
LTE-based Low-cost and Low-power Soil Moisture Sensing
Yuda Feng

University of Massachusetts Amherst
Amherst, MA, USA

yudafeng@umass.edu

Yaxiong Xie
University at Buffalo, SUNY

Buffalo, NY, USA
yaxiongx@buffalo.edu

Deepak Ganesan
University of Massachusetts Amherst

Amherst, MA, USA
dganesan@cs.umass.edu

Jie Xiong
University of Massachusetts Amherst

Amherst, MA, USA
jxiong@cs.umass.edu

ABSTRACT
Soil moisture sensing is a basic function required by applications
like precision irrigation. Recently, RF based soil moisture sensing
solutions [10, 43] have been proposed, which, however, can hardly
support large scale deployment in challenging outdoor environ-
ments, since they must have dedicated signal emitters and also
require power supply for either the signal emitters (WiFi or RFID
reader) or both the transceivers (WiFi AP and client). LTE signal
provides a unique opportunity for soil moisture sensing as the
ubiquitously deployed base stations are naturally always-on signal
emitters, eliminating the need for deploying extra hardware. In this
paper, we implement a low-cost LTE based soil moisture sensor us-
ing commercial off-the-shelf hardware. We also realize duty-cycled
soil sensing by automatically self-calibrating the phase offset after
powering on the devices, significantly reducing the overall power
consumption of the sensor. Extensive experiments show that our
low-cost sensor ($55) achieves a high accuracy (3.15%) which is
comparable to high-end soil moisture sensors ($850), wide coverage
(2.4 km from the base station) and low power consumption (lasting
16 months using batteries).
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1 INTRODUCTION
Measuring the volumetric water content in soil, i.e., soil moisture
sensing, is a basic function for diverse applications. For example,
agriculture accounts for 70% of the worldwide water usage but
wastes over 40% of them [41], so precision irrigation has been
proposed to enable sustainable agriculture. Soil moisture sensing
is the key enabler of the core task for precision irrigation: having
water brought right to the roots of the plants, exactly when the
plants need it, and in just the right quantity they need. Soil moisture
sensing also plays important roles in hydrology that studies the
movement, distribution, and management of water on earth.

Directlymeasuring soil moisture by removing, drying, andweigh-
ing of a soil sample cannot support real-time and in-situ measure-
ment. Indirectly measuring the volumetric water content by using
some other property of the soil, such as electrical resistance, dielec-
tric constant, or interaction with neutrons, as a proxy for measuring
the moisture level has been the main steam design principle of com-
mercial soil moisture sensors. It is, however, challenging to balance
the cost and accuracy of the commercial grade soil moisture sensor.
Only high-end sensors (sub $1000) are able to provide accurate esti-
mation results for soil moisture sensing, hindering the deployment
in scale.

Recently, RF based soil moisture sensing [10, 43] has been pro-
posed, which leverages the impact of soil moisture level on the
property of RF signal, such as the speed [10] or minimum response
threshold [43], as the proxy to infer the moisture. RF based solu-
tions significantly reduce the cost and achieve reasonable accuracy
at the same time.

The existing RF based solutions, however, have two fundamental
limitations. First, a dedicated signal emitter is required, e.g., theWiFi
AP or the RFID reader. Due to the limited communication range,
the emitter must be densely deployed to cover a wide area, such as
the farms or the gardens, resulting in significant implementation
cost. Second, current solutions require power supply for the signal
emitter (WiFi AP or RFID reader) and the receiver (WiFi client). In
the outdoor environment, such as the farms covering a large area,
providing power supply for the signal emitter and the signal receiver
buried inside soil is extremely challenging. We note that, even
though the RFID tag requires no power supply, due to the limited
communication range between the reader and tag, the number of
required signal emitter (RFID reader) is much larger than WiFi
based solutions, making the RFID based solution only applicable to
small scale deployment, such as the greenhouse.
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The widely deployed LTE infrastructure (base stations) provides
a unique opportunity for soil moisture sensing in outdoor environ-
ments where power supply becomes challenging:

• Always-on signal emitters. The base stations continuously
broadcast the cell reference signal and thus naturally serves
as an always-on LTE signal transmitter, saving the effort of
deploying any extra signal emitters.

• Wide coverage. According to the Federal communication
market report [5] of the USA, 98% of the population and
84% of areas are covered by LTE networks. The pervasive
coverage guarantees that the cellular signal is available even
in challenging outdoor environments and thus facilitates
wide area deployment in applications like precision irrigation
and hydrology.

In this paper, based on our observation, we propose LTE-Soil-
Meter—an LTE-based soil moisture sensing system, by leveraging
the phenomenon that LTE signals travel slower in soil with higher
permittivity (thus higher moisture level) [10]. We have three design
objectives for LTE-Soil-Meter: low cost, low power, and high
accuracy. First, even though we leverage the cellular base stations
as the signal emitters and save huge deployment cost, we still
need to further design a low-cost LTE signal receiver and signal
processing modules so that we can densely deploy them to cover
the large area of farms or gardens. Second, our signal receivers
and signal processing modules must consume minimum power and
support months- or even years-long operation without replacing
battery, after being deployed in challenging outdoor environments.
Last but not least, our system should be able to report accurate soil
moisture estimation results.

