA of a sound
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Figure 4: The system overview of MOM.

source is a spatial angle that contains the elevation angle𝜓 and the
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Figure 5: The 2-dimension clustering algorithm that recog-
nizes two reliable sound sources (blue and orange), one un-
reliable sound source (green) and other outliers (white).

sound sources and utilize existing sound sources already in the
environment for AoA estimation. The sound sources in the real
world are not under our control and can vary dramatically. Some
of the sound sources appear to be reliable and emit out stable
acoustic signals whose AoAs can be extracted over multiple time
windows, while signals from some other sound sources can be
intermittent. In this module, we select𝑀 ′ reliable AoAs among the
𝑀 AoAs extracted in each time window. For the 𝑀 ′ reliable sound
sources, their AoA over time 𝑡 can be represented as norm vectors:
n𝐷1 (𝑡), n𝐷2 (𝑡), . . . , n𝐷

𝑀′ (𝑡).
Sound source selection is achieved through a 2-dimensional

clustering scheme as shown in Fig. 5(a). We measure the AoAs of
detectable sound sources in multiple consecutive time windows.
These AoAs are then clustered based on their spatial proximity (AoA
similarity). Each cluster represents a sound source. Then we use
the size of the cluster, i.e., the number of AoAs within the cluster,
to determine if the sound source is reliable as shown in Fig. 5(b).
The cluster with a small size, such as the green cluster, means that
it emits out intermittent signals and should be excluded from our
choice. The two clusters (blue and orange) are chosen as the reliable
sound sources to estimate the target orientation.

Orientation Estimation With the selected 𝑀 ′ reliable sound
sources n𝐷

𝑖
(𝑡), this module jointly predicts the final 3D orientation

R𝐷𝑊 (𝑡) of the device. Specifically, we develop a gradient descent
algorithm to make the estimated rotation matrix R𝐷𝑊 (𝑡) fit the
observed n𝐷

𝑖
(𝑡) best. This estimated 3D orientation R𝐷𝑊 (𝑡) is the

final output of MOM.

3.2 AoA Extraction
We design a novel AoA extraction algorithm in MOM. This algo-
rithm contains three steps: signal similarity measuring, optimal
AoA searching and multiple AoA detaching. In the signal similarity
measuring step, we introduce how we construct the optimal func-
tion 𝐹 (𝜓,𝜑) to measure signals’ similarity at a given AoA (𝜓 , 𝜑).
The optimal AoA searching step efficiently finds the optimal AoA
that maximizes 𝐹 (𝜓,𝜑). Note that in the first two steps, we only
consider one AoA. In reality, there can be multiple sound sources. In
the last step, we explain how to extract the AoAs of multiple sources
when signals are mixed at the receiver. Specifically, we employ the
first two steps to identify the first AoA. We prove in Sec. 3.2.3 the
AoA extraction scheme for a single-source is still effective in the
multiple-source scenario. Then, we remove the component of the
first extracted signal in the mixed signal. This removal does not
affect the AoA estimation of the remaining sound sources. In this
way, the AoAs of multiple sources can be extracted one by one.

3.2.1 Signal Similarity Measuring. In signal similarity measuring,
we employ an optimal function 𝐹 (𝜓,𝜑) to evaluate the likelihood
of an assumed AoA (𝜓,𝜑). Given an assumed AoA (𝜓,𝜑), we take
the origin of the device’s reference coordinate as the reference and
calculate the time delays at all the microphones. Note that during
the rotation process, the delays can be positive or negative. Then,
we shift the discrete acoustic signals in a fine-grained manner with
the help of the WS formula. Given an AoA (𝜓,𝜑), the direction
vector of the sound source n𝐷 in the device reference coordinate
can be expressed as:

n𝐷 = [𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜑, 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑, 𝑠𝑖𝑛𝜓 ]𝑇 . (5)

Then, the delay 𝜏𝑖 of the 𝑖th microphone located at (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) on
the device can be expressed as:

𝜏𝑖 = − 1
𝑣𝑠
n𝐷 · [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ] . (6)

where 𝑣𝑠 is the velocity of sound. Since the amount of delay may not
exactly equal to an integer number of sampling intervals, we adopt
the WS formula [43] to estimate the shifted signal in a finer-grained
manner without being constrained by the sampling interval. Specif-
ically, we denote the original discrete signal at the 𝑖th microphone
as 𝑠𝑖 [ 𝑗]. The amount of shift is 𝜏𝑖 · 𝑓𝑠 and the shifted signal at sample
𝑗 can be written as 𝑠𝑖 [ 𝑗 +𝜏𝑖 · 𝑓𝑠 ], where 𝑓𝑠 is the sampling frequency.
According to WS formula, its signal value at 𝑗 + 𝜏𝑖 · 𝑓𝑠 is calculated
as the sum of infinite number of weighted terms of 𝑠𝑖 [·]. In our
implementation, we approximate the calculation by including the
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(a) Original optimal function (b) 2D DFT of optimal function

(c) Estimated optimal function (d) Estimation error

Figure 6: The optimal function 𝐹 (𝜓,𝜑) is smooth (a) and its
energy of 2D DFT is mainly located at low frequency (b).
Thus, we can selectively calculate the points in the optimal
function 𝐹 (𝜓,𝜑) and estimate other points (c) with low errors
(d).

nearest 2𝑁𝑊𝑆 + 1 discrete samples around sample 𝑗 . The choice of
𝑁𝑊𝑆 is discussed in Sec. 4.4. The mathematical representation of
the above procedure is presented as:

𝑠𝑖 [ 𝑗 + 𝜏𝑖 · 𝑓𝑠 ] =
+∞∑

𝑘=−∞
𝑠𝑖 [𝑘] · 𝑠𝑖𝑛𝑐 ( 𝑗 + 𝜏 · 𝑓𝑠 − 𝑘)

≈
𝑗+𝑁𝑊𝑆∑

𝑘=𝑗−𝑁𝑊𝑆

𝑠𝑖 [𝑘] · 𝑠𝑖𝑛𝑐 ( 𝑗 + 𝜏 · 𝑓𝑠 − 𝑘) .
(7)

