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Eye blink detection plays a key role in many real-life applications such as Human-Computer Interaction (HCI), drowsy driving
prevention and eye disease detection. Although traditional camera-based techniques are promising, multiple issues hinder
their wide adoption including the privacy concern, strict lighting condition and line-of-sight (LoS) requirements. On the other
hand, wireless sensing without a need for dedicated sensors gains a tremendous amount of attention in recent years. Among
the wireless signals utilized for sensing, acoustic signals show a unique potential for fine-grained sensing owing to their low
propagation speed in the air. Another trend favoring acoustic sensing is the wide availability of speakers and microphones in
commodity devices. Promising progress has been achieved in fine-grained human motion sensing such as breathing using
acoustic signals. However, it is still very challenging to employ acoustic signals for eye blink detection due to the unique
characteristics of eye blink (i.e., subtle, sparse and aperiodic) and severe interference (i.e., from the human target himself
and surrounding objects). We find that even the very subtle involuntary head movement induced by breathing can severely
interfere with eye blink detection. In this work, for the first time, we propose a system called BlinkListener to sense the subtle
eye blink motion using acoustic signals in a contact-free manner. We first quantitatively model the relationship between signal
variation and the subtle movements caused by eye blink and interference. Then, we propose a novel method that exploits the
“harmful” interference to maximize the subtle signal variation induced by eye blinks. We implement BlinkListener on both
a research-purpose platform (Bela) and a commodity smartphone (iPhone 5c). Experiment results show that BlinkListener
can achieve robust performance with a median detection accuracy of 95%. Our system can achieve high accuracies when
the smartphone is held in hand, the target wears glasses/sunglasses and in the presence of strong interference with people
moving around.
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1 INTRODUCTION
Eye blink detection has long been a hot research topic, attracting interest from both academia and industry.
Eye blink detection plays a critical role in many real-life applications such as Human-Computer-Interaction for
people with Motor Neuron Disease (MND) [34, 49, 52, 57], drowsy driving prevention [6, 20, 33, 60] and eye
disease detection [19, 21, 48]. MND is a progressive disease that causes muscle weakness and stiffness throughout
the body. People with MND first experience difficulties moving their limbs and eventually lose their ability to
control the mouth muscle to speak. Each year, more than 500,000 people are diagnosed with MND, and eye-based
communication through blinking is one of the very few ways these patients can use to communicate with others
and interact with devices. Another key application of eye blink detection is drowsy driving prevention. From just
2011 to 2015, over 396,000 traffic accidents are related to drowsy driving in the United States [5]. Since the eye
blink pattern is distinctive when drivers become drowsy, eye blink detection is extensively leveraged by in-car
anti-drowsiness systems (e.g., Volvo Driver Alert Control [25]) to prevent traffic accidents and save people’s lives.
Moreover, by continuously monitoring blink intervals, eye blink detection can help people detect eye diseases
such as dry eyes and Computer Vision Syndrome (CVS) which are caused by increased visual concentration.

Existing eye blink detection systems mainly rely on different types of sensors, which can be divided into three
categories: EOG sensor [53, 64], proximity sensor [21, 31] and camera [27, 61]. EOG and proximity sensors are
usually embedded in wearable devices such as virtual reality headsets and eyewears [21, 53, 64]. Although these
systems can achieve high accuracy, wearable-based solutions are intrusive and may cause discomfort in the long
term. On the other hand, cameras are usually placed remotely to capture images or record videos to detect eye
blinks in a contact-free manner [7, 27]. Though promising, the performance of camera-based systems degrades in
low lighting conditions and may raise privacy concerns.
In this work, for the first time, we propose a system called BlinkListener to detect eye blinks using acoustic

signals. Acoustic sensing is one key component of wireless sensing which gains a tremendous amount of attention
in recent years. Different from traditional sensing which relies on sensors, wireless sensing does not require any
sensors and the target-reflection wireless signal is utilized to sense the target’s information. The key rationale of
wireless sensing is that the target movements affect the signal propagation in the air. Thus, by carefully analyzing
the signal variations, target information such as movement speed and displacement can be obtained. A large
range of wireless sensing applications has been enabled ranging from coarse-grained activity tracking [3, 55] to
fine-grained breathing monitoring [69, 80]. Also different wireless signals are exploited including WiFi [72, 75],
RFID [18, 74], ultrasound [26, 58], 60 GHz [41, 70] and even visible light [39, 40].

Among these wireless technologies, acoustic signal exhibits unique advantages in terms of sensing granularity
due to the inherent low propagation speed (340𝑚/𝑠) in the air. Researchers have successfully pushed the sensing
granularity to millimeter level, enabling applications that require fine-granularity such as finger tracking [50, 73,
79] and breathing monitoring [69, 71, 76]. One interesting trend in favor of acoustic sensing is that more and
more commodity devices in our everyday lives have speakers and microphones built in. Besides laptops and
smartphones, most TVs nowadays are capable of voice control, and it is reported that around 20% of consumers
interact with their TVs or streaming devices via voice commands [46]. Smart speakers (e.g., Amazon Echo) are
also becoming increasingly popular at home.

Motivated by this trend, we propose to employ inaudible acoustic signals for eye blink detection in this work.
We emit inaudible acoustic signals through a commodity smartphone and analyze the reflected signals to detect
eye blink. Although promising progress has been achieved in acoustic sensing, eye blink detection is still a very
challenging task due to the following reasons.

• Extremely subtle motion. Eye blink is a very subtle motion. Compared with breathing sensing which is
already a non-trivial task with a chest displacement of about 5𝑚𝑚, the eyelid has a thickness of around
0.5𝑚𝑚 [12]. Therefore, during the eye blinking process, the displacement is just 10% of that caused by
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breathing. This subtle displacement-caused signal variation is very small and can be easily buried in noise
without being detected. Furthermore, the sensing performance is also closely related to the size of the
reflection area. Compared with the chest, the reflection area of the eyes is much smaller (i.e., 1%), leading
to much weaker reflection signals and accordingly a poorer sensing performance.

• Severe interference. The second challenge is the strong interference from surrounding environments and
human target himself. When we apply acoustic signals for eye blink detection, besides the reflection signals
bounced off the eyes, surrounding objects also reflect back signals which can be stronger than the eye
reflection. These signals get mixed together at the microphone. Separating the eye-reflection signals from
other interfering reflections is nontrivial. Note that when a smartphone is used for sensing, the direct path
signal from the speaker to the microphone is also very strong, which can interfere with the reflection-based
sensing. We further observe another interesting challenge that even after we address the interference and
obtain the clean reflection signals from eyes, it is still difficult to detect eye blink. This is because the signals
reflected from the eyes contain information not only related to eye blink but also related to breathing and
heartbeat-caused movements. Even if the target keeps completely stationary, the small involuntary head
movements caused by breathing and heartbeat always exist [10, 62] and are strong enough to interfere with
eye blink detection. We term this embedded interference and this interference makes eye blink detection
even more challenging.

• Sparsity and aperiodicity. The sparsity and aperiodicity of eye blink motion require an effective real-
time algorithm to detect individual eye blink. Different from breathing and heartbeat which induce body
movement all the time, eye blink only happens for 1.5 to 6% of the time.1 Therefore, eye blink is a sparse
motion in the time domain. Further, the blink interval varies significantly from several seconds to tens of
seconds, which is determined by the cognitive processes of our brain [11]. While heartbeat and breathing
are periodic in a stable state (e.g., sleep), even the time domain information is slightly corrupted, we can
still convert signals into the frequency domain to obtain the breathing/heartbeat rate. The unique nature of
sparsity and aperiodicity makes frequency domain analysis infeasible for eye blink detection.