We build a low cost LTE based soil moisture sensor using com-
mercial off-the-shelf hardware. Specifically, we adopt two low-cost
SISO software-defined-radio (RTL-SDR [34]) as the RF frontend to
collect raw LTE signal and use a Raspberry Pi as the controller to
process the received signal and estimate the soil moisture level. By
doing so, the total cost of one sensor is kept at $55.

Atop of our low-cost sensor hardware, we propose to reduce the
overall power consumption by adopting duty-cycled sensing sched-
ule, based on the fact that the soil moisture varies slowly during
one day. The nature of soil moisture makes the duty-cycled sensing
a perfect fit. The existing WiFi based soil moisture sensing sys-
tem does not implement duty cycle because of practical hardware
limitations. Specifically, the frequent powering on and off of the
radio chains in duty cycle makes the phase calibration challenging.
Typically, to calibrate the phase offset between radio chains, the
common practice is to directly connect a dedicated signal transmit-
ter to the receivers via equal length cables. The dedicated signal
emitter is removed after deployment. Doing so, however, requires
the radio chains to maintain always on, so the phase offset remains
constant, which wastes a significant amount of power. Embedding
one dedicated transmitter inside the sensor, however, doubles the
hardware cost and also drains the battery fast since transmitting
RF signal consumes orders of magnitude higher power than purely
passive signal receiving.

We propose an automatic phase calibration algorithm that en-
ables low-power duty cycle with minimum hardware cost. We ob-
serve that Raspberry Pi is able to output a single-frequency continu-
ous wave via its GPIO interface, and propose to reuse the Raspberry
as a signal generator and directly connect the Raspberry Pi and
the RTL-SDR receiver. A single tone signal, however, provides no
frequency diversity and thus is not enough to remove the phase er-
rors caused by diverse error sources. To fully harness the frequency
diversity, we propose a frequency hopping based calibration algo-
rithm via tuning the central frequency of Raspberry Pi generated
signal to scan the whole spectrum of the RTL-SDR. Implement-
ing our automatic calibration algorithm only requires two extra
low-cost RF switches ($3.75), introducing minimum overhead.

We implement a prototype of our LTE based soil moisture sensor
and evaluate its performance via both in-lab controlled experiments
and field tests in the wild. Extensive experiment results demonstrate
that our low-cost and low-power sensor ($55) is able to achieve
comparable soil moisture sensing accuracy (mean absolute error
of 3.15%) as the high-end commercial sensor ($850). Our field tests
also prove that our sensor works robustly under diverse types of
soil, e.g., grass covered soil, potting mix soil, sandy loam or even
stony ground. The measurement of the power consumption shows
that our sensor is able to work continuously for 16 months without
the need to replace batteries.

We summarize the main contributions of our work as follows:

• We for the first time propose to exploit LTE signals for soil
moisture monitoring. By leveraging the inherent advantages
of wide coverage and extensive existing infrastructure, we
move one big step towards large-scale real deployments.

• We implement our soil moisture monitoring system using
commercial off-the-shelf devices and at the same time meet-
ing the requirements of low cost, lightweight and low power.
We enable low-power duty cycles with minimum extra cost,
by leveraging the existing hardware resources and LTE sig-
nal properties.

• We implement our design and demonstrate the effectiveness
of our LTE-based soil moisture monitoring system. Extensive
experiments show that our system achieves a high accuracy
(3.15%), which is comparable to high-end soil moisture sen-
sors ($850), wide coverage (2.4 km from the base station) and
low power consumption (lasting 16 months).

The rest of this paper is organized as follows. We introduce the
necessary background of RF-based soil moisture sensing and LTE
operation in §2. We introduce the detailed design of our sensor
in §3 and cover the implementation details in §4. We evaluate the
performance of the proposed sensor in §5, survey the related works
in §6 and discuss the possible limitations in §7. At last, we conclude
our paper in §8.

2 BACKGROUND
In this section, we introduce the key rationale of the RF-based soil
moisture sensing and the necessary background of LTE physical
layer signal structure.
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Figure 1: Signal propagation path traveling through air and soil.

2.1 Primer on RF-based Soil Moisture Sensing
The volumetric water content M (or the soil moisture) is the ratio
of the volume of water to the unit volume of soil, which affects the
dielectric permittivity 𝜖 of the soil. Prior study [42] has derived the
empirical relationship between the soil moisture and the dielectric
permittivity:

M = 0.1138
√
𝜖 − 0.1758. (1)

On the other hand, the dielectric permittivity of soil determines the
speed of electromagnetic wave 𝑐 inside the soil: 𝑐 = 𝑐0/

√
𝜖 , where

𝑐0 represents the speed of electromagnetic wave in the air. As a
result, we could estimate the soil moisture as:

M = 0.1138 · 𝑐0
𝑐

− 0.1758. (2)

According to above equation, soil moisture monitoring requires
accurate measurement of the speed of RF wave inside the soil.

