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ABSTRACT
Acoustic sensing is a new sensing modality that senses the
contexts of human targets and our surroundings using acous-
tic signals. It becomes a hot topic in both academia and in-
dustry owing to its finer sensing granularity and the wide
availability of microphone and speaker on commodity de-
vices. While prior studies focused on addressing well-known
challenges such as increasing the limited sensing range and
enabling multi-target sensing, we propose a novel scheme to
leverage the non-linearity distortion of microphones to fur-
ther boost the sensing granularity. Specifically, we observe
the existence of the non-linear signal generated by the direct
path signal and target reflection signal. We mathematically
show that the non-linear chirp signal amplifies the phase
variations and this property can be utilized to improve the
granularity of acoustic sensing. Experiment results show
that, by properly leveraging the hardware non-linearity, the
amplitude estimation error for sub-millimeter-level vibration
can be reduced from 0.137𝑚𝑚 to 0.029𝑚𝑚.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing systems and tools;
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Figure 1: The illustration of phase variations caused
by the target movement, e.g., machine vibration.
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1 INTRODUCTION
Acoustic sensing, as a new sensing modality, has attracted
a tremendous amount of attention in recent years. The re-
search community has devoted a lot of efforts to pushing the
boundaries of acoustic sensing such as increasing the sensing
range [10, 14, 15], and improving the sensing capability from
a single target to multiple targets [9, 22, 32]. In this paper,
for the first time, we demonstrate the possibility of boosting
the sensing granularity by exploiting the non-linearity on
commodity devices such as smartphones.

To achieve fine-grained sensing, the received signal is vi-
sualized on the complex plane [10, 20, 26, 29]. As shown in
Figure 1a, the static path vector is the resultant of the direct
path from the speaker to microphone and the reflections
from the static objects (e.g., a wall), while the dynamic path
vector is the reflection from the moving target (e.g., a vibra-
tion machine). For a subtle movement such as vibration, the
dynamic path vector rotates with respect to the static path
vector as shown in Figure 1b.

Phase variations are extracted from the I/Q trajectory to
derive the fine-grained movement information such as dis-
placement [26]. As shown in Figure 1b, due to the existence
of static path, the phase variations directly extracted from
the coordinate origin are inaccurate. To address this issue,
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Figure 2: Phase variations are accurate for (a) large movements but
inaccurate for (b) small movements when estimated by the original
signal. (c) They can be amplified and becomemore accurate for small
movements when estimated by the intermodulated signal.
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Figure 3: The illustration of the third-order
intermodulated signal generated by the di-
rect path signal and target reflection signal
for the chirp-based acoustic signal.

prior studies [10, 12, 20] propose to estimate the position of
the arc center by circle-fitting the I/Q trajectory and then ex-
tract accurate phase variations from the arc center. A larger
phase variation leads to a better sensing performance [7].
From Figure 2a and Figure 2b, we can observe that, a longer
I/Q trajectory can provide more accurate estimation of the
arc center, and accordingly, more accurate phase extraction.

The length of the I/Q trajectory (i.e., the arc) reduces when
the target movement distance decreases, resulting in limited
sensing granularity for prior studies [10, 12, 20, 26, 29]. Based
on the relationship between the amount of phase variation
Δ𝜙 and the target displacement Δ𝑑 , i.e., Δ𝜙 =

4𝜋 𝑓 Δ𝑑
𝑐

[10, 27],
the length of the I/Q trajectory is proportional to the fre-
quency of the transmitted signal 𝑓 given the same amount of
displacement. Therefore, one naïve way to improve the sens-
ing granularity is to increase the frequency of the transmitted
signal. However, the constrained sampling rate on commod-
ity devices, i.e., 48 𝑘𝐻𝑧, only supports a maximum frequency
of 24 𝑘𝐻𝑧 according to Nyquist sampling theorem, which
is not sufficient for accurately sensing sub-millimeter-level
movement. For example, if the target moves at a displace-
ment of 0.1𝑚𝑚, the induced phase variation is only 5°, which
is too small to be accurately measured due to noise.
To break the limit of the constrained sampling rate, we

propose a novel solution to boost the sensing granularity
by exploiting the non-linearity of commodity devices. The
non-linearity generally exists in the components of speakers
and microphones on commodity devices such as amplifier
and diaphragm [17, 30]. It introduces the intermodulation
distortion at the received signal, which creates additional
signals at high-order intermodulation frequencies (i.e., the
sum and difference of the original frequencies) [28]. Prior
studies have shown the feasibility of enabling new applica-
tions in security and communication domains by exploit-
ing the second-order intermodulation [17, 30]. For example,
they play two high-frequency tones (e.g., 40 𝑘𝐻𝑧 and 50 𝑘𝐻𝑧)
that humans cannot hear using ultrasound speakers. The two
high-frequency sounds can create a low-frequency intermod-
ulated signal (i.e., 10 𝑘𝐻𝑧) due to the hardware non-linearity.