By now, the shifted signals can be obtained and we can calculate
the similarity between the shifted signal and the other original
signal. If the assumed AoA (𝜓,𝜑) is correct, the two signals should
be highly correlated and a peak can be generated with a simple
correlation operation. To make the signals equally weighted across
multiple microphones, we calculate the overall correlation between
each pair of the 𝑁 signals. It can be proved that such operation is
equivalent to calculating the sum of the correlations between each
signal and the mean signal ¯̂𝑠 (𝑡):

𝐹 (𝜓,𝜑) =
𝑁∑
𝑖=1

CorrT
[
𝑠𝑖 [ 𝑗 + 𝜏𝑖 · 𝑓𝑠 ], ¯̂𝑠 [ 𝑗]

]
, (8)

where the mean signal ¯̂𝑠 is the mean of shifted signals over 𝑁
microphones:

¯̂𝑠 [ 𝑗] = 1
𝑁

𝑁∑
𝑖=1

𝑠𝑖 [ 𝑗 + 𝜏𝑖 · 𝑓𝑠 ] . (9)

3.2.2 Optimal AoA Searching. Optimal AoA searching searches
the AoA which maximize 𝐹 (𝜓,𝜑) at a low computational cost. As
defined in Sec. 2.2, the search range is 90° and 360° in the elevation
angle space and azimuth angle space respectively.

The challenge here is that the WS formula for estimating the
shifted signal is computationally heavy. The key observation en-
abling us to reduce the computational cost is that the original opti-
mal function 𝐹 (𝜓,𝜑) is smooth over the solution space as shown
in Fig. 6(a). We further observe that the energy of this 𝐹 (𝜓,𝜑) is
concentrated in the low frequency range. As shown in Fig. 6(b),
after applying a 2D discrete Fourier transform (2D DFT) on 𝐹 (𝜓,𝜑),
99.9% of the energy is concentrated on the 0.6% of the low frequency
part. This means we can consider the optimal function 𝐹 (𝜓,𝜑) as
a 2D low frequency signal and employ very sparse sampling to
fully recover the optimal function. Therefore, we do not need to
calculate the optimal function 𝐹 (𝜓,𝜑) by WS formula for all the
𝜓,𝜑 values. Instead, we can just calculate a few and estimate the
other values based on the sparse sampling property, significantly
reducing the computational cost.

Specifically, we calculate a total of 𝑁𝜓 × 𝑁𝜑 points based on
the WS formula. We denote the calculated points as 𝐹 [𝑖, 𝑗], where
𝑖 ranges from 1 to 𝑁𝜓 and 𝑗 ranges from 1 to 𝑁𝜑 . We can then
deduce the other values of the optimal function as 𝐹 (𝜓,𝜑) with
the 𝑁𝜓 × 𝑁𝜑 points obtained above. When deducing the value
of 𝐹 (𝜓,𝜑), we should first localize the nearest calculated point,
denoted as 𝐹 [𝑛𝜓0, 𝑛𝜑0]. Then we can estimate the value with the
nearest (2𝑁𝑛𝑒𝑎𝑟 + 1) × (2𝑁𝑛𝑒𝑎𝑟 + 1) sampling points as:

𝐹 (𝜓,𝜑) =
𝑛𝜓0+∞∑

𝑖=𝑛𝜓0−∞

𝑛𝜑0+∞∑
𝑗=𝑛𝜑0−∞

𝐹 [𝑖, 𝑗] · 𝑠𝑖𝑛𝑐 (𝜓 − 𝑖) · 𝑠𝑖𝑛𝑐 (𝜑 − 𝑗)

≈
𝑛𝜓0+𝑁𝑛𝑒𝑎𝑟∑

𝑖=𝑛𝜓0−𝑁𝑛𝑒𝑎𝑟

𝑛𝜑0+𝑁𝑛𝑒𝑎𝑟∑
𝑗=𝑛𝜑0−𝑁𝑛𝑒𝑎𝑟

𝐹 [𝑖, 𝑗] · 𝑠𝑖𝑛𝑐 (𝜓 − 𝑖) · 𝑠𝑖𝑛𝑐 (𝜑 − 𝑗) .

(10)

The empirical value for 𝑁𝑛𝑒𝑎𝑟 is 20 which ensures small errors in
the optimal AoA searching. Fig. 6(c) shows the estimated optimal
function 𝐹 (𝜓,𝜑) by only calculating 10 × 20 points in the 90° × 360°
solution space. Its overall error is only 1.14%, as shown in Fig. 6(d).
A more detailed evaluation of selected point number on system
performance is presented in Sec. 4.4

The computational cost of estimating the optimal function by
Eq. 10 is much lower than calculating the true values by Eq. 8. When
calculating the true value of the optimal function, we need to repeat
the WS formula for all the samples of the acoustic signals within
the time window T for all the 𝑁 microphones, whose complexity is
𝑂 (𝑁T 𝑓𝑠 ·𝑁𝑊𝑆 ). For the estimation algorithm here, we only need to
perform Eq. 10 once with a much smaller complexity of 𝑂 (𝑁 2

𝑛𝑒𝑎𝑟 ).
To further reduce the computational costs, we use gradient de-

scent instead of searching the whole solution space of 𝐹 (𝜓,𝜑). This
is because those points 𝐹 [𝑛𝜓 , 𝑛𝜑 ] provide an overview of 𝐹 (𝜓,𝜑),
which helps avoid the local maximums. We initialize the gradient
descent at the AoA with the maximum value of 𝐹 [𝑛𝜓 , 𝑛𝑝 ]. Then,
we estimate the gradient of the estimated optimal function 𝐹 (𝜓,𝜑)
according to Eq. 10. After taking gradient descent for several steps,
we output the optimal AoA.