TDoF-based moisture sensing. Ideally, we are able to calculate
the speed of RF wave given the traveling distance 𝑙 and the Time-of-
Flight (ToF) 𝜏 . Highly accurate ToF estimation, however, demands
ultra-wide bandwidth and tight synchronization between the RF
transceivers, imposing stringent hardware requirements. To enable
low-cost RF based soil moisture sensing, Time-Difference-of-Flight
(TDoF) based sensing methods [10] have been proposed. As shown
in Figure 1, the TDoF Δ𝜏 of the signals arriving at two antennas is:

Δ𝜏 =
Δ𝑙3
𝑐

+ Δ𝑙2
𝑐

− Δ𝑙1
𝑐0

=
Δ𝑙3
𝑐

+ Δ𝑙2
𝑐

− Δ𝑙1√
𝜖 · 𝑐

. (3)

According to the geometric relationship between the incident angle
𝜃1 and the refraction angle 𝜃2, we have:

Δ𝑙1 =
cos𝜃1
cos𝜃2

Δ𝑙2 . (4)

Meanwhile, according to Snell’s law [44], we have:
√
𝜖 =

cos𝜃1
cos𝜃2

. (5)

Combining Eqn. 3, 4, and 5, we obtain the speed of RF wave in soil:

𝑐 =
Δ𝑙3
Δ𝜏

=
𝑑 sin𝜃2
Δ𝜏

(6)

where 𝑑 is the distance of two receiving antennas and thus is a
known constant. Ideally, the refraction angle 𝜃2 is also known if the
sender and receiver locations are known. (we relax this requirement
in §3.4). To estimate the speed 𝑐 of RF wave in soil, we only need to
measure the TDoF Δ𝜏 of signals arriving at two antennas, which can
be obtained by calculating the phase difference of signals received
at the two antennas [10].
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Figure 2: LTE divides time into 10-millisecond radio frames, which
are further divided into subframes. LTE groups 14 OFDM symbols
and 12 subcarriers into one PRB. Cell reference signal (CRS) scatters
inside the resource elements of each PRB.

2.2 LTE Primer
In LTE, the transmissions are organized into 10-millisecond ra-
dio frames, just as shown in Figure 2. Each radio frame is further
divided into 10 one-millisecond subframes. LTE adopts OFDMA
in the physical layer and allocates 14 OFDM symbols inside each
subframe. LTE divides the frequency into 15 kHz subcarriers. The
resource block consisting of one subcarrier in frequency and one
OFDM symbol in time is one resource element. LTE groups 14 OFDM
symbols in time (1 subframe) and 12 subcarriers in frequency as one
Physical Resource Block (PRB). LTE selects a set of predefined cell
reference signal (CRS) for channel estimation and transmits them
inside a predefined set of resource elements in each PRB, just as
shown in Figure 2. We note that, one resource element is empty if it
is not used for transmitting data, but the base station continuously
broadcasts the CRS even when all the other resource elements are
empty.

An LTE receiver is able to estimate the channel state information
(CSI) using the received CRS. We denote 𝑋 (𝑙, 𝑘) as the transmitted
known reference signal, and 𝑌 (𝑙, 𝑘) to represent the received refer-
ence signal at the 𝑙-th OFDM symbol and 𝑘-th subcarrier, the CSI
𝐻 (𝑙, 𝑘) can then be calculated as:

𝐻 (𝑙, 𝑘) = 𝑌 (𝑙, 𝑘)
𝑋 (𝑙, 𝑘) = 𝛼 exp(− 𝑗2𝜋 𝑑

𝜆
) + 𝑛(𝑙, 𝑘) (7)

where 𝛼 denotes the complex attenuation in the propagation, 𝑑
denotes the path length traveling from the LTE base station to the
receiver, 𝜆 is the wavelength of the signal, and 𝑛(𝑙, 𝑘) denotes noise.
As shown in Figure 2, the LTE receiver first estimates CSI of the
𝑙-th OFDM symbol and the 𝑘-th subcarrier that contains reference
signals (CRS), and then interpolates across time and frequency to
obtain the full CSI matrix.

3 DESIGN
We now introduce the design of our LTE based soil moisture sys-
tem. We begin with the introduction of the low-cost hardware
implementation, followed by the description of the low-power duty
cycle algorithm. At last, we introduce the detailed soil moisture
estimation algorithm using our low-cost and low-power sensor.
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3.1 Low-cost Hardware Architecture
Figure 3 depicts the hardware architecture of the proposed soil
moisture sensor. We use two low-cost SISO software-defined-radio
(RTL-SDR at $16) [2] as the front end to receive the raw LTE signals,
which are connected to a Raspberry Pi Zero 2W ($15) [29] via USB
interfaces. The Raspberry Pi demodulates the LTE signal, estimates
the CSI and estimates the soil moisture. The overall hardware cost
is only 47 dollars (total cost increases to $55 after adding two RF
switches ($3.75) in §3.3).

Rx1

Rx2 LTE Receiver 1

LTE Receiver 2

USB

USB
GPIO

Raspberry Pi

Figure 3:Main components of our low-cost hardware system.

Bandwidth mismatch. We choose RTL-SDR because of its low
cost. The cost, in turn, limits the capability of the hardware. Specifi-
cally, the RTL-SDR only supports 2.5 MHz signal bandwidth, while
the bandwidth of the LTE base stations are much wider (typical
bandwidth is 5, 10 and 20 MHz). Performing tight synchronization
and accurately estimating the signal phase of the wide-band signal
using receivers with limited bandwidth are challenging.