Different from prior studies [17, 30], we obtain an inter-
esting observation when sensing with chirp acoustic signals,
i.e., the third-order intermodulation can significantly boost
the sensing granularity. More specifically, the received sig-
nal at the microphone is the superimposition of the direct
path from the speaker and the reflection paths from the
surrounding objects. As shown in Figure 3, due to various
signal propagation delays, the frequencies of direct path sig-
nal and target reflection signal are different. This provides
the prerequisite for creating the third-order and higher-order
intermodulated signals on hardware. Through both mathe-
matical analysis and experiment verification, we find that
the generated intermodulated signals can result in phase
variations that are multiple times larger than those at the
original signal. As shown in Figure 2b and Figure 2c, for the
same amount of movement, the induced phase variations
at the intermodulated signal are much larger than those at
the original signal. Therefore, the intermodulated signal can
obtain more accurate arc center estimate, and thus, more
accurate phase variation for sensing. To verify the observa-
tion, we perform experiments on ReSpeaker platform and
five different brands of smartphones. We summarize our
preliminary findings below:

• The intermodulated signal generally exists on the tested
devices. However, the amplification of phase variations
varies across devices.

• Besides the 3rd-order intermodulated signal, the 5th-
order and 7th-order intermodulated signals can also
be observed. Although a higher-order intermodulated
signal can result in larger phase variations, its strength
is weaker. The intermodulated signal with a suitable
order should be selected for good sensing performance.

• We implement the vibration measurement prototype
on both ReSpeaker platform and smartphones. Exper-
iments show that we can achieve accurate vibration
amplitude measurement on all the tested devices. The
accuracy of sub-millimeter-level vibration sensing is
improved from 0.137𝑚𝑚 to 0.029𝑚𝑚.
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Figure 4: The transmitted signal (TX), received signal
(RX) and intermediate frequency signal (IF).

• We analyze the factors impacting the sensing perfor-
mance for intermodulated signal, including distance,
target material, and device diversity. We find that the
sensing performance is significantly impacted by the
intensity of the input signal at the microphone.

2 PRELIMINARIES
2.1 Chirp-based Acoustic Sensing
Chirp signal is widely adopted in acoustic sensing. As shown
in Figure 4, it is a frequency-modulated sine wave, whose
frequency sweeps linearly over time. The chirp signal trans-
mitted by the speaker can be represented as

𝑆𝑇 (𝑡) = cos (2𝜋 (𝑓0𝑡 +
𝐵

2𝑇 𝑡2)), (1)

where 𝑓0 is the beginning frequency, 𝑇 is the chirp duration,
and 𝐵 is the bandwidth. The received signal reflected from
the target is a delayed version of the transmitted signal,
which can be denoted as

𝑆𝑅 (𝑡) = 𝛼 cos (2𝜋 (𝑓0 (𝑡 − 𝜏) + 𝐵

2𝑇 (𝑡 − 𝜏)2)), (2)

where 𝛼 is an amplitude attenuation factor, and 𝜏 is the time-
of-flight (ToF) in the air.

Then we multiply the received signal (RX) with the trans-
mitted signal (TX) to derive the intermediate frequency (IF)
signal that contains the phase information for subtle move-
ment. After applying a low-pass filter, the IF signal becomes

𝑆 𝐼𝐹 (𝑡) = 1
2𝛼 cos(2𝜋 𝐵

𝑇
𝑡𝜏 + 2𝜋 𝑓0𝜏 −

𝜋𝐵

𝑇
𝜏2)

=
1
2𝛼 cos(2𝜋 𝑓𝑑𝑡 + 𝜙𝑑 ),

(3)

where 𝑓𝑑 = 𝐵
𝑇
𝜏 is the beat frequency computed by the fre-

quency difference between the transmitted signal and re-
ceived signal. 𝜙𝑑 = 2𝜋 𝑓0𝜏 − 𝜋𝐵

𝑇
𝜏2 ≈ 2𝜋 𝑓0𝜏 is the initial phase.