3.2.3 Multiple AoA Detaching. So far, we discuss how our AoA
extraction algorithm deals with a single sound source. Next, we
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illustrate how our algorithm detaches multiple sound sources by
iteration. We prove the optimal function is still effective when
there are 𝑀 sound sources. In another word, the AoA with the
maximum value of 𝐹 (𝜓,𝜑), in this case, is still the AoA of one of
the𝑀 sound sources. To simplify the notation, we use the symbol
𝑠𝑖 (𝑡) to represent the signal, where 𝑡 is the time, different from 𝑠𝑖 [ 𝑗]
in Sec. 3.2.1, where 𝑗 is the sample index. We assume the received
acoustic signal at the 𝑖th microphone 𝑠𝑖 (𝑡) is the superposition of
𝑀 sound sources 𝑠 𝑗 (𝑡) ( 𝑗 = 1..𝑀) coming from different AoAs:

𝑠𝑖 (𝑡) =
𝑀∑
𝑗=1

𝑠 𝑗 (𝑡 + 𝜏 𝑗
𝑖
) + 𝑛𝑖 (𝑡), (11)

where𝑛𝑖 (𝑡) is the additive white Gaussian noise.Whenwe correctly
predict the AoA for the 1st sound source with (𝜓1, 𝜑1), i.e., we
correctly predict its delay 𝜏𝑖 = 𝜏1

𝑖
, we can write 𝐹 (𝜓,𝜑) as:

𝐹 (𝜓,𝜑) =
𝑁∑
𝑖=1

[ ∑
𝑡 ∈T

(
𝑠1 (𝑡) +

𝑀∑
𝑗=2

𝑠 𝑗 (𝑡 + 𝜏 𝑗
𝑖
− 𝜏1

𝑖 ) + 𝑛𝑖 (𝑡)
)
·

(
𝑠1 (𝑡) +

𝑀∑
𝑗=2

1
𝑁

𝑁∑
𝑘=1

𝑠 𝑗 (𝑡 + 𝜏𝑖
𝑘
− 𝜏1

𝑘
) + 𝑛(𝑡)

)
/√∑

𝑡 ∈T
𝑠𝑖 (𝑡)2 ·

∑
𝑡 ∈T

𝑠 (𝑡)2
]

(12)

The sound sources and noise are independent. Besides, a signal’s
auto-correlation at 0 is larger than other locations. We then have:

𝐹 (𝜓,𝜑) ≈
𝑁∑
𝑖=1

∑
𝑡 ∈T 𝑠1 (𝑡) · 𝑠1 (𝑡)√∑

𝑡 ∈T 𝑠𝑖 (𝑡)2 ·∑𝑡 ∈T 𝑠 (𝑡)2
. (13)

That is to say, only the sound source whose AoA is correctly pre-
dicted can make the 𝐹 (𝜓,𝜑) explicitly greater than 0. Therefore, we
can still use this optimal function to find the AoA in the multiple
sound sources scenario. Thus, we can detach multiple AoAs by iter-
ation. We first find the AoA (𝜓1, 𝜑1). Then we remove this AoA’s
effect on 𝑠𝑖 (𝑡) by:

𝑠new𝑖 (𝑡) = 𝑠old𝑖 (𝑡) − CorrT
[
𝑠𝑖 (𝑡 + 𝜏1

𝑖 ), 𝑠 (𝑡)
]
· 𝑠 (𝑡) . (14)

After removing its effect, we find the next optimal AoA (𝜓2, 𝜑2)
and repeat the process. The removal of a sound source decreases
the total energy in 𝑠𝑖 (𝑡). We repeat the extraction process until
there is no explicit energy left in 𝑠𝑖 (𝑡).

3.3 Sound Source Selection
In sound source selection, we select reliable sound sources by check-
ing the stability of the AoAs extracted over time. This process is
critical because unreliable sound sources can cause severe per-
formance degradation in the final orientation estimation. Existing
works [18, 30] adopt bipartite matching to identify stable AoAs over
time. In these works, a bipartite matching algorithm is executed to
match similar AoAs over different time windows. However, these al-
gorithms do not work well on matching AoAs in our work, in which
dedicated sound sources are not used. In reality, burst noise can
appear suddenly and frequently, inducing unexpected temporary
AoAs. Besides, sound sources can have random pauses over time,
such as human voice. Hence, instead of using all sound sources, we
select reliable ones as anchors for orientation estimation.

Unreliable sound sources

Reliable sound sources

Figure 7: The clustering results of AoAs, where there are 2
reliable sound sources marked as red circles and several un-
reliable sound sources.

3.3.1 2-Dimensional Clustering. We propose a 2-dimensional clus-
tering scheme to deal with the above issues, as shown in Fig. 7. To
extract reliable AoAs, we cluster all AoAs extracted in the consec-
utive windows based on AoA proximity. The AoAs of a reliable
sound source appear in most of the time windows and form a clus-
ter of a larger size. On the other hand, those AoAs generated by
sudden noise or unreliable sound sources usually cannot or just
form a smaller cluster. Thus, we can perform clustering to select
reliable sound sources which have a large size. Specifically, the
density-based spatial clustering of applications with noise (DB-
SCAN) algorithm [11] is adopted for our clustering.

While the principle is simple, there are two trade-offs to be
considered. First, how many sound sources 𝑀 ′ should be chosen
for orientation estimation? Generally, more sound sources provide
richer information for orientation estimation. However, too many
sound sources can also degrade the performance. This is because the
more sound sources we use, themore likely we include an unreliable
sound source in our estimation. One single unreliable source can
lead to large errors, overshadowing the benefit of including more
sound sources. Based on our experiments,𝑀 ′ = 2 or 3 is good for
accurate orientation estimation.When the number of sound sources
𝑀 ′ is increased to four, the average orientation accuracy starts
decreasing. Second, how many time windows should be utilized
to perform the clustering operation? We can be more confident to
judge if a sound source is reliable or not with more time windows.
Also, it is less likely to discard the sound source when it is justly
occasionally muted. However, when the device being tracked is
rotating quickly, the AoAs from a sound source vary in a large range.
The larger number of time windows can further increase the AoA
variation range. This large AoA variation can confuse the clustering
algorithm when two sound sources are close to each other and two
sources can be wrongly clustered as one single source.