Our key observation is that, different from traditional wireless
systems (e.g., WiFi, RFID and LoRa) that transmits preambles that
occupy the full channel bandwidth for synchronization, LTE trans-
mits primary synchronization signal (PSS) and secondary synchro-
nization signal (SSS) for synchronization and both of them only
occupy the central 1.4 MHz, as shown in Figure 4. We, therefore,
set two RTL-SDRs to the same central frequency as the base station
and extract the corresponding PSS and SSS signals for synchroniza-
tion. By doing so, we could achieve the same level of synchroniza-
tion as the wide-band hardware. After synchronization, we derive
the CSI using the cell reference signal received within the central
2.5 MHz [12] and calculate the phase difference of CSI measured
from two RTL-SDRs to estimate the soil moisture.

3.2 Signal Alignment across RTL-SDRs
The two RTL-SDRs are unsynchronized with each other and per-
form independent synchronization with the base station. We need
to align the signal received from two RTL-SDRs before we can
leverage their phase difference for soil moisture estimation. We
propose a two-phase signal alignment algorithm: a coarse-grain
IQ sample alignment followed by a fine-grain OFDM symbol level
phase alignment.

3.2.1 Sample level alignment. We leverage the physical layer struc-
ture of LTE to perform signal alignment. LTE signals are transmitted
in frames, which consist of 140 OFDM symbols, and the frame in-
formation is encoded on the central 1.4 MHz of the OFDM symbols

OFDM 
symbols

Full bandwidth
(Up to 20 MHz)

Central 
1.4 MHz

2 3 4 5 6 7 8 9 10 11 12 130 1 5

PSSSSS PBCHPSS

Figure 4: The central 1.4 MHz contains the PSS and SSS signal,
which are used for synchronization, and the PBCH channel that
contains the index of the radio frames.

as shown in Figure 4. The base station numbers every frame and
broadcasts the index of each frame via the physical broadcast chan-
nel (PBCH) of that specific frame. After synchronization, the LTE
receiver identifies the boundary of each frame and segments the
received signal into frames accordingly.

We observe that, the PBCH also resides inside the central 1.4MHz
of every LTE channel with arbitrary channel bandwidth, so the
frame index inside the PBCH can be decoded using a 2.5 MHz
RTL-SDR receiver. We, therefore, align the frames received from
two RTL-SDRs according to the decoded frame index and thus
automatically align the samples inside each frame.

3.2.2 Phase alignment within each OFDM symbol. In the conven-
tional MIMO devices, all the radio chains are driven by the same
clock source, so they are sharing the same carrier frequency offset
(CFO), sampling frequency offset (SFO) and sampling timing offset
(STO). When calculating the phase difference of signals received
by multiple radio chains, all the CFO, SFO and STO are automat-
ically canceled out [10]. However, in our multi-receiver system,
two SISO RTL-SDRs driven by two independent clock sources have
different CFO, SFO and STO. Therefore, we need to align the phase
and mitigate the effect of aforementioned hardware errors before
calculating the accurate phase difference.

Model of phase difference. The impact of CFO, SFO, STO and
carrier phase offset (CPO) on the phase of signal received from an
individual radio chain (or receiver) has been extensively studied
in prior works such as [46]. Accordingly, we model the CSI phase
difference ΔΦ𝑙,𝑘 of the 𝑘-th subcarrier and the 𝑙-th OFDM symbol
received from two RTL-SDRs as:

ΔΦ𝑙,𝑘 = 2𝜋 𝑓𝑇𝑥Δ𝜏 + Φ𝐶𝑃𝑂 + 𝑙Φ𝐶𝐹𝑂 + 𝑙𝑘Φ𝑆𝐹𝑂 + 𝑘Φ𝑆𝑇𝑂 (8)

where 2𝜋 𝑓𝑇𝑥Δ𝜏 denotes the target phase rotation caused by the
TDoF, 𝑓𝑇𝑋 is the frequency of the transmitted signal, and Φ𝐶𝑃𝑂 ,
Φ𝐶𝐹𝑂 , Φ𝑆𝐹𝑂 , Φ𝑆𝑇𝑂 represent the unit errors caused by the differ-
ence of CPO, CFO, SFO and STO between two RTL-SDRs. We could
observe that the error introduced by CFO changes with time (or 𝑙 ),
the error introduced by STO changes with frequency (or 𝑘) and the
error introduced by SFO changes with both time and frequency (𝑙
and 𝑘). We summarize the properties of all the phase components
of Eqn. 8 in Table 1.

Error estimation and correction. Supposing the LTE channel
consists of 𝐾 subcarriers and we receive 𝐿 OFDM symbols, then
we would obtain a matrix of phase difference, i.e. , ΔΦ𝑙,𝑘 , where
𝑙 = [1, · · · , 𝐿] and 𝑘 = [1, · · · , 𝐾]. We first eliminate all the fre-
quency invariant components by subtracting between adjacent
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Table 1: Properties of all the phase components in the phase differ-
ence of received signals from two RTL-SDRs.