To address the first challenge to sense the very subtle movement, we propose a novel viewing position scheme
based on an important observation: the sensing performance varies dramatically when we view the movement-
induced signal variation from different positions in the I-Q vector space.2 We show in this paper for the first
time that viewing position matters in wireless sensing. By choosing the optimal viewing position, the sensing
performance can be greatly boosted and a subtle movement that previously cannot be detected can now be
accurately sensed.

To address the interference issue, we propose a two-stage scheme. We first employ the chirp signal design to
differentiate the signals reflected by the eyes from the signals reflected by other surrounding objects. Owing
to the low propagation speed in the air, the resolution of acoustic signal with a bandwidth of 4 𝑘𝐻𝑧 is able to
distinguish two signals with a distance difference larger than 4.25 𝑐𝑚. Therefore, signals reflected by the eyes can
be clearly separated from signals reflected by surrounding objects. After we obtain the signals reflected from
the eyes, we still need to deal with the embedded interference caused by breathing and heartbeat. The signals
reflected by the eyes contain not only the eye blink information but also breathing and heartbeat information.
Prior studies consider this interference harmful and always try to remove them [4, 56]. In this paper, we show that
there is no need to remove them owing to the unique characteristic of eye blink. With the proposed novel scheme,
we can successfully turn the embedded interference widely considered harmful to be beneficial. The key rationale
is that breathing and heartbeat-induced signal variations are purely caused by path length change. However, the

1One eye blink takes 100 to 400𝑚𝑠 [65]. Ten eye blinks in one minute corresponds to 1.5 to 6% of the time.
2I-Q vector is a 2D representation of the signal after down-conversion. The signal is represented as a vector with both amplitude and phase in
the complex plane.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 73. Publication date: June 2021.



73:4 • Liu et al.

eye blink-induced signal variation is caused not only by the path length change (with vs. without eyelid) but also
by a material change of the reflection surface (eyelid vs. eyeball). The reflection coefficients are very different
for these two surfaces, leading to a dramatic signal strength variation. Therefore, the eye blink-caused signal
variation exhibits a unique property: the signal phase change is small but the signal amplitude change is large.
This is very different from breathing and heartbeat which cause a large signal variation in phase but a small
signal variation in amplitude. By deeply understanding the underlying principles and modeling the eye blink
process in the I-Q vector space, we can detect eye blink without removing the embedded interference. Instead,
we employ these interfering variations to help identify the optimal viewing position for eye blink detection.

To address the sparsity and aperiodicity issues, we do not convert the signal to the frequency domain but
process the signal variation in the time domain. Since the optimal viewing position shifts during the long-term
detection process caused by slight body movements of the human target, we propose a dynamic update strategy to
adaptively update the optimal viewing position for eye blink detection, which achieves a high detection accuracy
in real-time. To summarize, our contributions are as follows.
(1) We achieve highly accurate eye blink detection in a contact-free manner using a pair of speaker and

microphone widely available in commodity devices. Through both theoretical and experimental analysis,
we quantitatively model the relationship between signal variations and the subtle movements caused by eye
blink and interference. To our best knowledge, BlinkListener is the first system applying acoustic signals
for eye blink detection.

(2) For the first time, we demonstrate that the viewing position in the I-Q space affects the sensing performance.
We utilize the “harmful” interference to help determine the optimal viewing position, achieving accurate
eye blink detection which is previously infeasible due to the extremely subtle signal variation and strong
interference. We believe the proposed viewing position scheme can be applied to improve the performance
of other sensing applications which involve extremely small signal variations.

(3) We implement BlinkListener on both a research-purpose hardware platform (Bela [66]) and a commodity
smartphone (iPhone 5c). Experiment results show that BlinkListener can achieve robust performance with
a median detection accuracy of 95%. Also, the proposed system can still achieve high accuracy when the
smartphone is held in hand, the target wears glasses/sunglasses, and in low lighting conditions. Even in
the presence of strong interference such as people walking around, the proposed system still works well as
long as the interfering person is more than 1𝑚 away from the sensing device.

The rest of this paper is organized as follows. Sec. 2 introduces the state-of-the-art literature on eye blink
detection and acoustic-based sensing. Sec. 3 presents the principle of applying acoustic signals for eye blink
sensing. Sec. 4 introduces different types of interference. Sec. 5 and Sec. 6 present how to handle the interference.
Sec. 7 presents the implementation of BlinkListener. Sec. 8 presents the system evaluation. Sec. 9 discusses the
limitation of our work followed by a conclusion in Sec. 10.

2 RELATED WORK
In this section, we discuss the literature related to eye blink detection and acoustic sensing.

2.1 Eye Blink Detection
There is a large body of literature related to eye blink detection. We classify them into three categories based on
the types of sensors used.

2.1.1 EOG-based. Electrooculography (EOG) sensors have been used in eye movement tracking and eye blink
detection [14, 32, 36, 53, 64]. To obtain the electrooculogram signal for eye blink detection, EOG-based systems
require users to attach electrodes surrounding their eyes with cables connected to a computing unit, which
are intrusive and hinder user mobility [14, 24, 59]. The latest EOG-based solutions integrate EOG sensors into
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glasses [13, 36, 63]. There are multiple commercial EOG glasses available on the market, such as JINS MEME
glasses [1] and imec eye-tracking glasses [2]. Although these glasses-based solutions are promising, they are still
expensive (e.g., the JINS MEME glasses cost $420). In contrast, our solution is hosted on a smartphone without
extra cost.

2.1.2 Proximity Sensor-based. Proximity sensors, often referred to as infrared cameras or infrared-reflective
sensors, are embedded in head-mounted devices or eyewears for eye blink detection and eye tracking [16, 21, 31].
Proximity sensors have a lot of merits such as low-power, portable, and immune to strong noise. However,
it is reported that proximity sensors might cause damage to the eyes due to the emitted heat if not properly
configured [23]. Also, eyewears are still intrusive and may cause discomfort in long-term use. Compared with
proximity sensor-based solutions, our method detects eye blink in a contact-free and non-intrusive manner,
which does not require users to wear a device. Also to make sure it is safe to be used in the long term, our system
employs a sound volume far below the allowed exposure limit [15, 29].

2.1.3 Camera-based. There is a vast body of literature on using cameras for eye blink detection [7, 20, 22, 27, 37,
45, 47, 61, 78]. Even though camera-based methods can achieve good performance, the image processing part
usually requires complex algorithms for feature extraction, segmentation, and classification, which is computation-
intensive and power-hungry [35, 43]. The main drawback of camera-based methods is strict lighting condition
requirements [17, 51, 82], which means they cannot work well in the dark. Also, using cameras may raise privacy
concerns. Our system provides a complementary solution to camera-based approaches since acoustic sensing is
not restricted to lighting conditions, and can still detect eye blink when users wear sunglasses.

2.2 Acoustic Sensing
Acoustic signals have been widely employed for fine-grained motion tracking [26, 38, 69] and localization [44, 68]
owing to their low propagation speed in the air. Recent research efforts have pushed the sensing granularity of
tracking and sensing to millimeter level. For example, fingerIO [50] successfully tracks fingers using acoustic
signals, while LLAP [73] and Strata [79] exploit phase measurement of acoustic signals to achieve a millimeter-
level tracking accuracy. Wang et al. [71] propose a correlation-based method to enable millimeter-level breathing
detection. FM-Track [38] leverages information from multiple dimensions to further improve the sensing granu-
larity for multiple close-by targets. However, millimeter-level sensing granularity is still not enough for eye blink
detection since the displacement caused by eye blink is even smaller. The ACG system [56] proposed by Qian et
al. applies acoustic signals to detect breathing as well as heartbeat rate. However, the frequency domain analysis
utilized by ACG does not work for eye blink detection since eye blink is sparse and aperiodic.