3.4 Orientation Estimation
In orientation estimation, we jointly estimate the final 3D orienta-
tion over time using the𝑀 ′ reliable sound sources selected. Now
the direction vectors of reliable sound sources in the device refer-
ence coordinate n𝐷

𝑖
is calculated, we can estimate the device’s 3D

orientation R𝐷𝑊 in the world reference coordinate. According to
Eq. 3, we can transform each n𝐷

𝑖
to the corresponding n𝑊

𝑖
in the

world reference coordinate as below:

n𝑊 = R𝐷𝑊 n𝐷 . (15)
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The 𝑀 ′ sound sources can form 𝑀 ′ equations above, which ex-
ceeds the DoF of the unknown variable R𝐷𝑊 . There is no such
R𝐷𝑊 that satisfies all these equations. Thus, we consider the loss
function 𝐿(R𝐷𝑊 ) that minimizes the overall squared errors in these
equations:

𝐿(R𝐷𝑊 ) =
∑
𝑖

| |R𝐷𝑊 n̂𝐷𝑖 − n̂𝑊𝑖 | |2 . (16)

To minimize 𝐿(R𝐷𝑊 ), the usual way is to calculate its derivative
and take gradient descent. However, rotation matrices cannot be
directly differentiated. Hereby, we conduct a transform from the
Lie Group to Lie Algebra [7], where the rotation matrix R𝐷𝑊 in
Lie Group becomes a corresponding vector 𝜙 in Lie algebra as:

𝐿(𝜙) =
∑
𝑖

| |𝑒𝑥𝑝 (𝜙+)n̂𝐷𝑖 − n̂𝑊𝑖 | |2 (17)

where 𝜙+ is the screw matrix of a 3D vector 𝜙 . Here in Lie algebra,
𝜙 can be differentiated by perturbation model. The differentiated
loss function is:

𝜕𝐿

𝜕𝜑
=
∑
𝑖

2
[
𝑒𝑥𝑝 (𝜙+)n̂𝐷𝑖 − n̂𝑊𝑖 )

]
·
𝜕(𝑒𝑥𝑝 (𝜙+)n̂𝐷

𝑖
)

𝜕𝜑

=
∑
𝑖

2
[
𝑒𝑥𝑝 (𝜙+)n̂𝐷𝑖 − n̂𝑊𝑖 )

]
·
[
− (𝑒𝑥𝑝 (𝜙+)n̂𝐷𝑖 )+

]
.

(18)

Now, we can apply gradient descent on it. That is, we can update 𝜙
at the learning rate of 𝑟 as:

𝜙new = 𝜙old − 𝑟 · 𝜕𝐿(𝜙)
𝜕𝜑

= 𝜙old −
∑
𝑖

2𝑟
[
𝑒𝑥𝑝 (𝜙+)n̂𝐷𝑖 − n̂𝑊𝑖 )

]
·
[
− (𝑒𝑥𝑝 (𝜙+)n̂𝐷𝑖 )+

]
.

(19)

Then, we conduct an inverse transform from Lie Algebra to Lie
Group. The new equation that updates the rotation matrix R𝐷𝑊 is:

Rnew
𝐷𝑊

= 𝑒𝑥𝑝

[
(
∑
𝑖

2𝑟
[
Rold
𝐷𝑊

n̂𝐷𝑖 − n̂𝑊𝑖 )
]
·
[
− Rold

𝐷𝑊
n̂𝐷𝑖 )+

]
)+
]
· Rold

𝐷𝑊
.

(20)
Hereby, we can estimate the device’s 3D orientation R𝐷𝑊 (𝑡)

over time. Specifically, we conduct a gradient descent operation to
estimate its instant 3D orientation R𝐷𝑊 using Eq. 20, initializing
Rold
𝐷𝑊

with the 3D orientation we previously estimated.

4 EVALUATION
We implement our system design on three devices, including a 6-
microphone array, a commodity earphone and a commodity smart-
phone. Our exhaustive evaluation reveals MOM’s advantages over
state-of-the-art systems. Moreover, we showcase the usage of the
developed system using two applications, earphone-based head
tracking and smartphone-based 3D reconstruction.

4.1 Implementation
We implement MOM on three platforms: Seeed Studio ReSpeaker,
Sennheiser AMBEO smart headset, and Google Pixel 4 smartphone.
For performance comparison, we also implement the start-of-the-
art inertial sensor-based schemes [36, 51] on an inertial measure-
ment unit (MPU 6050 [5]). The ground truth is measured by the

camera-based motion capture system, Qualisys [1]. We briefly in-
troduce each platform below.

Seeed Studio ReSpeaker. Seeed Studio ReSpeaker [2] is a 6-
microphone circular array on Raspberry Pi 3b+ as shown in Fig. 8(a).
The layout of ReSpeaker’s microphones is the same as that of Ama-
zon Echo [4]. We can capture raw acoustic signals at the six mi-
crophones through the Raspberry Pi’s Linux terminal. Its sampling
rate is 48 𝑘𝐻𝑧 on each microphone.

SennheiserAMBEOSmartHeadset. Sennheiser AMBEO smart
headset [3] is a commodity earphone with one microphone in each
earbud as shown in Fig. 8(b). These two microphones support in-ear
binaural audio recording at a sampling rate of 48 𝑘𝐻𝑧. We imple-
ment 2D MOM for head tracking on AMBEO and the tracking
performance outperforms the state-of-the-art AirPods Pro’s head
tracking using the inertial sensor (gyroscope).

Google Pixel 4. Google Pixel 4 is a commodity smartphone with
two built-in microphones as shown in Fig. 8(c). We use Pixel 4 to
demonstrate 3D image reconstruction.

MPU 6050. We use the gyroscope, accelerometer and magne-
tometer within the MPU 6050 to implement the state-of-the-art in-
ertial sensor-based systems for comparison. MPU series are widely
used nowadays in smartphones and wearable devices [36]. It pro-
vides 9-axis angular velocity, acceleration and magnetic readings
at a sampling rate of 10 𝐻𝑧.