Time invariant Time variant

Frequency
invariant

Target phase rotation
+

Carrier phase offset

Carrier frequency
offset

Frequency
variant

Sampling timing
offset

Sampling frequency
offset

phase difference elements along the frequency domain:

ΔΦ𝑙,𝑘+1 − ΔΦ𝑙,𝑘 = 𝑙Φ𝑆𝐹𝑂 + Φ𝑆𝑇𝑂 , (9)

Afterwards, we cancel the time invariant STO by subtracting adja-
cent phase difference elements along the time domain:

(ΔΦ𝑙+1,𝑘+1 − ΔΦ𝑙+1,𝑘 ) − (ΔΦ𝑙,𝑘+1 − ΔΦ𝑙,𝑘 ) = Φ𝑆𝐹𝑂 (10)

Till now, we derive the impact of 𝜙𝑆𝐹𝑂 . We also note that, by per-
forming the above operation on the matrix of size 𝐾 × 𝐿, we obtain
(𝐿 − 1) × (𝐾 − 1) estimations of the same 𝜙𝑆𝐹𝑂 . We calculate the
mean of all these estimations as our final estimation to minimize
the effect of the random noise caused by the environment, measure-
ment, thermal effect, and so on. Substituting the estimated Φ𝑆𝐹𝑂
in Eqn. 9, we could obtain the estimation of Φ𝑆𝑇𝑂 .

Similarly, we calculate the difference of the phase difference
along the time domain and obtain:

ΔΦ𝑙+1,𝑘 − ΔΦ𝑙,𝑘 = Φ𝐶𝐹𝑂 + 𝑘Φ𝑆𝐹𝑂 . (11)

We then estimate theΦ𝐶𝐹𝑂 by subtracting the estimatedΦ𝑆𝐹𝑂 from
the above equations. In total, we obtain (𝐿 − 1) × 𝐾 estimations
of Φ𝐶𝐹𝑂 after performing the above operations over the matrix of
phase difference, and use their mean value as our final estimation.

After compensating CFO, SFO, STO, we have the only phase
offset CPO left. However, both the target phase rotation and CPO
are fixed along the time and frequency domain. It is not able to
differentiate them from each other. An CPO calibration at the ini-
tialization stage is required to eliminate CPO before extracting
the target phase rotation for soil sensing. To calibrate CPO, the
conventional method is to leverage a known transmitter sending
known signals through two cables with equal lengths [46]. Under
such a circumstance, the Δ𝜏 = 0 and the target phase rotations is
zero in the matrix of phase difference ΔΦ𝑙,𝑘 . CPO becomes the only
unknown in the matrix and thus can be accurately estimated.
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3.2.3 Oscillating phase offset. Except the phase error caused by
the CFO, CPO, SFO, and STO, we also observe a unique oscillating
phase offset in the phase difference of signals received from two
RTL-SDRs, just as shown in Figure 5.
Root cause. We conduct a series of experiments to find the root
cause of the oscillating phase offset. The radio chain of RTL-SDR
consists of two separate signal processing integrated circuit (IC):
the RF processing IC and the baseband processing IC, just as shown
in Figure 6. These two ICs have their own phase-locked-loop (PLL).
According to the source code of the driver program [31], RTL-
SDR implements a direct baseband receiving mode, which supports
bypassing the RF processing IC and directly feeding signals to
the baseband processing IC. We, therefore, set two RTL-SDRs in
the direct baseband receiving mode, feed the same signal to the
baseband IC and calculate the phase difference. We plot the results
in Figure 7, from which we could see that the baseband IC is not
the source of the oscillating phase offset.
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We then feed the RF signal into the RF IC, independently ad-
justing the parameters of the RF-domain processing including the
sampling rate, RF gain, central frequency, and check whether the
oscillating phase offset will be affected. We observe that the phase
oscillation range is proportional to the RF PLL frequency [32], as
shown in Figure 8. For our LTE receivers in the frequency band of
700-800 MHz, the oscillation range is in the range of 7-8 rad.

The RF PLL is highly likely the root cause of such an oscillating
phase offset. Ideally, RF PLL should generate stable frequency out-
puts, but in reality it always oscillates near the target frequency
to realize a dynamic frequency lock, causing a time variant phase
offset. The two RTL-SDRs use separate PLLs in their RF IC. In the
initialization stage, their outputs lock to two random frequency
offset. As a result, two unaligned oscillating outputs lead to the
oscillating phase difference between the two receivers.
Error handling. It is hard to accurately model the oscillating phase
offset, but we have two observations that help remove it from phase
difference. First, periodicity in time. The oscillating phase varies
periodically in the time domain. We plot one cycle of the varying
phase in Figure 9. We also perform spectral analysis on the isolated
oscillating phases, and plot the results in Figure 10, from which we
see that the main frequency component is at 48.55 Hz and thus the
oscillating period is 20.6 ms, which is very stable according to our
empirical data. The shape of the phase curve also maintains the
same within one cycle. The only property that varies is the differ-
ence between the peak and valley, which is determined by the RF
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Figure 9: One cycle of the os-
cillating phase offset in the time
domain.
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Figure 10: Spectrum analysis to
find the period of the PLL caused
oscillating phase offset.