The approximation is based on the fact that 2𝜋 𝑓0𝜏 is usu-
ally two orders of magnitude larger than 𝜋𝐵

𝑇
𝜏2 due to the

very small value of 𝜏 . Suppose that the distance between
the device and target is 𝑑 , the ToF 𝜏 can be computed as
the round-trip distance divided by the signal speed in air 𝑐 ,
i.e., 2𝑑

𝑐
. Therefore, the initial phase can be further denoted

as 𝜙𝑑 =
4𝜋 𝑓0𝑑
𝑐

. If the target displacement is Δ𝑑 , the phase
variations caused by the target movement can be computed
as Δ𝜙 =

4𝜋 𝑓0 (𝑑+Δ𝑑)
𝑐

− 4𝜋 𝑓0𝑑
𝑐

=
4𝜋 𝑓0Δ𝑑

𝑐
.

2.2 Non-linearity on Commodity Devices
Prior studies [17, 30] have shown that the components in a
microphone can cause non-linear distortion at the received
signal. Specifically, if the received signal reflected from the
target is 𝑆𝑖𝑛 , the output signal 𝑆𝑜𝑢𝑡 after passing through the
microphone can be represented as

𝑆𝑜𝑢𝑡 =

∞∑
𝑖=1

𝑘𝑖𝑆
𝑖
𝑖𝑛

= 𝑘1𝑆𝑖𝑛 + 𝑘2𝑆2𝑖𝑛 + 𝑘3𝑆3𝑖𝑛 + 𝑘4𝑆4𝑖𝑛 + ...,

(4)

where 𝑘𝑖 is the non-linear coefficient for the 𝑖𝑡ℎ term. The
higher-order term is weaker as the order of distortion in-
creases. Except for the first-order term, all of the remaining
terms, i.e., the second-order term, the third-order term, etc.,
are non-linear distortions. In this paper, we mainly exploit
the third-order term to boost the sensing granularity.

3 MATHEMATICAL DERIVATION
The received signal at the microphone is a superimposition
of multiple paths, including the direct path and reflection
paths from the surrounding objects. We observe that the
third-order and even higher-order intermodulation between
the direct path and reflection path from the target can be
exploited to boost the sensing granularity. Next we mathe-
matically prove this observation by taking the third-order
intermodulated signal as the example.

According to Equation (2), the direct path signal 𝑆1 (𝑡) can
be represented as

𝑆1 (𝑡) = 𝛼1 cos (2𝜋 (𝑓0 (𝑡 − 𝜏1) +
𝐵

2𝑇 (𝑡 − 𝜏1)2)) . (5)

To remove the delay caused by the operating system, we
align the received signal with the direct path signal [29].
Thus, Equation (5) can be further simplified as

𝑆1 (𝑡 ′) = 𝛼1 cos (2𝜋 𝑓1𝑡 ′), (6)

where 𝑡 ′ = 𝑡 − 𝜏1 denotes the alignment operation, and we
simplify 𝑆1 (𝑡 ′) as a single-frequency signal whose frequency
is 𝑓1 = 𝑓0 + 𝐵

𝑇
𝑡 ′. Similarly, we can denote the reflection path

signal from the target 𝑆2 (𝑡 ′) as

𝑆2 (𝑡 ′) = 𝛼2 cos (2𝜋 𝑓2 (𝑡 ′ − 𝜏 ′2)) . (7)



HotNets ’22, November 14–15, 2022, Austin, TX, USA Xiangru Chen∗†, Dong Li∗§, Yiran Chen†, Jie Xiong§

where 𝜏 ′2 = 𝜏2 − 𝜏1 is the ToF of the reflection path signal
after the alignment, and 𝑓2 equals to 𝑓0 + 𝐵

2𝑇 (𝑡
′ −𝜏 ′2). For sim-

plicity, we denote 𝑆1 (𝑡 ′) as 𝑆1 and 𝑆2 (𝑡 ′) as 𝑆2 hereafter. By
substituting 𝑆1 + 𝑆2 into the third-order term of Equation (4),
we can obtain

𝑘3 (𝑆1 + 𝑆2)3

=𝑘3𝑆
3
1 + 3𝑘3𝑆21𝑆2 + 3𝑘3𝑆1𝑆22 + 𝑘3𝑆32 .