3 UNDERSTANDING ACOUSTIC SIGNALS FOR EYE BLINK DETECTION
In this section, we introduce the chirp signal design for BlinkListener followed by the eye blink sensing model.

3.1 Chirp Signal Design
In BlinkListener, we employ chirp signals for eye blink detection. Due to the low propagation speed of acoustic
signals in the air, a frequency band of 4 𝑘𝐻𝑧 can achieve a spatial resolution of 4.25 𝑐𝑚. This means if the distance
difference of two targets to the device is more than 4.25 𝑐𝑚, the reflected signals from these two targets will fall
in different frequency bins and can be distinguished.
We analyze the signal propagated from a speaker (transmitter) to the target and then reflected back to a

microphone (receiver). The speaker and microphone are co-located. Here, we use the sensing device to refer
to the co-located speaker and microphone. The transmitted chirp signals generated by a speaker are shown in
Fig. 1a. The frequency 𝑓 of the signal changes linearly with time as 𝑓 = 𝑓0 + 𝐵

𝑇
𝑡 , where 𝑓0, 𝐵, and 𝑇 are the initial
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(a) The chirp structure. The chirp signal is emitted by a speaker and received by a
microphone. The received chirp is a delayed version of the transmitted chirp.
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Fig. 1. The chirp signal design and principle.
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(b) The FFT result of the sensing signal.

Fig. 2. The illustration of eye blink detection in a multipath environment, and the corresponding ToFs (frequency shifts) of
the multiple paths, respectively.

frequency, bandwidth, and duration of the chirp, respectively. The transmitted chirp can be represented as

𝑥 (𝑡) = 𝑒−𝑗2𝜋
(
𝑓0𝑡+ 𝐵

2𝑇 𝑡2
)
. (1)

The transmitted chirps arrive at the receiver through multiple paths: direct path, reflection path from eyes,
and reflection path from a surrounding object as shown in Fig. 2a. Let us denote the number of paths as 𝑁 . The
received signal is a superposition of all the 𝑁 paths, and each path is a delayed version of the transmitted signal.
The overall received signal can be represented as

𝑦 (𝑡) =
𝑁∑
𝑖=1

𝛼𝑖𝑒
−𝑗2𝜋

(
𝑓0 (𝑡−𝜏𝑖 )+ 𝐵

2𝑇 (𝑡−𝜏𝑖 )2
)
, (2)

where 𝛼𝑖 and 𝜏𝑖 are signal attenuation and time-of-flight (ToF) of the 𝑖-th path signal in the air, respectively. By
multiplying the conjugation of transmitted signal, we can obtain the mixed signal below:

𝑚(𝑡) =
𝑁∑
𝑖=1

𝛼𝑖𝑒
−𝑗2𝜋

(
𝐵
𝑇
𝜏𝑖𝑡+𝑓0𝜏𝑖− 𝐵

2𝑇 𝜏2𝑖

)
. (3)

This mixed signal is employed for sensing in BlinkListener. We can see from Fig. 1b that the received chirp is a
delayed (shifted) version of the transmitted chirp. The frequency shift Δ𝑓𝑖 is proportional to the ToF 𝜏𝑖 of the
signal. A larger frequency shift corresponds to a longer ToF. By measuring the frequency shift Δ𝑓𝑖 at the receiver,
we can obtain ToF as 𝜏𝑖 =

Δ𝑓𝑖𝑇
𝐵

. The distance (range) between the object and sensing device can thus be calculated
as 𝑑𝑖 = 𝑐𝜏𝑖

2 =
𝑐Δ𝑓𝑖𝑇
2𝐵 , where 𝑐 is the speed of sound in the air, and the factor 2 accounts for the fact that the reflected

signal traverses the path back and forth. The range resolution 𝛿𝑑 is determined by the frequency bandwidth 𝐵 of
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Fig. 3. The composite signal in I-Q vector space.

the chirp signal and can be calculated as 𝑐
2𝐵 . That means if two signals have a very small distance difference (< 𝑐

2𝐵 )
with respect to the sensing device, the two signals will fall in the same frequency bin and therefore cannot
be differentiated. If the distance difference is larger than 𝑐

2𝐵 , two signals can be distinguished. Without loss of
generality, we consider a bandwidth of 𝐵 = 4 𝑘𝐻𝑧, which yields a range resolution of 𝛿𝑑 = 𝑐

2𝐵 =
340𝑚/𝑠
2×4000 = 4.25 𝑐𝑚.

After performing Fast Fourier transform (FFT) over the mixed signal, we can depict different objects located
at different distances with respect to the sensing device as shown in Fig. 2b. We can see three different colors
corresponding to three different signal paths. The red one denotes the signal reflected from the eyes, and the gray
and green colors denote the direct path signal and the reflection from another surrounding object, respectively.
The strength of eye-reflection signals is not only weaker than that of the direct path but also weaker than those
of the reflection from other objects due to a very small area of the reflective surface. In Sec. 5, we will illustrate
how to identify the eye-reflection signals in the presence of other strong reflection signals. We further group
signal paths into static paths and dynamic paths. All the static path signals, including the direct path signal and
reflections from static surrounding objects, can be represented as a single combined static vector

𝐻𝑠 =
∑
𝑖∈𝑃𝑠

𝛼𝑖𝑒
−𝑗2𝜋

(
𝐵
𝑇
𝜏𝑖𝑡+𝑓0𝜏𝑖− 𝐵

2𝑇 𝜏2𝑖

)
, (4)

where 𝑃𝑠 is the set of static paths. The signal reflected from the eyes of the human target can be represented as a
dynamic vector

𝐻𝑑 = 𝛼𝑒−𝑗2𝜋
(
𝐵
𝑇
𝜏𝑡+𝑓0𝜏− 𝐵

2𝑇 𝜏2
)
. (5)

We denote the superimposed composite signal as 𝐻𝑐 , where 𝐻𝑐 is a vector summation of 𝐻𝑠 and 𝐻𝑑 . We
illustrate the static signal vector, dynamic signal vector and composite signal vector in I-Q vector space in Fig. 3.
For most small-scale movements, the amplitude of the dynamic vector can be assumed as a constant [81] and
only the phase changes. Therefore, the dynamic vector rotates with respect to the static vector, inducing the
signal variations in the I-Q vector space.

3.2 Modeling the Eye Blink Process
Now we focus on the dynamic component 𝐻𝑑 to deeply understand the underlying principle and quantify the
relationship between eye blink motion and the signal variation in the I-Q vector space.
Eye blinking is a process of rapidly closing and then opening of the eyelid within a short period of time (100

to 400𝑚𝑠). When acoustic signals are applied for eye blink detection in a contact-free manner, the rationale is
to capture the subtle variation of the signals reflected from the eyes. According to our analysis, there are two
main factors affecting the signal variation during the process of eye blinking: (F1) when the eye is closed, the
eyelid causes a subtle path length change; (F2) the reflective surface switches between the eyeball (water texture)
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Fig. 4. The signal model of one eye blink cycle in the I-Q vector space.

and the eyelid (skin texture). The first factor F1 mainly causes a phase shift and the signal amplitude can be
considered as a constant.3 From Eq. 5, we can see the phase of the signal is 𝜑 = −2𝜋

(
𝑓0𝜏 − 𝐵

2𝑇 𝜏
2) . In a typical

setting, 𝑓0 >> 𝐵
2𝑇 𝜏 , so we can omit the quadratic term. Thus, by replacing 𝜏 with 2𝑑

𝑐
, the path length change Δ𝑑

induces a phase change Δ𝜑 which can be represented as

Δ𝜑 = −4𝜋 𝑓0Δ𝑑
𝑐

. (6)

The reflective surface change (F2) causes a change on the signal amplitude, that is, the attenuation term 𝛼 , owing
to dramatically different reflection coefficients. We denote 𝜑𝑜𝑝𝑒𝑛 , 𝛼𝑜𝑝𝑒𝑛 as the phase and amplitude of the signal
when the eyes are open. Similarly, 𝜑𝑐𝑙𝑜𝑠𝑒𝑑 and 𝛼𝑐𝑙𝑜𝑠𝑒𝑑 are the phase and amplitude of the signal when the eyes are
closed. We then illustrate the eye blink process in Fig. 4. The red and blue dots represent the eye closed status
and the eye open status respectively. We divide one complete cycle of eye blink into two stages and discuss the
effect on signal variation below.