Motion Capture System Qualisys. Qualisys [1] is a camera-
based motion capture system as shown in Fig. 8(d). This system
captures an object’s location and orientation using 10 cooperated
high-speed cameras. Qualisys is able to achieve a sub-millimeter
displacement measurement accuracy and an orientation error below
0.6 °. We use the measurements from Qualisys as ground truths.

4.2 State-of-the-art Sensor Based Systems
We compare the performance of MOM with three start-of-the-art
inertial sensor based baselines: Gyro, A3 [51] and MUSE [36].

Gyro. This baseline only utilizes the gyroscope that measures
angular velocity, which is the most common method for orientation
measurement on commodity devices. Given an initial orientation,
it estimates the device’s 3D orientation by accumulating angular
change over time.

A3. A3 estimates 3D orientation using the accelerometer and
the magnetometer. A3 first estimates the device’s Euler angle on
the X axis and Y axis with the accelerometer. Then the orientation
on the Z axis is obtained from the magnetometer.

MUSE.MUSE measures 3D orientation in two phases: a static
phase and a dynamic phase. When the device is static and the
accelerometer can be trusted, MUSE is in the static phase and es-
timates the 3D orientation using the accelerometer and the mag-
netometer. In the dynamic phase, MUSE estimates 3D orientation
using the gyroscope and calibrates the cumulative errors using the
magnetometer. The principle in the static phase is similar to A3, so
we only consider MUSE’s dynamic phase in our evaluation.

4.3 Evaluation Metrics
We utilize axis-angle error to measure the orientation discrepancy
between the estimated orientation and the ground truth. Specifi-
cally, we consider static errors and dynamic errors respectively to
evaluate the orientation estimation performance of each method.
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MPU 6050
ReSpeaker

Raspberry Pi 3b+
Qualisys tags

(a) ReSpeaker & MPU 6050

Microphone

(b) AMBEO

Top microphone
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(c) Pixel 4

Sound sources

Device

Qualisys cameras

(d) Qualisys

Figure 8: The three platforms where MOM is implemented: the 6-microphone array
ReSpeaker (a), the commodity earphone AMBEO (b) and the commodity smartphone
Pixel 4 (c). The motion capture system Qualisys (d) provides the ground truth.

(2.40°, 0.105𝑠)

Figure 9: MOM’s trade-off between
AoA errors and the computational
costs under different settings.

Axis-Angle Error. We use the axis-angle discrepancy between
the estimated 3D orientation and the ground truth to represent
the error. This error is the minimal angle needed to rotate the
estimated orientation to the ground truth. This error ranges from
0° to 180°, where 0° refers to the same orientation and 180° refers to
the opposite orientation.

Static Error. The static error refers to the orientation error
when the device is static. Its application includes estimating the
orientation of a camera in 3D reconstruction.

Dynamic Error. The dynamic error is measured as the device
is moving and rotating. In this work, the performance of the head
tracking application is evaluated using this dynamic error metric.

4.4 Comparison with the State-of-the-Arts
We first evaluate the performance of MOM’s AoA extraction al-
gorithm in terms of accuracy and computational cost against a
state-of-the-art system Symphony [41]. Then, we compare MOM’s
overall performance on 3D orientation estimation with three base-
lines, Gyro, A3 and MUSE introduced in Sec. 4.2.

4.4.1 AoA Extraction. AoA accuracy is measured by the axis-angle
error and the computational cost is measured as the averaging run-
time on a laptop per AoA extraction. As mentioned in Sec. 3.2.2,
there is a trade-off between the AoA accuracy and the computa-
tional cost in MOM. To evaluate this trade-off, we evaluate the
performance of MOM under eight different settings. As shown
in Fig. 9, we can see that when the computational cost is around
0.105 s, we maintain a good balance between accuracy and compu-
tational cost. When we further increase the number of samples, the
computational cost is increased with a marginal accuracy increase.

We implement a state-of-the-art AoA extraction system, Sym-
phony [41] for performance comparison. Symphony localizes a
sound source using a single microphone array by leveraging the
wall’s reflection to create a virtual array. In doing so, the AoA
extraction algorithm in Symphony can distinguish the AoAs of
the light-of-sight path and the wall-reflection path. Its 2D AoA
error is 5.09° on elevation (𝜓 ) and 7.80° on azimuth (𝜑), respectively.
These results are consistent with the result (4.2° on elevation) re-
ported [41]. The detailed comparison between Symphony andMOM
is shown in Table 1, where MOM outperforms Symphony on both
AoA estimation accuracy and computational cost.

Table 1: AoA extraction algorithm comparison.

Algorithm 𝜓 Error 𝜑 Error 3D AoA Error Runtime
Symphony 5.09° 7.80° 9.31° 0.610s

MOM 1.19° 2.09° 2.40° 0.105s

(a) Static errors (b) The CDF of static errors

(c) Dynamic errors (d) The CDF of dynamic errors

Figure 10: The overall performance comparison among dif-
ferent approaches within 10 minutes.
4.4.2 Overall Performance. We implement MOM on ReSpeaker and
the three baselines onMPU 6050. We use a pair of stereo speakers as
two sound sources. The two speakers are located around one meter
away from the target device and the received volume is 63.5 𝑑𝐵. In
this experiment environment, the volume of the background noise
is around 43 dB. The two speakers’ elevation angle with respect to
the target device is around 30° and their relative azimuth angle is
around 60°. We also conduct experiments with other sound sources
commonly found in real life such as razors and human voices. The
results are presented and discussed in Sec. 4.6.