(8)

According to the power-reduction formula, 𝑘3𝑆31 can be
expanded as the sum of two terms, i.e., 3

4𝑘3𝛼
3
1 cos(2𝜋 𝑓1𝑡 ′)

and 1
4𝑘3𝛼

3
1 cos(2𝜋 · 3𝑓1 · 𝑡 ′). The first term is the attenuated

version of the direct path signal, and the second term will
be filtered out since its frequency is much higher than the
cut-off frequency of the microphone filter. The expansion
of 𝑘3𝑆32 is the same as 𝑘3𝑆31 . Therefore, no extra frequency
components are introduced for both 𝑘3𝑆31 and 𝑘3𝑆32 .
In the following, we analyze the remaining terms, i.e.,

3𝑘3𝑆21𝑆2 and 3𝑘3𝑆1𝑆22 . Using the power-reduction formula and
product-to-sum identity, 3𝑘3𝑆21𝑆2 can be expanded as the sum
of three terms, i.e., 32𝑘3𝛼

2
1𝛼2 cos(2𝜋 𝑓2 (𝑡 ′−𝜏 ′2)), 34𝑘3𝛼

2
1𝛼2 cos(2𝜋 ·

(2𝑓1 + 𝑓2) · 𝑡 ′ − 2𝜋 𝑓2𝜏 ′2), and 3
4𝑘3𝛼

2
1𝛼2 cos(2𝜋 · (2𝑓1 − 𝑓2) · 𝑡 ′ +

2𝜋 𝑓2𝜏 ′2). The first term is the attenuated version of the target
reflection, and the second term will be filtered out since it
lies outside the microphone’s cut-off frequency. It is worth
noting that the third term is the newly-introduced compo-
nent at frequency 2𝑓1− 𝑓2, which is kept. We denote the third
term as 𝑆𝑅2𝑓1−𝑓2 hereafter. Similarly, 3𝑘3𝑆1𝑆22 also introduces a
new component at frequency 2𝑓2 − 𝑓1.

Now we derive the intermediate frequency signals of the
two newly-introduced components. Since the received sig-
nal is aligned with the direct path signal, we multiply the
aligned signal with a delayed version of the transmitted
signal whose ToF equals to that of the direct path signal
𝑆𝐷𝑇 = cos (2𝜋 (𝑓0 (𝑡 − 𝜏1) + 𝐵

2𝑇 (𝑡 − 𝜏1)2)). Using the product-
to-sum identity and a low-pass filter, we can obtain

𝑆 𝐼𝐹2𝑓1−𝑓2 + 𝑆 𝐼𝐹2𝑓2−𝑓1

=𝑆𝐷𝑇 · 𝑆𝑅2𝑓1−𝑓2 + 𝑆𝐷𝑇 · 𝑆𝑅2𝑓2−𝑓1
=
3
8𝑘3𝛼

2
1𝛼2 cos(2𝜋 𝑓 ′𝑑 𝑡 + 𝜙 ′

𝑑
)+

3
8𝑘3𝛼1𝛼

2
2 cos(2𝜋 · 2𝑓 ′

𝑑
· 𝑡 + 2𝜙 ′

𝑑
),

(9)

where 𝑓 ′
𝑑

= 𝐵
𝑇
(𝜏2 − 𝜏1) and 𝜙 ′

𝑑
= 2𝜋 𝑓0 (𝜏2 − 𝜏1). The first

term 𝑆 𝐼𝐹2𝑓1−𝑓2 is the attenuated version of the original inter-
mediate frequency signal for the reflection path. Compared
with the original intermediate frequency signal, the resulted
intermodulated signal for the second term 𝑆 𝐼𝐹2𝑓2−𝑓1 has two
properties: (i) The beat frequency is twice larger than that
of the original beat frequency; (ii) The phase variations are
also twice larger than those of the original phase variations.

Raspberry Pi 4

ReSpeaker

microphone board

Speaker

(a) ReSpeaker platform.

Linear guide slide
Sensing device

Target

(b) Sensing scenario.

Figure 5: Experiment setup.

Larger phase variations can provide better estimation of the
arc center in the I/Q plane, and thus, yield more accurate
phase extraction. We name the second term 𝑆 𝐼𝐹2𝑓2−𝑓1 as the
3rd-order intermediate frequency (IF) signal hereafter. Simi-
larly, we can obtain the 5th-order IF signal and 7th-order IF
signal as 𝑆 𝐼𝐹3𝑓2−2𝑓1 and 𝑆

𝐼𝐹
4𝑓2−3𝑓1 , respectively.