3.2.1 Eye Closing Stage. In the eye closing stage, the status of the eyes changes from open to closed. (i) Phase
change: when the eyeball is covered by the eyelid, there is a subtle reflection path length change. The amount of
path length change depends on the thickness of the eyelid. According to Eq. 6, a small phase change is induced. In
I-Q vector space, the phase change causes the dynamic vector to rotate with respect to the static vector. Without
loss of generality, if we consider a zero static vector, the dynamic vector rotates with respect to the origin as
shown in Fig. 4a. (ii) Amplitude change: when the eyeball is covered by the eyelid, the reflective surface switches
from the water-textured eyeball to the skin-textured eyelid. The amount of sound signal absorption is much more
for the eyelid and therefore causing larger signal attenuation. Thus, an amplitude decrease will occur, causing the
length of the dynamic vector to be shorter as shown in Fig. 4a.

3.2.2 Eye Opening Stage. The second stage is the eye opening stage, in which the status of the eyes changes
from closed to open. In this process, the phase and amplitude changes are exactly the opposite of the eye closing
stage. The phase change and amplitude change happen at the same time and the resultant signal variation is
shown in Fig. 4b. The switch between eye open and eye closed causes the signal samples to move in the I-Q
vector space. Note that the signal phase change and amplitude change are in orthogonal directions in the I-Q
vector space. The phase change causes a signal variation along the tangential direction of the circle while the

3For example, if the distance between the eyes and the sensing device is 50 𝑐𝑚, the eyelid-induced distance change is only 0.05 𝑐𝑚, which
causes a negligible amplitude change.
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Fig. 5. The 3D-printed eye mechanism structure and hardware components.
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Fig. 6. Experiment results for two eye mechanisms.

amplitude change causes a signal variation along the radial direction as shown in Fig. 4b. This is an important
property that we will utilize for eye blink detection in Sec. 5.

3.3 Eye Blink Model Validation
We validate our eye blink model using two 3D-printed eye mechanisms as shown in Fig. 5. Note that we do not
conduct the real eye experiment to validate our eye blink model here because the signals reflected by real eyes
not only contain the eye blink-induced signal variation but also the heartbeat and breathing-induced variation.
Therefore, the real eye experiment is not suitable to clearly demonstrate the correctness of the proposed eye blink
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Fig. 7. An Illustrative example of three types of interference.

model. For the first eye mechanism shown in Fig. 5a, the eyelid and the eyeball are both made of PLA material.
For the second eye mechanism shown in Fig. 5b, the eyelid is made of PLA and the eyeball is made of silicone.
Both of the two eye mechanisms’ eyelids have a thickness of 1𝑚𝑚. The eye mechanism is placed at a distance of
0.5𝑚 from the sensing device. We operate the eye mechanism by an Arduino Uno and an Adafruit PCA9685
servo driver, and trigger eye blinks by a push-to-make switch as shown in Fig. 5c. We keep the mechanical eyes
open for 4 seconds and then closed for 4 seconds. Fig. 6a shows the signal samples during the eye blink cycle. We
can see that the distance between eye open and eye close dots for different materials is larger than that for the
same material. Fig. 6b further shows that the signal amplitudes are roughly the same for the same material but
quite different for different materials. We also plot the corresponding phase and amplitude variations in Fig. 6c
and Fig. 6d. We can see that phase changes are significant and are almost the same for both the same material and
different materials in Fig. 6c. On the other hand, the amplitude change is only significant for the case of different
materials in Fig. 6d. These results match our theoretical analysis very well.

4 UNDERSTANDING THE INTERFERENCE IN EYE BLINK DETECTION
For a subtle movement such as eye blink, even a very small movement for the interference can severely degrade
the sensing performance. Therefore, the issue of interference we need to address is much more difficult than that
in other wireless sensing applications such as breathing monitoring and gesture recognition.

4.1 Different Types of Interference
As shown in Fig. 7, the interference for eye blink detection can be grouped into three categories, which are
described in detail below.

4.1.1 Environment Interference. The sensing signals will travel through different paths from the transmitter to the
receiver. The signals reflected from surrounding objects are termed environment interference. The environment
interference can come from static objects (e.g., furniture and walls) as well as moving objects (e.g., people moving
around).

4.1.2 Self-interference. Besides the signal reflected from the eyes, there also exist some signals reflected from
other body parts. The interference caused by signals reflected from other body parts is termed self-interference.
Self-interference can come from the hands when the human target is typing a keyboard, or the mouth when the
target is speaking.

4.1.3 Embedded Interference. Separating the eye-reflection signal from the environment and self-interference
is still not the end. Even if we can obtain the clear eye-reflection signal, it contains multifarious information
from not only the eye blink but also the breathing and heartbeat. The reason is that the human head moves
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Fig. 8. The signal model of embedded interference for one head movement cycle in the I-Q vector space.

involuntarily caused by breathing and heartbeat. Specifically, during the breathing process, the head slightly
moves with the torso caused by the chest movement. Moreover, there exists an approximate 1𝑚𝑚 head movement
synchronous with the heartbeat due to the pumping of blood, which is called ballistocardiography (BCG) [10, 62].
After we completely remove the environment interference and self-interference, the involuntary head movement
still exists and is embedded in the signal reflected from the eyes. In this paper, we term it embedded interference,
which is the most challenging interference caused by breathing and heartbeat. Note that for a lot of applications
such as gesture recognition, this embedded interference can be neglected because it is too small to affect the
sensing performance. However, for the detection of subtle eye blinks, this embedded interference cannot be
neglected and needs to be addressed before we can detect eye blinks.

4.2 Solutions for Addressing Different Types of Interference
4.2.1 Addressing Environment Interference and Self-interference Using Chirp Design. As mentioned in Sec. 3.1, we
employ chirp signal design as a spatial filter to separate reflection signals arriving from different distances into
different frequency bins. Owing to the low propagation speed in the air, the resolution of acoustic signal with a
bandwidth of 4 𝑘𝐻𝑧 is able to distinguish two signals with a distance difference larger than 4.25 𝑐𝑚. Therefore,
the signal reflected from the eyes can be clearly separated from signals reflected from surrounding objects which
usually have a distance tens of centimeters larger. Note that we do observe a case that cannot be addressed
with this chirp design. Specifically, when the lips are moving (e.g., speaking), the reflection from the lips has a
propagation distance very similar to the reflection from the eyes and the 4.25 𝑐𝑚 resolution is not fine enough to
separate them. The good news is that the lip movement causes much larger signal variations which are very
different from eye blink and can be easily detected. We can thus remove those signal samples corrupted by the
lip movement.