PLL frequency, as shown in Figure 8. Second, frequency invariance.
The oscillating phase has the same pattern on all the subcarriers.
According to the above analysis, we see that the oscillating phase is
time variant but frequency invariant, which is the same as the CFO,
indicating that the CFO we estimated includes two components,
just as shown in Figure 5. We note that the phase error caused by
CFO is linear while the oscillating phase is nonlinear. Thus, we
separate the CFO via linear regression. The residual phase is the
oscillating phase and can be removed from the phase difference.

3.3 Low-power Duty Cycle
To reduce the overall power consumption of our system, we propose
to adopt duty cycle based sensing scheduling, based on the fact that
the soil moisture changes slowly (in hours).

Challenge. Duty-cycled soil moisture measurement is a common
practice for commercial soil sensors to save energy. It is, however,
challenging to be directly implemented on existing WiFi based soil
moisture sensing systems [10]. Duty cycle requires frequent power-
ing on and off. Every time we power on the RF radio chain, the CPO
is randomly initialized. As we have mentioned in §3.2.2, to estimate
the CPO, we need to perform an off-line calibration by directly con-
necting one dedicated RF transmitter to the receiver. Typically, the
dedicated RF transmitter is removed after deployment [10, 46]. But,
by doing so, we must turn on the RF receiver to maintain the CPO
value, contradicting the requirement of the duty cycle operation.
If we embed one dedicated signal emitter in soil moisture sensor
purely for calibration purpose, the hardware cost almost doubles.
More importantly, the power consumption increases significantly,
since transmitting RF signals consumes orders of magnitude higher
power than purely passive reception, which also conflicts with the
purpose of low-power duty cycle.

3.3.1 Automatic calibration. We propose an automatic calibration
solution without adding any additional signal emitter, based on two
key observations. First, unlike the dedicated WiFi or LTE network
interface card that can only process standard WiFi or LTE signals,
the RTL-SDR in our system can be programmed to process arbitrary
signals. Second, the Raspberry Pi can be programmed to be a signal
generator. Specifically, the Raspberry Pi has an internal integrated
clock to drive its CPU, which is able to generate a continuous wave
with a central frequency smaller than 1.5 GHz. The range of the
central frequency perfectly covers the band of LTE base stations we
choose in our implementation (700-800 MHz). More importantly,
we can program the Raspberry Pi to set the central frequency and

output it using the GPIO port. We note that setting the central
frequency does not affect the frequency of the CPU. Based on our
observations, we propose to feed the continuous wave generated
by the Raspberry Pi into the RTL-SDRs to calibrate the CPO.

LTE Receiver 1

LTE Receiver 2

USB

USB
GPIO

RF Switch

Raspberry Pi

RTL-SDRRF Switch

Figure 11: Illustration of the calibration circuit.

Hardware configuration. To realize our idea, we connect the
GPIO port of the Raspberry Pi to two low-cost ($3.75) RF switches [9]
via equal-length cables, just as shown in Figure 11. We also connect
the LTE antennas to the other ports of the RF switches to receive
LTE signals. We program the Raspberry Pi to control the switches
to receive calibration signals from its own GPIO during the cali-
bration stage, and to receive LTE signals from the LTE antennas
during the soil moisture measuring stage.

Frequency hopping based data sampling. We need to estimate
the impact of CFO, SFO, and STO, before we can calibrate the CPO.
By receiving the known single-frequency signals generated by the
Raspberry Pi, we can only estimate the CSI of a single frequency
(similar to one subcarrier). However, according to Eqn. 8, we need
CSI measurements across frequencies to estimate and then mitigate
the impact of those frequency variant phase errors.

⋱

∆𝜱𝜱𝟏𝟏,𝟏𝟏 ⋯∆𝜱𝜱𝑻𝑻,𝟏𝟏

Subcarrier

Time domain

Oscillation period
(20.6 ms)

∆𝜱𝜱𝟏𝟏,𝑲𝑲⋯∆𝜱𝜱𝑻𝑻,𝑲𝑲

166 subcarriers 
on 2.5 MHz

Figure 12: Scheduling the frequency hopping based data sampling.

To obtain CSI measurements across frequencies, we propose a
frequency hopping based data sampling algorithm during the phase
calibration process. As shown in Figure 12, we first configure the
Raspberry Pi to generate a signal at the 𝑘-th frequency (subcarrier),
at which we measure 𝑇 CSIs within a period of 20.6 ms. We then
program the Raspberry Pi to switch the central frequency of the
generated signal and repeat the CSI measurement process. There are
166 subcarriers within the bandwidth of the Raspberry Pi (2.5 MHz).
Scanning all the subcarriers takes about 3.4 seconds, given the
sampling time at each subcarrier is 20.6 ms. To reduce the time
spend on the initial calibration and thus save the energy, we only
collect CSI on six subcarriers that are symmetric to the central
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subcarrier (see §5.2), with a gap of 28 subcarriers between each two
adjacent subcarriers.