We compare the performance of MOM with three baselines for
10 minutes. For the static case, ReSpeaker stays static in the first five
seconds of each minute. For the rest of the time, the device rotates
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(a) Close to each other (b) Far away from each other

Figure 11: The cumulative density functions of dynamic er-
rors when utilizing 2, 3 and 4 sound sources.

following a pre-defined pattern.Wemeasure the errors for 5 seconds
at the beginning of each minute. For the dynamic case, the device
keeps rotating all the time for 10 minutes. The static errors over
time and the cumulative density function (CDF) of the four systems
are shown in Fig. 10(a)-(b). Over the 10 minutes, Gyro suffers from
a severe cumulative error. The error increases at a rate of around 7°
per minute. After 10 minutes, Gyro’s static errors increase to 71°.
Compared to Gyro, MUSE calibrates out the cumulative errors with
the magnetometer. The errors fluctuate between 20° to 30° after
2 minutes. Note that when the device is static, the accelerometer
can be trusted. However, A3 still has a constant static error around
8.12°. The reason is that in an indoor environment the geomagnetic
field is polluted, leading to a constant angle measurement error on
A3’s Z axis. MOM achieves a significantly smaller error over the 10
minutes, i.e., a mean static error of 2.44°.

As for the dynamic case, the results are shown in Fig. 10(c)-(d).
The performance of Gyro and MUSE is slightly worse than that in
the static case. By the end of 10 minutes, the error of Gyro reaches
94.75° while the error of MUSE is 36.10°. When the device is dy-
namic, in addition to the constant error from the magnetometer,
the accelerometer can not provide the correct direction of the grav-
itational acceleration and brings in extra errors to A3. The median
error of MOM in the dynamic phase is 5.26°, slightly higher than
that in the static phase. The possible reason for this error increase
is that the AoAs vary in a larger range and bring errors.

Overall, MOM achieves higher accuracy than the state-of-the-art
systems and it does not suffer from cumulative errors as Gyro and
MUSE do. This is an important property for real-world deployment
as cumulative error requires frequent calibration.

4.5 Impact of Factors
4.5.1 Number of Sound Sources. So far we evaluate MOM with
only two sound sources for orientation estimation. There are often
more than two sound sources in practice. Thus, we conduct experi-
ments to evaluate the impact of the number of sound sources on
system performance. We vary the number of sound sources from 2
to 4 in this experiment. We place two more sound sources near the
first two sound sources at a distance of 0.5 m. Fig. 11(a) shows the
CDF of the dynamic error with 2, 3 and 4 sound sources. Note that
we use dynamic error in this experiment, which is more represen-
tative than the static error. Interestingly, adding two close-by extra
sound sources does not improve the performance of MOM. On the

(a) Impact of angles (b) Impact of distances

Figure 12: The median static and dynamic errors of MOM
over different angles (a) and distances (b) of sound sources.

contrary, the more sound sources we include, the larger error we
obtain. We believe this is because the two additional sound sources
are too close to the original ones, and thus the clustering algorithm
mistakenly clusters the sound sources, leading to larger errors. We
further place the four sounds sources far away from each other and
the results in Fig. 11(b) shows performance improvement. There-
fore, we can conclude that blindly increasing the number of sound
sources without careful placement cannot guarantee performance
improvement. As such, we need to make sure the sound sources are
sparsely located which can bring in diversity and do not confuse
the clustering algorithm. In the rest of this section, we use two
sound sources by default.

4.5.2 Relative Angle and Source-microphone Distance. The relative
angle refers to the angle between the connections from the two
sound sources to the device. The static and dynamic errors with dif-
ferent relative angles are presented in Fig. 12(a). In this experiment,
unless specifically mentioned, the setup is the same as that in the
overall performance evaluation in Sec. 4.4.2. The results show that
a low static error can be achieved at all relative angles. However,
when the relative angle is small (e.g., 20°), the dynamic error is large.
This is because when the device is rotating rapidly, the clusters of
the two sound sources can be entangled, and hence become diffi-
cult to distinguish between each other. In this case, MOM cannot
effectively identify the two sound sources, leading to larger errors.

We also evaluate the impact of distance between the sound
sources and the device. As shown in Fig. 12(b), the error does not
increase rapidly with longer distances. Such results show that sig-
nal attenuation over distances does not significantly degrade the
AoA extraction accuracy, which ensures MOM’s robustness in the
scenario where the sound sources are far away or with small vol-
umes.

4.5.3 Source-Device Orientation. The source-device orientation
refers to the device’s orientation with respect to the sound sources
as the transmissions from sound sources are usually directional.
Generally, with different source-device orientations, the AoA ac-
curacy varies [38]. We evaluate the robustness of MOM against
different source-device orientations. The initial source-device ori-
entation is illustrated in Fig. 13(a), i.e., two sound sources reside on
the Y-Z plane with a relative angle of 60°.

The orientation accuracy over X, Y and Z axes are presented
in Fig. 13 (b). Here we conduct the experiment by rotating the
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Figure 13: The initial orientation of the
device (a) and the median dynamic er-
rors at different rotated angles around
the X, Y and Z axes (b).
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(a) Different microphone layouts (b) Impact of microphone lay-
out

Figure 14: The eight different microphone layouts (a)
and their corresponding median static and dynamic
errors (b).

Figure 15: The static
errors under different
background noises.

device. Hence, only the dynamic errors are reported. In general,
when the device is rotating around X axis, the errors stay small.
However, when the rotation angle is larger than 60°, the orientation
estimation error increases dramatically. The reason is when the
rotation angle is greater than 60°, one of the sound sources is behind
the device and therefore the sound signal from this sound source
cannot be received anymore. In this case, with only one available
sound source, the performance of MOM unavoidably degrades. In
addition, the error increases gradually with increasing rotation
angle around the Y axis. This process is equivalent to gradually
decreasing the elevation angle of the sound sources in the device’s
reference coordinate. It shows that the error gradually increases
as the elevation angle decreases, which matches the observation
reported in [38]. As for Z axis, the error keeps small due to the fact
that the circular microphone array is symmetric around the Z axis.