4.2.2 Modeling the Embedded Interference in the I-Q Vector Space. Since breathing and heartbeat are both periodic
movements, the induced involuntary head movement is also periodic. As shown in Fig. 8a, to model one cycle
of the head movement, we denote 𝜑 𝑓 𝑟𝑜𝑛𝑡 and 𝛼 𝑓 𝑟𝑜𝑛𝑡 as the signal phase and amplitude at the start position of
the head, respectively, which are marked in red. Similarly, we denote 𝜑𝑏𝑎𝑐𝑘 and 𝛼𝑏𝑎𝑐𝑘 as the signal phase and
amplitude at the end position of the head, respectively, which are marked in blue. The key observation is that,
when there is no eye blink, the signal induced by the involuntary head movement forms an arc trajectory in
the I-Q vector space as shown in Fig. 8b. Specifically, the signal amplitude change caused by the small head
displacement (around 1𝑚𝑚) is negligible, while the corresponding phase change is significant. Therefore, if
we do not consider the static vector, the phase change causes the dynamic vector to rotate with respect to the
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Fig. 9. The comparison between the signal variations reflected from the chest and eyes in amplitude (1D) and I-Q space (2D).

origin, and the radius of the arc is approximately a constant due to the negligible amplitude change. With a deep
understanding of the effect of the embedded interference, we further incorporate the embedded interference
model into the eye blink signal model and introduce the viewing position scheme in Sec. 6, in which we utilize
this embedded interference to help us maximize the eye blink signal variation. Before extracting the subtle eye
blink signal variation from the embedded interference, we first introduce our detailed method in addressing the
environment interference and self-interference in the next section.

5 IDENTIFYING EYE-REFLECTION FREQUENCY BIN
There are plenty of uninterested interference signals along with the target signal bounced from the eyes. In this
section, we introduce how to separate the eye reflection from other surrounding reflections (i.e., environment
interference and self-interference) by identifying the frequency bin corresponding to the eyes.

5.1 Problem Description
When we apply the chirp signal design for eye blink detection in a multipath-rich environment, reflectors at
different distances induce different amounts of frequency shifts, and the signals fall into different frequency bins.
After performing FFT over the sensing signal (mixed signal) in Eq. 3, we can obtain multiple peaks located in
different frequency bins corresponding to different reflectors as shown in Fig. 2. Without previous knowledge
about the distance between the eyes and the sensing device, we have no idea which peak corresponds to the
eye-reflection signals when there exist multiple peaks. The naïve way is to distinguish the eye-reflection signal
from other reflections by the power of peaks. However, due to the small reflection area, the power of eye reflection
can be weaker than those of other surrounding objects such as walls and furniture even if the eyes are closer to
the sensing device.

There are two relevant methods proposed by the prior breathing detection studies to identify the frequency bin
corresponding to the chest. One is to find the frequency bin with the highest periodicity [71], and the other is to
find the frequency bin with the largest signal amplitude variation [56]. Both methods are effective for breathing
detection. On one hand, breathing is a periodic process. On the other hand, the signal variation caused by the
chest displacement (e.g., 5𝑚𝑚) is much larger than the noise-caused variation. However, neither the periodicity
method nor the signal amplitude variation method works for eye blink detection. Specifically, the nature of
sparsity and aperiodicity for eye blink fails the periodicity method, and the small signal variation caused by the
eyes fails the signal amplitude variation method. To further illustrate it, we conduct two benchmark experiments.
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In the first experiment, we place the sensing device towards the target’s chest to collect the chest-reflection signals.
In the second experiment, we place the sensing device towards the target’s eyes to collect the eye-reflection
signals. The signal amplitudes extracted from the two experiments are shown in Fig. 9a and Fig. 9b, respectively.
We can observe that the chest-induced signal amplitude variation is large enough to be utilized to identify
the chest-reflection frequency bin from the noise bin (i.e., the frequency bin without the target). In contrast,
the eye-induced signal variation is much smaller, which is just slightly larger than the noise-caused variation.
Therefore, the method proposed for breathing detection does not work well for eye blink detection.

5.2 Eye-reflection Frequency Bin Identification Method in BlinkListener
To quickly identify the frequency bin corresponding to the eyes, we exploit the embedded interference caused by
breathing and heartbeat instead of directly depending on the signal variation caused by eye blink. The reason is
that, eye blink is a sparse activity and the blink interval varies from several seconds to tens of seconds, which may
introduce a large latency if we identify the eye-reflection frequency bin by eye blink. In contrast, the embedded
interference exists all the time even if there is no eye blink, which can be leveraged to quickly identify the
eye-reflection frequency bin.

Fig. 9c illustrates the signal variation for the eye-reflection frequency bin when there is no eye blink. We have
an interesting observation: although the 1D amplitude variation of the eye-reflection signal is small, the signal
variation in 2D I-Q vector space is quite large, which forms an arc trajectory due to the embedded interference.
As shown in Fig. 9c, the eye-reflection frequency bin can be easily distinguished from the noise bin in the 2D
space. Therefore, to identify the frequency bin corresponding to the eyes, we first compute the variance of the 2D
signal variations for each frequency bin and then pick out the one with maximum variance. Note that this is the
first time we utilize the “harmful” embedded interference to benefit our signal processing for eye blink sensing.

6 EXTRACTING EYE BLINK MOTION
Even after successfully extracting the eye-reflection signal from the identified frequency bin, it is still challenging
to obtain the eye blink information. In this section, we first describe the problem in detecting the eye blink from
the eye-reflection signal. Furthermore, inspired by our observation that the performance of eye blink detection
highly depends on the position from which the signal is viewed in the I-Q space, we propose a novel viewing
position scheme that fully utilizes the “harmful” embedded interference to help us maximize the eye blink-induced
signal variation. At last, we design the real-time eye blink detection algorithm based on our proposed viewing
position scheme.

6.1 Problem Description
According to the eye blink model presented in Sec. 3.2, eye blink can induce both the amplitude and phase change
in the 2D I-Q vector space. It is an intuitive way to detect the eye blink using both the phase and amplitude
information. Although promising, it still presents some difficulties.

• Embedded interference. The signals reflected from the eyes contain information which is related to not
only eye blink but also the embedded interference as introduced in Sec. 4.1. Specifically, even if the target
keeps completely stationary, the small involuntary head movements caused by breathing and heartbeat
still exist and are strong enough to interfere with eye blink detection.

• Strong residual power from the direct path. Due to the close distance between the speaker and microphone
on the commodity smartphones, the power of the direct path from the speaker to the microphone is so
high that the extracted eye-reflection signal contains strong residual power from the direct path [56].

To demonstrate the above-mentioned two difficulties, we illustrate the resultant eye-reflection signal variation
in Fig. 10a. On one hand, the signal variation induced by eye blink is superimposed on that of embedded
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Fig. 10. An illustrative example demonstrating that the performance of eye blink detection varies significantly when we view
the signal variations from different positions in the I-Q vector space.

interference, making it difficult to detect eye blink based on the superimposed eye-reflection signal. On the other
hand, the strong residual power from the direct path causes a very large static component, making it hard to
detect eye blink using the raw signal amplitude computed from the coordinate origin as shown in the green line
in Fig. 10b.

6.2 Viewing Position Scheme
To address the above-mentioned problem, we propose a viewing position scheme in the I-Q vector space to
maximize the eye blink-induced signal variation. This is inspired by the key observation that the performance
of eye blink detection varies significantly when we view the eye blink-induced signal variation from different
positions in the I-Q vector space.
Fig. 10a models the signal variation with both embedded interference and eye blink, whose trajectory is an

arc with a “bump” on it. The embedded interference induces the arc, and the “bump” on the arc is caused by
the reflection switching between the eyeballs and eyelids. To detect eye blink, we need to compute the signal
amplitude variation from the trajectory in the I-Q vector space. The traditional approach is to compute the
distance between the origin and each signal sample in the trajectory, which can be regarded as viewing the
trajectory from the origin. Unfortunately, this approach cannot be applied to detect eye blink since the signal
amplitude variation (i.e., the green line in Fig. 10b) cannot clearly show the motion of eye blink. However, if we
randomly select the viewing position in the I-Q vector space (i.e., the yellow dot in Fig. 10a), we can observe a
slightly clearer eye blink from the signal amplitude variation, which is computed from the new viewing position
to each signal sample (i.e., the yellow line in Fig. 10b). By choosing the optimal viewing position (i.e., the red dot
in Fig. 10a), we can maximize the signal amplitude variation induced by eye blink (i.e., the red line in Fig. 10b).