Phase error correction. We denote the phase difference of the 𝑇
CSIs collected from the 𝑘-th subcarrier of two RTL-SDRs as:

ΔΦ𝑇
𝑘
=


ΔΦ1,𝑘
ΔΦ2,𝑘
· · ·

ΔΦ𝑇,𝑘

 (12)

where the phase difference Φ𝑡,𝑘 can be calculated according to
Eqn. 8. Accordingly, the phase differences of all the sampled CSIs
are given as:

ΔΦ = [ΔΦ𝑇1 ,ΔΦ
𝑇
2 , . . . ,ΔΦ

𝑇
𝐾 ] (13)

where 𝐾 = 6 in our current implementation, since we only sample
in six pre-selected subcarriers.

We follow similar steps described in §3.2.2 to estimate and elimi-
nate the impact of CFO, STO and SFO. Specifically, we first subtract
the adjacent phase difference along the time dimension and obtain:

ΔΦ𝑇
𝑡+1,𝑘 − ΔΦ𝑇

𝑡,𝑘
= Φ𝐶𝐹𝑂 + 𝑙Φ𝑆𝐹𝑂 . (14)

We then subtract the phase difference in the frequency dimension:

(ΔΦ𝑇
𝑡+1,𝑘+1 − ΔΦ𝑇

𝑡,𝑘+1) − (ΔΦ𝑇
𝑡+1,𝑘 − ΔΦ𝑇

𝑡,𝑘
) = Φ𝑆𝐹𝑂 . (15)

By doing so, we isolate the Φ𝑆𝐹𝑂 , and obtain 𝑇 × (𝐾 − 1) noisy
estimations of Φ𝑆𝐹𝑂 . We use the mean value of all those estimations
as our final result. By subtracting the estimated Φ𝑆𝐹𝑂 in Eqn. 14,
we obtain the estimated Φ𝐶𝐹𝑂 . We note that, Φ𝐶𝐹𝑂 represents the
phase difference caused by two CFOs between the transmitter and
two RTL-SDR. Since the CFO induced phase error is linear, the final
CFO included phase difference is determined by:

(𝑓𝑡𝑥 − 𝑓𝑟𝑥1 ) − (𝑓𝑡𝑥 − 𝑓𝑟𝑥2 ) = 𝑓𝑟𝑥1 − 𝑓𝑟𝑥2 . (16)

Therefore, even though we change the transmitting frequency, the
introduced Φ𝐶𝐹𝑂 is the same across different subcarriers (transmit-
ting frequencies). By removing Φ𝐶𝐹𝑂 and Φ𝑆𝐹𝑂 from Eqn. 13, only
Φ𝐶𝑃𝑂 and Φ𝑆𝑇𝑂 are left. Since Φ𝑆𝑇𝑂 is frequency variant while
Φ𝐶𝑃𝑂 is frequency invariant, we can estimate the Φ𝑆𝑇𝑂 first by
subtracting adjacent phase differences in frequency dimension and
at last estimate the Φ𝐶𝑃𝑂 , as we have done in §3.2.2.

Figure 13: The possible range of
unknown 𝜃2.

Figure 14: The possible moisture
error when assuming 𝜃2 = 90◦.

3.4 Soil Moisture Estimation

Unknown base station locations. When calculating the speed 𝑐
in Eqn. 6, we assume that the refraction angle 𝜃2 can be calculated
using the locations of the base stations. However, knowing the
exact locations of all the deployed sensors and all the base stations
is a strong assumption, which may not be valid in real world de-
ployment. We now describe how to realize soil moisture estimation
without knowing the base station locations.

According to Snell’s law [44], we can calculate the refraction
angle 𝜃2 as:

𝜃2 = arccos
(
cos𝜃1√

𝜖

)
. (17)

We plot all possible value of 𝜃2 in Figure 13, given that the common
range of 𝜖 varies in [4, 36] for soil [10], and the incident angle may
vary in the range [0◦, 90◦] , from which we could see that the range
of 𝜃2 is within [60◦, 90◦], much smaller than the value space of 𝜃1.
In our implementation, we directly set the 𝜃2 = 90◦.

We now analyze how much error is introduced to the final mois-
ture estimation by using the fixed 𝜃2 value. We denote the dielectric
permittivity for 𝜃2 = 90◦ as 𝜖𝑒𝑠𝑡 . Given Eqn. 6 and 𝜖 = (𝑐0/𝑐)2, we
have 𝜖𝑒𝑠𝑡 = 𝜖 sin2 𝜃2. The possible soil moisture estimation error
between the assumption 𝜖𝑒𝑠𝑡 and the actual 𝜖 is obtained by Eqn. 1:

ΔM = 0.1138
√
𝜖 (1 − sin𝜃2)

= 0.1138
√
𝜖

(
1 − sin arccos

(
cos𝜃1√

𝜖

) )
.

(18)

The moisture error due to the setting 𝜃2 = 90◦ is shown in Eqn.
18, which is determined by the real incident angle 𝜃1 and the real
dielectric permittivity 𝜖 . We obtain the possible error distribution in
Figure 14. The max soil moisture error caused by our assumption is
about 2.5% at the bottom left corner of the error map, and the mean
moisture error is about 0.7%. The maximum error occurs when the
actual dielectric permittivity 𝜖 = 4 and the actual incident angle
𝜃1 = 0◦ (actual 𝜃2 = 60◦). To compute the mean error, we let both
the incident angle and the dielectric permittivity change at a step
of 0.01. We compute all the corresponding moisture errors ΔM,
and then we compute the average, which is about 0.7%, remaining
in an acceptable error range.