4.5.4 Number of microphones and layout. In practice, not all the
devices are equipped with six microphones. In this experiment, we
evaluate 8 layouts with different combinations of 3-6 microphones
on ReSpeaker. Fig. 14(a) shows the details of these layouts. The
median static errors and dynamic errors are presented in Fig. 14(b).
The results show that the estimation errors increase when fewer
microphones are used. In particular, when there are three micro-
phones, which is the minimal number of microphones required for
3D orientation detection, the estimation errors increase dramat-
ically. In this case, the layout plays an important role in MOM’s
performance, especially in the dynamic errors. The best layout in
which the microphones distribute unevenly achieves a dynamic
error of 17.93°while the dynamic error for the worst layout is 68.54°.

4.6 Deployment in Real World
We further deploy MOM in real-world settings, where different
sound sources and background noises exist.

4.6.1 Sound Source Diversity. We evaluate the performance of
MOM with different types of real-world sound sources, includ-
ing hair dryer, blender, human voice, razor, microwave, fan, cooler
and kettle, as shown in Fig. 16(a). As Fig. 16(b) illustrates, the per-
formance varies across different sound sources. We observe that the
smaller the size of the sound source, the more accurate the orienta-
tion estimates. The reason is that a smaller sound source is more
like a point source, whose AoAs are more focused. Interestingly, the
sound source volume does not have a significant impact on MOM’s

Razor Kettle

FanCooler

Human voiceHair dryer

Microwave Oven Blender

(a) Different daily sound sources (b) Impact of sound source type

Figure 16: The eight daily sound sources (a) and their corre-
sponding median static and dynamic errors (b).
performance. In our evaluation, the razor is with the smallest size
and small volume. We achieve both the smallest static errors (2.0°)
and dynamic errors (4.2°) with the razor as the sound source.

4.6.2 Background noises. Wenow evaluate the system performance
in the presence of background noise. We consider two commonly-
seen background noises, i.e., noise from the air conditioner and
noise from the vacuum cleaner. When there is no explicit back-
ground noise, the sound volume at the receiver is around 44 dB.
We employ the same setup in Sec. 4.4.2 to evaluate the static error
of orientation estimates. The results are shown in Fig. 15. We can
see that the errors stay low when the air conditioner is working.
However, a much larger error can be observed when the vacuum
cleaner is working. This is because the noise level caused by the
vacuum cleaner is much higher (66.0 dB) and the noise source also
keeps moving during the vacuum cleaner’s operation.

4.7 Applications
To further demonstrate MOM’s applicability in real life, we develop
two applications of MOM on commodity devices: earphone-based
head tracking and smartphone-based 3D reconstruction.

4.7.1 Earphone-basedHead Tracking. Recent commodity earphones,
such as AirPods Pro, begin to integrate built-in gyroscopes, which
enable earphones to track users’ head motions. Such head track-
ing facilitates multiple on-ear applications: head gesture recogni-
tion [21, 39] and acoustic augmented reality (AAR) [48]. For these
on-ear applications, the orientation around the Z axis (i.e.,𝛾 in Euler
angle) is the most critical information. This is because the head’s
𝛾 alone is enough for most applications, such as AAR. In addition,
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Figure 17: In head tracking, the experiment setup (a)
and the APP’s screenshots of the head tracking results
(b) after even rounds of turning.
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Figure 18: In 3D reconstruction, the experiment setup (a), the ex-
ample of two images of an object (b), and the reconstructed object
in 3D space (c).

the range of 𝛾 varies from 0° to 360° when a user is walking around,
while that of the other two axes is limited in a small range.

However, measuring a head’s 𝛾 remains challenging on ear-
phones for two reasons. First, due to the very limited size, the
integrated mini-version gyroscope [22] performs not as well as
those in smartphones, suffering from serious cumulative errors [14].
Besides, the magnetometer that is commonly used for calibration
𝛾 can be easily polluted by the ferromagnetic material in the ear-
phones [13]. Fortunately, most commodity earphones are equipped
with one microphone in each earbud, which ensures the feasibility
of MOM’s deployment on earphones. In our evaluation, a user wear-
ing earphones turns 10 rounds1 in a chair as shown in Fig. 17(b).
We display the APP’s screenshots of the head orientation results
after even rounds of turning. As Fig. 17(b) shows, the measurement
error of the baseline based on the gyroscope sensor inside Air-
Pods Pro ($200) accumulates during the process of user’s turning,
reaching 60° after 10 rounds. Meanwhile, we implement MOM on a
commodity earphone, Sennheiser AMBEO smart headset ($60), to
measure the head’s orientation (𝛾 ). We can observe a much smaller
error, merely 2 − 3° after 10 rounds of head turning in Fig. 17(b).

4.7.2 Smartphone-based 3D Reconstruction. 3D reconstruction is
widely used in diverse real-life applications such as virtual real-
ity [20] and autonomous driving [8]. In autonomous driving [8],
multiple cameras are deployed to detect the vehicles’ sizes using 3D
reconstruction. For these applications, multiple images are taken at
different orientations. A small orientation deviation can lead to sig-
nificant 3D reconstruction errors and therefore 3D reconstruction
requires high accuracy in orientation measurements.

As Fig. 18(a) shows, this application is implemented on a Pixel 4
smartphone by using the top and bottom microphones of the phone.
With accurate camera orientations captured by MOM, the two
images, shown in Fig. 18(b), can be used to reconstruct the shape
of the target red box in 3D space, shown in Fig. 18(c). We employ
the method introduced in [26, 32] for 3D reconstruction. We first
calculate the key points’ spatial angle received at the camera based
on the key points’ pixel positions on the images. Such spatial angle
can be transformed to the world reference coordinate by applying
the camera’s orientation information obtained by MOM. Then, we
draw two rays from the camera locations, along the transformed

1One round indicates an orientation change of 360◦ back to the initial orientation.

spatial angles. Finally, the points in the 3D space with the minimum
distances to the two rays serve as the reconstructed key points.
With the orientation information obtained from our system, the
dimensions of the target (i.e., 𝑎, 𝑏, 𝑐 in Fig. 18(c)) can be estimated
accurately with a mean error less than 5%.