One question naturally arises: how to obtain the optimal viewing position for eye blink detection? We observe
that the center of the arc formed by the embedded interference is the optimal viewing position. The center of the
arc benefits eye blink detection in two aspects. The first one is that it can maximize the signal amplitude variation
caused by eye blink. The second one is that it minimizes the impact from embedded interference by ensuring that
the signal amplitude variation caused by embedded interference is roughly a constant. Therefore, to identify the
optimal viewing position, we apply the arc fitting method to find the center of the arc trajectory induced by the
embedded interference. Note that this is the second time we utilize the “harmful” interference to benefit sensing.
Recall that we utilize the embedded interference to identify the eye-reflection frequency bin for the first time.
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Fig. 11. An illustrative example of our real-time eye blink detection algorithm.

6.3 Real-time Eye Blink Detection Algorithm
Although the above viewing position scheme can achieve good eye blink detection performance, the optimal
viewing position changes during the long-term detection process due to the target’s slight body movements
and surrounding environment changes. Thus, we need to adaptively update the viewing position in real-time to
maintain a good sensing performance. Since we obtain the optimal viewing position by the arc fitting method,
the more signal samples we have, the more accurate the optimal viewing position is. However, more data samples
mean a larger system delay, and the real-time performance can be affected. In the following, we present the
design details of our real-time algorithm to maintain a good balance between the detection accuracy and system
latency.
Step 1: Initialization. At the beginning, our system collects a number of signal samples for the initialization.

Specifically, we accumulate 50 chirps with the default chirp period of 40𝑚𝑠 , which takes 2 𝑠 in total. Note that this
2 s is for the cold-start and is a one-time effort. Once the system is initiated, we can output the detection results
every 40𝑚𝑠 . Therefore, our proposed system is able to provide real-time detection. We apply the well-known
Pratt method [54] for the arc fitting, which is lightweight and robust.
Step 2: Eye blink peak detection. After obtaining the optimal viewing position, BlinkListener continuously

traces the relative distance from the viewing position to the newly collected signal sample. Since one eye blink
cycle takes 100 — 400𝑚𝑠 , we apply the Local Extreme Value Detection (LEVD) method to detect the eye blink
induced “bumps” in a sliding window. The basic idea of LEVD method is to find the alternative local maxima
and minima and compare the difference of two nearby local maxima and minima with a pre-defined threshold
𝑇ℎ𝑟𝑏𝑙𝑖𝑛𝑘 , which is set as five times of the standard deviation of signal amplitude when there is no eye blink. If the
difference of the local maxima and minima is larger than the threshold 𝑇ℎ𝑟𝑏𝑙𝑖𝑛𝑘 , an eye blink is detected.

Step 3: Viewing position update. Since the optimal view position calculation is very lightweight, we continuously
update the viewing position as long as enough samples are accumulated. Note that if too few samples are employed
for the arc fitting, the accuracy can be quite low. Therefore, we set 𝑇ℎ𝑟𝑢𝑝𝑑𝑎𝑡𝑒 as the minimum number of samples
that need to be accumulated before a new viewing position can be calculated. From comprehensive experiments,
we set 𝑇ℎ𝑟𝑢𝑝𝑑𝑎𝑡𝑒 = 50 as the default threshold which corresponds to a period of 2 𝑠 .

Step 4: Restart. When a large body movement happens, BlinkListener restarts the whole eye blink detection
process and goes back to Step 1. The large body movements are detected by comparing the signal variation with
a threshold 𝑇ℎ𝑟𝑟𝑒𝑠𝑡𝑎𝑟𝑡 , which is set as three times of the eye blink peak detection threshold 𝑇ℎ𝑟𝑏𝑙𝑖𝑛𝑘 . We illustrate
the real-time eye blink detection method using the real data collected in one of our experiments in Fig. 11. We
can see that four eye blinks are accurately detected.
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7 IMPLEMENTATION
We implement BlinkListener on both a research-purpose hardware platform Bela [66] and a commodity smart-
phone iPhone 5c [8]. They are used to transmit and receive acoustics signals for eye blink sensing. We employ
the Bela platform for benchmark experiments because it is more flexible to vary parameters such as the spacing
between the speaker and microphone.
Bela platform: The Bela hardware is connected with a general-purpose speaker to transmit chirp signals and

an MEMS microphone to receive chirp signals. The device components are shown in Fig. 12. The speaker and the
microphone are bound together. The microphone is placed on the top of the speaker and the distance between
them is around 8 𝑐𝑚.
Smartphone: Without loss of generality, we adopt an iPhone 5c to verify the effectiveness of BlinkListener

on the smartphone platform. We implement BlinkListener based on the existing acoustic sensing framework
LibAS [67]. We choose the built-in speaker and microphone co-located at the earpiece of the phone since they
are facing towards the eyes when the human target is using the phone.

Signal parameters: We adopt the frequency band from 18 𝑘𝐻𝑧 to 22 𝑘𝐻𝑧 which is usually inaudible for human
ears with a bandwidth of 4 𝑘𝐻𝑧 for sensing. We employ 40𝑚𝑠 as our default chirp duration.

Ground truth: We employ a separate smartphone as the recording device to record the ground truth using the
camera. The recording device is held by an adjustable tripod and placed at the same height as the sensing device.

8 EVALUATION
In this section, we comprehensively evaluate the performance of BlinkListener using the Bela platform by
varying the parameters under different conditions. We also conduct a series of field studies using a smartphone
to demonstrate the feasibility of BlinkListener on the commodity hardware.

8.1 Experiment Setup
We evaluate the performance of BlinkListener with 25 participants (14 male and 11 female). They are diverse
in age (from 20 and 56) and race (East-Asian, South-Asian, Caucasian and African). Since the Bela platform is
flexible to configure parameters such as the number of microphones and the spacing between the speaker and
microphone, we conduct experiments using the Bela platform to evaluate the effectiveness of BlinkListener
and vary parameters and conditions to study the impact of different factors. Our experiments are conducted
in a 3.3𝑚 × 6𝑚 conference room with furniture and facilities. We collect 3 minutes of acoustic data when the
volunteer (target) is sitting in a chair using the Bela platform. Unless specified otherwise, the sensing device (the
Bela platform) is placed 0.5𝑚 away from the target at the same height as the target’s eyes as shown in Fig. 13.
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8.2 Overall Performance
The eye blink detection accuracy is defined as the number of correctly detected eye blinks over the total number
of eye blinks. Fig. 14 plots the cumulative distribution function (CDF) of the overall detection accuracy under
different conditions and settings. We see that BlinkListener can achieve a high median detection accuracy of 95%.

8.3 Impact Factors
In this section, we evaluate the performance of our system under different impact factors.

8.3.1 Different Chirp Durations. Chirp duration is an important parameter that affects sensing accuracy. More
specifically, a longer chirp duration improves the SNR of the reflection signal and can thus improve the sensing
accuracy [38, 44]. However, due to the sparsity of the eye blink, each eye blink cycle only happens within 100 —
400𝑚𝑠 . Note that in chirp signal design, we have one distance estimate for each chirp. Therefore, if the chirp
duration is too large, the number of estimates becomes too small during one eye blink cycle. For example, if
the chirp duration is 100𝑚𝑠 and the eye blink duration is 200𝑚𝑠 , there are only two estimates during one eye
blink cycle. Too few estimates will cause an easy miss of the peak and accordingly degrade the performance of
eye blink detection. Therefore, there is an interesting trade-off here. We should choose a chirp duration not too
large nor too small. Through comprehensive experiments, we find a chirp duration of 40𝑚𝑠 presents us with the
optimal performance for eye blink detection. Fig. 15 shows the detailed detection accuracy for different chirp
durations.