In a multipath-prevalent environment, besides the target
reflection, there are reflections from other surrounding ob-
jects, resulting in a large number of potential intermodulated
signals. However, most of the intermodulated signals are too
weak to be detected. The strength of the intermodulated
signal is proportional to the strength of the two signals that
generate it. The intermodulated signals from two reflected
signals are extremely weak and can be neglected. We only
need to consider the intermodulated signal when one of the
two signals is the strong direct path signal. Note that even if
the strong direct path signal is involved, the intermodulated
signal is still very weak when the other signal is reflected
from an object at a distance. Therefore, only a limited number
of intermodulated signals are strong enough to be detected.

4 IMPLEMENTATION
We implement our proposed system on the ReSpeaker plat-
form and five different brands of smartphones. The received
acoustic signals are analyzed in MATLAB using a laptop. To
sense the fine-grained movement, we first estimate the tar-
get range bin corresponding to the original signal. Then we
identify the target range bin corresponding to the non-linear
IF signal by multiplying the beat frequency by a factor of
𝑜+1
2 , where 𝑜 is the intermodulation order. For example, we

multiply 2 for the 3rd-order IF signal. At last, we extract the
phase variations of the non-linear IF signal and utilize it to
sense the fine-grained target movement.

Sensing Devices. We evaluate the performance of our
proposed idea using a ReSpeaker 4-mic Linear Array board [19].
The microphone board and a general-purpose speaker are
connected with Raspberry Pi 4 that controls the transmis-
sion and reception of acoustic signals, as shown in Figure 5a.
Note that only one microphone is used for sensing. To ver-
ify the generalizability, we also conduct experiments using
five smartphones, including iPhone 12, iPhone 6, Pixel 4,
Samsung Galaxy S9+ and Sony Xperia G3423.
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Sensing Signals. The chirp signal adopted for the ReS-
peaker microphone platform sweeps from 20 𝑘𝐻𝑧 to 22 𝑘𝐻𝑧.
Due to the poor high-frequency response [21], we config-
ure the frequency of the chirp signal on smartphones from
16 𝑘𝐻𝑧 to 18 𝑘𝐻𝑧. The duration of the chirp signal is set to
40𝑚𝑠 , and the chirp signal is sampled at 48 𝑘𝐻𝑧.

Vibration System. To mimic subtle movement, we place
the target on a linear slide that has a precision of 0.05𝑚𝑚 as
shown in Figure 5b. Unless otherwise specified, we adopt the
hand-sized cardboard as the target, and the distance between
the device and target is set to 0.2𝑚.

5 EVALUATION
This section evaluates the performance of our proposed idea.
We estimate the amplitude of each vibration, i.e., the max-
imum displacement that the target moves. We measure 15
vibrations for each trial and perform 10 trials for each setup.

5.1 Device Generalizability
We configure the slide to vibrate the target with an amplitude
of 2.5𝑚𝑚. Figure 6 displays the extracted IQ signals com-
puted from both the original IF signal and 3rd-order IF signal.
We can observe that the amounts of non-linear distortions
vary across devices.

5.2 Higher-order IF Signal
Figure 7 compares IQ signals computed from the original IF
signal and non-linear IF signals for the ReSpeaker platform.

31.7

22.5
24.5

20.8

14.6

18.9

10.7
12.1

6.6
8.4

(a) ReSpeaker board.

18.1

13.6

15.5

11.5 11.2
10.4

4.1

6.5

(b) iPhone 12.

Figure 8: The overall performance comparison.

We can observe that the strength of the non-linear IF signal
decreases as the order increases, which is consistent with our
analysis in Sec. 3. Despite the non-linear IF signal is much
weaker, we can still identify the amplified phase variations
caused by the subtle movement.

5.3 Overall Performance
We conduct experiments to compare the performance of
the original IF signal and 3rd-order IF signal. We adopt the
relative error ratio as the evaluation metric, which is defined
as the ratio of the absolute amplitude error to the vibration
amplitude. Figure 8a and Figure 8b show the results for the
ReSpeaker platform and iPhone 12, respectively. We can
observe that the 3rd-order IF signal outperforms the original
IF signal when the vibration amplitude decreases, indicating
the effectiveness of boosting the sensing granularity. The
amplitude estimation error for iPhone 12 is larger than that
for the ReSpeaker platform due to larger hardware noise.