5 RELATEDWORK
In this section, we discuss the related work in three broad categories,
i.e., acoustic sensing, AoA extraction and orientation estimation.

Acoustic Sensing. Owing to the low propagation speed in the
air (340 m/s), acoustic signals can be utilized to achieve fine-grained
sensing. Inaudible ultrasound is usually adopted for a more con-
formable user experience. Ultrasound-based object tracking has
been successfully implemented on commodity smartphones [49]
and earphones [10]. In the field of smart health, ultrasound has
been exploited to monitor human lung functions [37], measure
heartbeat [50] and detect eye blink [25], which push the sensing
granularity to sub-millimeter level. Besides ultrasound, a recent
study [40] adopts white noise to monitor an infant for respiration,
motion and cry sensing. Furthermore, environment temperature
can also be estimated by measuring the signal speed in the air as
sound speed is closely related to the air temperature [9].

AoA Extraction. When a signal is received by a device, the AoA
information can be exploited in numerous applications, such as
localization and navigation. Traditional methods for AoA extrac-
tion include MUSIC [33] and ESPIRIT [31]. ArrayTrack [46] first
utilizes an antenna array on a WiFi access point to obtain the AoA
information for indoor localization. MD-Track[45] further exploits
information from multiple dimensions (angle, time and Doppler
shift) rather than just angle information to further distinguish sig-
nals mixed together for multi-target localization.

As for acoustic signals, there are two types of AoA extraction: ac-
tive and passive. For active AoA extractions, a device transmits ded-
icated acoustic signals and extracts AoAs from the reflected signals.
Active AoA extraction has been widely used in device tracking [27]
and object imaging [28]. To improve the tracking accuracy and
sensing range, a recurrent neural network (RNN) is applied [29]. In
FM-Track [24], signal parameters from the time domain, frequency
domain and spatial domain are jointly estimated to achieve fine-
grained multi-target sensing. In passive AoA extraction, unknown
ambient acoustic signals are utilized. GCC-PHAT [19] extracts AoAs
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based on delays. To extract multiple AoAs, VoLoc [35] proposes an
algorithm that extracts AoAs iteratively. Symphony [41] improves
GCC-PHAT by considering delays at multiple microphones. The
AoA accuracy of these works is usually limited by the sampling
rate and the spacing of the microphones.

Orientation Estimation. Compared to location tracking, ori-
entation estimation is an equally important task in many real-life
applications. The traditional way to estimate orientation is using the
gyroscope with Kalman filter [23] and complementary filter [12].
To overcome the cumulative error generated by the gyroscope,
other sensors are also exploited. The most commonly used sen-
sors are accelerometers and magnetometers. Their usage can be
found on various smart devices, including smartphones [36, 51]
and earphones [13, 14].

Without a need for inertial sensors, some other methods are also
proposed to track object orientation. RFID-based solutions [17, 42]
required deploying multiple RFID tags to track the orientation
of a device. A recent work [34] also exploited the polarization
information to track the orientation of RFID tags. Although RFID
tags are cheap, the RFID reader equipped with polarized antennas
is expensive. It is also difficult to deploy multiple RFID tags on
small-sized electronic devices such as a smartphone in our system.
In a recent work [44], an antenna array was utilized to track the
orientation of a device. However, a dedicated Intel 5300 WiFi card
needs to be used which is not available in consumer-level devices
such as smartphones. The GPS based solutions [15] are mainly used
on drones. Due to the coarse distance accuracy of the GPS module
and the requirement of installingmultiple GPSmodules at the target
device, this method is feasible to track the orientation of a larger
device such as a drone but is not suitable in tracking small devices
such as smartphones and earphones. Also GPS-based solutions only
work in the outdoor environment, while our system focuses on the
scenarios in an indoor environment where the GPS signals are too
weak to be utilized for tracking. The induction coil methodmeasures
the time-varying magnetic flux density to track the orientation of
a device. Based on the fact that the magnetic flux density changes
as a magnetic object rotates, MET [16] utilized multiple induction
coils to track the orientation of an electric toothbrush by measuring
its motor’s magnetic fields.

6 DISCUSSION
In this section, we briefly discuss the limitations of the proposed
system and potential future work.

Ultrasound Implementation. So far, we utilize free audible
sound sources in the environment for orientation tracking. Besides
audible signals, dedicated ultrasound sources can also be employed
in special scenarios, such as in a virtual reality room. We believe
with a controlled chirp signal in the inaudible band, even higher
accuracy can be achieved.

Far field requirement. MOM estimates a device’s orientation
based on the AoAs of signals from the sound sources to the device.
In this work, we make an assumption that the sound sources are
in the far field. In other words, sound sources are sufficiently far
away (e.g., 1-2 m) from the device. If the device is very close to the
sound sources (e.g., less than 20 cm), this assumption does not hold

and the AoA estimation can be inaccurate, degrading the system
performance.

Privacy Concern. To obtain the device orientation information,
MoM continually captures acoustic signals in the environment
including human voice. These collected signals may leak private
information. A possible solution is to collect acoustic signals only
in some time windows instead of all of them. That is to say, we
collect signals in one timewindow, and drop signals in the following
several windows. In this way, while AoA information can still be
successfully extracted, voice privacy is protected.

Moving Sound Source. The sound sources are assumed to be at
fixed locations in MOM. In reality, some of the sound sources may
move over time. These moving sound sources can fail the proposed
system and therefore should not be taken as anchors. Fortunately,
when a sound source moves, the signal frequency varies due to the
Doppler effect. Hence, those sound sources with obvious Doppler
frequency shifts can be detected and excluded from being taken
into consideration as anchors.

7 CONCLUSION
In this paper, we present MOM, a microphone-based orientation
estimation system. MOM does not need to deploy dedicated sound
sources and achieves highly accurate tracking performance, outper-
forming the state-of-the-arts. The proposed system can be easily
integrated into widely available commodity hardware such as smart-
phones and earphones. The proposed system involves orientation
tracking into the ecosystem of acoustic sensing, moving one step
closer to real-life adoption of acoustic sensing.
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