8.3.2 Different Relative Positions of the Sensing Device with Respect to the Target. To explore the sensing area
boundary of BlinkListener, we conduct experiments under different relative positions of the sensing device with
respect to the target from four aspects: distance, angle, elevation, and height difference as shown in Fig. 16. Unless
otherwise specified, the sensing device is placed at a fixed distance of 0.5𝑚.
Distance: The sensing device is placed at different distances at 0.3, 0.5, 0.8 𝑚, respectively. Its orientation

is facing towards the human target’s eyes. As shown in Fig. 17a, the detection accuracy degrades with the
increase of the distance due to the decreasing SNR of the reflected signals. We can achieve a detection accuracy
of over 95% within 0.5𝑚. When the distance is increased to 0.8𝑚, the accuracy decreased to 86%. Therefore, we
suggest the users keep the device within a distance of 0.5𝑚 for high accuracy. Note that beamforming using a
microphone array can increase the sensing range. However, most smartphones nowadays are equipped with only
2 microphones.
Angle: The sensing device is placed at different angles from -60 degrees to 60 degrees at a step of 15 degrees.

We define the direction of the user’s sight as 0 degrees. From Fig. 17b, we can see the detection accuracy decreases
with the increase of the angle. When the angle is 0 degree and 15 degrees, the accuracy is higher than 95%. The
accuracy degrades severely when the angle is larger than 15 degrees. The reason is that when the sensing device
is placed on the side of the human target, the amount of reflection signal power getting back to the receiver
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Fig. 16. Illustration of different relative positions of the sensing device with respect to the human target.
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Fig. 17. Experiment results under different relative positions of the sensing device with respect to the human target.

becomes less, leading to lower accuracy. This is also related to the signal radiation pattern of the speaker. The
signal beam is usually thinner for the inaudible higher frequency band. We suggest the user place the sensing
device within the angle range of ±15 degrees to achieve a high detection accuracy.
Elevation: The sensing device is placed at different elevations from -20 degrees to 20 degrees at a step of 5

degrees. The sensing device is placed facing towards the human target’s eyes as shown in Fig. 16c. We define the
direction of the user’s sight as 0 degrees. From Fig. 17c, we can see that the performance decreases as elevation
increases. Within ±10 degrees, BlinkListener can achieve a high detection accuracy of 95%.

Height difference: The sensing device is placed at a different height from -15 𝑐𝑚 to 15 𝑐𝑚 at a step of 5 𝑐𝑚. We
define the height of the user’s eyes as 0 𝑐𝑚. Different from elevation, the device is not facing towards the target’s
eyes. From Fig. 17d, we observe that the detection accuracy degrades when the height difference becomes larger.
Since the sensing device is not facing towards the eyes and the power of the transmission is confined within a
sector range due to the radiation pattern of speakers, the signals can hardly reach the eyes, causing poor sensing
performance.
In summary, when the sensing device is exactly facing towards the human target’s eyes, BlinkListener can

achieve the best performance. As the orientation of the sensing device deviates from the user’s sight, the
performance decreases. However, as long as the deviation is within a certain range, the performance is still
reasonably good.

8.3.3 Different Environment Interference. Since the environment interference coming from static objects can be
filtered out by our frequency bin identification method, we only evaluate the impact of environment interference
coming from moving objects. We conduct experiments under two different settings as shown in Fig. 18a: (i) A
person (interferer) walks behind the human target at a distance of 1𝑚 from the sensing device; (ii) A person
walks at the left side of the human target at a distance of 0.5𝑚 from the target. We compare the experiment
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Fig. 18. Environment interference experiment settings and corresponding results.
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results under three different cases: without interference, with interference (i) and with interference (ii). We show
the results in Fig. 18b. We can see that under the first case of interference, the detection accuracy is 91%, which is
slightly lower than that without interference (95%). This is because the signals from the interferer at a further
distance can be filtered out by our frequency bin identification method owing to the high resolution (4.25 𝑐𝑚) of
the frequency bin, and will not greatly impact sensing of the target. Under the second case of interference, the
detection accuracy degrades to 86%. This is because the interferer is at a similar distance as the human target
with respect to the sensing device. Therefore, signals reflected by the interferer may fall into the same or adjacent
frequency bin as the eye-reflected signals, which will interfere with the eye blink detection. However, we can see
that even in the presence of strong interference, the detection accuracy is still reasonably high.

8.3.4 Different Spacing between the Speaker and Microphone. To study the effect of spacing between speaker and
microphone, we increase the spacing from 8 to 12, 16 and 20 𝑐𝑚 on the Bela platform to evaluate the detection
accuracy. The speaker and microphone are placed at the same height. The target sits at 0.5𝑚 away from the
midpoint of the speaker and microphone, and the speaker and microphone are both facing towards the human
target’s eyes. Fig. 19 shows the results under different spacings between speaker and microphone. Interestingly, we
observe that the accuracy slightly decreases with larger spacing. We believe this is because the signal propagation
path is actually slightly longer with larger spacing. Also, when the microphone and speaker are further away,
the reflected signal may be slightly deviated from the receiver due to the beam-like signal radiation pattern of a
commodity speaker.

8.3.5 User Diversity. We recruit 25 participants to evaluate the performance of our system. They are diverse in
age (from 20 to 56 years old) and race (East-Asian, South-Asian, Caucasian, and African). Results show that our
system achieves an average detection accuracy of 96.2% for the 25 participants. Moreover, we find something
interesting: the detection performance does get affected by the eye size and the higher accuracy can be achieved
for the larger eye size. We show the detection accuracy with respect to the eye size in Fig. 20a. We can see that for
a smaller eye size, the accuracy decreases to around 92%. As the average eye size is related to race, the detection
accuracy does slightly vary across races as shown in Fig. 20b. However, we want to point out that even for the
smallest eye size (3 𝑐𝑚 × 0.7 𝑐𝑚) in our experiment, the detection accuracy is still above 90%.

8.3.6 Effect of Ambient Sound Noises. We evaluate the performance under different ambient sound noise. We
consider two types of sound sources, i.e., music and talk, and evaluate two different volume levels for each
sound type. The sound pressure levels (i.e., an indicator of the sound volume) are measured using the Decibel X
app [42] on iPhone 11 Pro [9]. Fig. 21 shows the detection accuracy for five different sound levels. We find that
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Fig. 20. Results of user diversity.
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Fig. 21. Effect of different ambient
sound noise.
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Fig. 22. Eye-reflection frequency bin identification accuracy.
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ferent numbers of chirps in our real-
time algorithm.

the achieved detection accuracies are very similar, which means the ambient sound noise has little impact on the
sensing performance. The reason is that the ambient sound noise is below 14 𝑘𝐻𝑧, while the sensing signal we
adopt is in the range of 18-22 𝑘𝐻𝑧, which is much higher than the ambient sound noise.

8.4 Effectiveness of Frequency Bin Identification
Identifying the frequency bin containing the eye-reflection signal is the key enabler for eye blink detection. We
evaluate the accuracy of our frequency bin identification method under different distances and different numbers
of chirps. We compare the proposed method with the signal amplitude variation method employed in breathing
monitoring. From Fig. 22a, we can see that our system can achieve an identification accuracy close to 100% when
the distance is less than 0.5𝑚, which is much higher than the signal amplitude variation method. When the
distance is increased to 0.8𝑚, the identification accuracy slightly decreases to 88% due to weaker signals. This is
still much higher than the accuracy (i.e., 57%) achieved with the signal amplitude variation method.