5.4 Impacting Factors
Impact of Distance. To evaluate how our proposed system
works at various distances, we vary the distance between
the sensing device (i.e., iPhone 12) and moving target (i.e.,
cardboard) from 0.15𝑚 to 0.5𝑚. The vibration amplitude of
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(a) Distance. (b) Target material.

Figure 9: The impacting factors.

the moving target is set to 0.75𝑚𝑚. We adopt the absolute
amplitude error as the evaluation metric here.
From Figure 9a, we can observe that, when the target is

close to the sensing device, i.e., 0.15𝑚 and 0.2𝑚, the 3rd-
order IF signal performs better than the original IF signal.
At 0.15𝑚, the median absolute amplitude error is reduced
from 0.137 𝑚𝑚 to 0.029 𝑚𝑚. However, as the distance in-
creases, the original IF signal outperforms the 3rd-order IF
signal. This is because when the distance between the device
and target increases, the strength of the 3rd-order IF signal
decreases much faster than that of the original IF signal.
We also plot the absolute amplitude errors for the 5th-

order IF signal and 7th-order IF signal in Figure 9a. We can
observe that, when the target is close to the device, both
of them can accurately estimate the amplitude. However,
as the distance increases, the high-order IF signal is too
weak to be detected. Another observation is that a higher-
order IF signal (e.g., 7th-order) actually results in a poorer
performance because the intermodulated signal is too weak
to be utilized for sensing.

Impact of Reflection Material.We evaluate the perfor-
mance of our proposed system when objects made of differ-
ent materials are used as the target. The distance between
the device and target is set to 0.15𝑚, and the vibration ampli-
tude is set to 0.75𝑚𝑚. Figure 9b plots the absolute amplitude
errors for the original IF signal and 3rd-order IF signal. We
can observe that the performance for both signals varies
across reflection materials. The reason is that the strength of
the reflected signal varies across materials. For example, the
signal reflected by the glass is stronger than that reflected by
the towel due to the smooth surface. The strengths of the IF
signals are both proportional to that of the reflected signal,
resulting in performance variation across materials.

6 RELATEDWORK
Recent years have witnessed an increasing interest in em-
ploying acoustic signals for human and environment sens-
ing [4, 6, 8, 15, 17, 23, 24, 31]. Compared to other sensing
modalities such asWiFi sensing, acoustic sensing can achieve
a finer granularity owing to the low speed of acoustic signal

in the air. Chirp signal is widely adopted for acoustic sens-
ing due to its excellent performance against multipath and
noise [5]. Existing studies focus on improving the perfor-
mance of acoustic sensing in three directions, i.e., longer sens-
ing range [10, 13–15], finer sensing granularity [12, 16, 29]
and simultaneous multi-target sensing [9]. Our work falls
in the second direction and is the first one to exploit the
microphone non-linearity to boost the sensing granularity.

Intermodulated signal is produced by the non-linearity dis-
tortion from microphones, which has been adopted by prior
studies to enable applications in localization [1, 11], com-
munication [2, 17] and security [18, 30]. Instead, the work
exploits the intermodulated signal for sensing purposes.

7 DISCUSSION
Limited sensing range. Due to weak target reflection, the
sensing range for acoustic signals is limited [10, 15]. The
strength of our adopted intermodulated signal is evenweaker
than that of the target reflection signal, which further reduces
the sensing range of our proposed system. One potential
solution is to increase the strength of the target reflection
through spatial beamforming. In this paper, we trade off
sensing range for higher sensing granularity. When we care
more about the sensing granularity than the sensing range,
the proposed method can be adopted.

Audible sensing signal. Speakers and microphones are
primarily optimized for human voices and musics whose
frequencies are usually below 4 𝑘𝐻𝑧 [29]. Therefore, com-
modity smartphones have good frequency responses in the
audible frequency ranges but have poor frequency responses
in the inaudible frequency ranges [21]. This work adopts the
audible chirp (i.e., 16 𝑘𝐻𝑧 − 18 𝑘𝐻𝑧) as the sensing signal.
One potential solution to alleviate the audible noise is to
mask the audible sensing signal with white noise [3, 8, 25].

8 CONCLUSION
This paper leverages intermodulated chirp signal generated
by the direct path and target reflection due to the non-linear
distortion ofmicrophones to boost the granularity of acoustic
sensing. We mathematically show the feasibility and further
conduct benchmark experiments on six different devices to
demonstrate the effectiveness of the proposed idea. We be-
lieve this work pushes the granularity boundary of acoustic
sensing and can benefit a large range of real-life applications.
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