Moreover, the more chirps we employ, the more accurate we can identify the frequency bin with eye-reflection
signals. We can see from Fig. 22b that BlinkListener achieves a high identification accuracy of 92.2% with just 5
chirps (i.e., 0.2𝑠), and close to 100% accuracy when more than 20 chirps are employed.

8.5 Effectiveness of Real-time Eye Blink Detection Algorithm
There is a trade-off between detection accuracy and system latency when applying the viewing position method
for eye blink detection in our system. Fig. 23 shows the result of the detection accuracy under different numbers
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Fig. 25. Results of detection accuracy under different
postures when the sensing device is held by hand.
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Fig. 26. Results of detection accuracy when user wears
nearsighted glasses and sunglasses.

of chirps. We can see that with 10 chirps (i.e., 0.4 𝑠) and 20 chirps (i.e., 0.8 𝑠), the detection accuracy is low. This
is because the performance of our arc fitting algorithm highly depends on the number of data samples. If too
few samples are available, the obtained optimal viewing position is not accurate, leading to a degraded eye blink
detection performance. With an increasing number of chirps, we can obtain a more accurate eye blink detection
accuracy. However, when too many chirps are included, a long period of time is needed to accumulate those
chirps before a viewing position can be obtained. The bad news is that during this period, the target may have
moved and the optimal viewing position is also changed, causing the obtained view position to be outdated. To
balance the detection accuracy and system latency, we adopt 50 chirps (i.e., 2 𝑠) for initialization and optimal
viewing position update.

8.6 Field Studies with Smartphones
We conduct a series of field studies with a commodity smartphone iPhone 5c to demonstrate the feasibility of
BlinkListener.

8.6.1 Eye Blink Detection in a Wheelchair. We mimic eye blink detection for individuals with disabilities in a
wheelchair with a leaning back posture as shown in Fig. 24a. We employ a smartphone stand holder to hold the
smartphone. The smartphone is placed facing towards the user’s eyes at a comfortable viewing distance of 0.3𝑚.
Under this setting, BlinkListener can achieve an eye blink detection accuracy of 96%.

8.6.2 Eye Blink Detection in a Moving Car. We conduct in-the-wild experiments in a moving car. The experiment
setup is shown in Fig. 27a. The smartphone is mounted on a stand holder, which is attached to the upper left
corner of the windshield. The distance between the smartphone and the target’s eyes is around 0.3𝑚, and the
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Fig. 27. In-the-wild experiments in a moving car.

placement of the smartphone does not block the driver’s view. The ground truths are recorded by a camera. We
drove the car at an average speed of 35𝑚𝑝ℎ. The result shows that our system can achieve an average detection
accuracy of 87% when the system is inside a moving car. We find that when the road is smooth, our system can
achieve 91.6% detection accuracy. When the road is bumpy, the detection accuracy decreases to 79% as shown in
Fig. 27b. This is because the large motor vibrations and device displacements vary the distance measurement
between the device and the target and accordingly affect the sensing performance.

8.6.3 Eye Blink Detection with a Smartphone Held in Hand. As shown in Fig. 24b, we conduct experiments with a
smartphone held in hand under three different postures: sitting, standing and lying. A volunteer is asked to hold
the smartphone in hand and keep a natural and comfortable viewing distance. We measure the viewing distance
during the experiment process and the average viewing distances of the volunteer under the three postures are
0.29𝑚, 0.31𝑚 and 0.20𝑚, respectively, which is consistent with the result reported in research on smartphone
viewing distance [77]. The detection accuracy under sitting, standing and lying postures are 86%, 85% and 97%
respectively as shown in Fig. 25. We observe some very interesting results here. The eye blink detection accuracy
when the smartphone is held in hand is lower than that when the smartphone is mounted at the phone stand
holder. We believe this is because when the phone is held in hand, there are muscle tremor and other small body
movements which affect the sensing accuracy. However, we do observe a very high accuracy when the user is in
a lying posture. We believe this is due to two reasons. First, when a user is in a lying posture, his body is more
stable than the case when he is standing/sitting. Second, the viewing distance between the smartphone and eyes
in lying posture is smaller than that in sitting and standing postures.

8.6.4 Eye Blink Detection with Glasses on. We conduct experiments to see if the proposed system works when
the target wears glasses. We evaluate two different types of glasses: nearsighted glasses and sunglasses as shown
in Fig. 24c. The smartphone is fixed in a stand holder at a distance of 0.3𝑚 with respect to the human target
and facing towards user’s eyes. Fig. 26 shows that BlinkListener can achieve 90.9% and 85.0% detection accuracy
when the user wears glasses and sunglasses, respectively. Although the accuracy slightly decreases, the proposed
system does work with glasses. This result demonstrates the advantage of eye blink detection over camera-based
techniques when users wear sunglasses. We believe the slightly lower performance with glasses is mainly due to
the signal attenuation through glasses and interference from the metal frame.

9 LIMITATION AND DISCUSSION
In this section, we discuss the limitations of our system and potential future work.
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9.1 Limited Angular Sensing Range
Compared with camera-based methods, the proposed acoustic-based method has a smaller angular sensing
range. We conclude that this limitation is due to two aspects: (i) limited angular range of speakers, and (ii) the
characteristic of reflection-based sensing. First, the sound volume generated from a speaker varies at different
angles [30]. We tested two types of general-purpose speakers and the built-in speaker of the iPhone 5c. We found
the angular ranges are all within ±30 degrees, which are smaller than that of cameras (i.e., ±45 degrees) [28, 51].
Second, the proposed system relies on the reflection signals for sensing. The size of the human eye is small and
therefore the amount of reflection from the eye area is limited. When the eye is located at a relatively large angle
with respect to the smartphone (e.g., ±20 degrees), even though there are still signals reaching the eyes, the
majority of reflections will be towards other directions due to the symmetrical property of reflection and will not
be received at the smartphone. Therefore, the actual sensing range is even smaller than the speaker’s angular
range. From our experiment results, the effective sensing angular range is ±15 degrees in the horizontal plane
and ±10 degrees in the vertical plane.

We position our system as a complementary approach to camera-based methods. Although the camera-based
methods can achieve higher accuracy and a larger angular sensing range, the performance degrades in low
lighting conditions and may raise privacy concerns. We believe there is no cure-all solution. We should choose
the appropriate approach based on the application requirement.

9.2 Impact of Device Vibration/Displacement
As explained in the evaluation part, in a moving car, the performance of system degrades when we drive on
a bumpy road. The reason is that vibrations and displacements vary the distance measurement between the
smartphone and the human subject and accordingly affect the sensing performance. Device vibration/displacement
is a true challenge for wireless sensing because the detected movement information comes from both the target
and device. It is non-trivial to separate them to obtain the target information. However, we believe this is an
important issue because the sensing device has a good chance to be placed in a car. We leave this interesting yet
challenging problem as our important future work.

10 CONCLUSION
In this paper, we enable subtle eye blink detection using acoustic signals on both a research-purpose hardware
platform and a commodity smartphone for the first time. Through both theoretical and experimental analysis,
we quantitatively model the relationship between signal variations and the subtle movements caused by eye
blink and interference. We propose a novel viewing position scheme that fully exploits the “harmful” embedded
interference to maximize the subtle signal variation induced by eye blinks. Comprehensive experiment results
demonstrate the effectiveness of our system. We believe the proposed viewing position scheme can be applied to
improve the performance of other sensing applications which involve extremely small signal variations.
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