Subcarrier combination. We obtain one estimation of the soil
moisture using the calibrated CSI from each subcarrier. To effec-
tively combine the estimations from all the subcarriers, we need to
analyze the credibility of the estimations on different subcarriers,
i.e. , the impact of errors on different subcarriers.

We only analyze the impacts of SFO and STO on different sub-
carriers, since CFO, CPO and the oscillating phase offset have the
same impact across subcarriers. After OFDM demodulation, differ-
ent subcarriers fall on different baseband frequencies from ±Δ𝑓 to
±(𝐾/2)Δ𝑓 , where Δ𝑓 denotes the LTE subcarrier bandwidth, i.e. ,
15 kHz. Due to SFO, there is a time error in each sample interval,
i.e. , 1/𝑓𝑠 − 1/𝑓𝑠 , where 𝑓𝑠 represents the ideal sampling frequency
after compensating SFO and 𝑓𝑠 represents the actual sampling fre-
quency with SFO, just as shown in Figure 15. For a subcarrier at
the frequency of 𝑘Δ𝑓 , the time delay causes a phase error:

Δ𝜙 = 2𝜋𝑘Δ𝑓 ( 1
𝑓𝑠

− 1
𝑓𝑠
) . (19)
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Figure 15: Illustration of SFO
caused error.
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Figure 16: SFO caused phase er-
ror caused in one sample inter-
val.

In the above equation, 1
𝑓𝑠

− 1
𝑓𝑠

is the same for any subcarriers,
while 𝑘Δ𝑓 varies across subcarriers, which indicates that, given a
certain SFO, a higher subcarrier frequency results in a larger phase
error in the same interval. Figure 16 shows both the theoretical
(from Eqn. 19) and experimental phase errors for different subcarrier
frequencies in one sample interval, whichmatcheswith our analysis.
Based on the above conclusion, we set lower weights (1/𝑘Δ𝑓 ) to
the subcarriers with higher frequencies and compute the weighted
soil moisture estimation as the final output.

4 IMPLEMENTATION

Software implementation. We implement the LTE demodula-
tion procedure and a real-time LTE CSI tool in C++. Our minimal
LTE CSI tool works on lightweight, low-cost and low-power de-
vices. Table 2 shows the comparison between our LTE CSI tool
and the widely used WiFi CSI tools [13, 16]. All of them realize the
basic functions including real-time reception and demodulation,
saving CSI to files for future use and real-time CSI visualization
facilitating research. However, our CSI tool provides more than
5.6x CSI readings than the WiFi CSI tools. To accelerate execution,
we also provide two levels of parallelization of the computation:
multi-threading [23] and offloading the channel estimation tasks
to GPU using OpenCL [15]. [7] demonstrates the real-time CSI
demodulation and visualization using our LTE CSI tool. And [8]
presents another real-time hand speed estimation demo requiring
heavy computation (threefold auto-correlation).

Microbenchmark.We obtain an quantified computational com-
plexity comparison of the average CPU usage by letting the pro-
grams run on the same PC (Intel® Celeron® Processor J1900, 2.0
GHz). To enable a fair comparison, we let the WiFi CSI tool [16]
use two receiver antennas and set the packet rate to 2500 units per
second. Also, we reduce the LTE CSI extraction rate to 2500 units
per second. We let both programs run for 30 seconds and repeat
for 10 times. The average CPU usage for our LTE CSI tool is 5.5%,
while the counterpart of the WiFi CSI tool is 33.7%. In conclusion,
our LTE CSI tool is much more lightweight than the WiFi CSI tool.

LTE frequency band selection. LTE communication includes a
wide range of frequency bands from sub-GHz to 6 GHz, which gives
us the freedom to choose the best one for sensing. Wireless signal
attenuation in the soil is frequency-dependent [22], and higher
frequencies have higher attenuation. So we choose the sub-GHz
frequency bands. In our implementation, we choose base stations
with central frequency in the range of 700-800 MHz, which are the

Table 2: Functionality comparison between our LTE CSI tool and
existing open-source WiFi CSI tools.

Functionalities LTE CSI tool WiFi CSI tools
Real-time reception

EnabledSaving to a file
Real-time visualization
Max sampling rate 14000 Samples/s ∼2500 Samples/s

Computational complexity Lightweight heavy duty
GPU acceleration Enabled No supported yet

most common sub-GHz bands in the US. There are usually multiple
LTE frequency bands provided by different vendors.

Setting the distance between antennas. The distance between
two receiving antennas is required to calculate the speed of RF
wave inside soil, according to Eqn. 6. Since we calculate the TDoF
using the phase difference of signals received at two antennas
(Δ𝜏 = Δ𝜙/(2𝜋 𝑓 )), we have to limit such a phase difference within
2𝜋 to eliminate any phase ambiguity. According to Eqn. 6, we
calculate the phase difference as:

Δ𝜙 = 2𝜋 𝑓 Δ𝜏 = 2𝜋 𝑓
𝜖𝑑 sin𝜃2

𝑐0
. (20)

Accordingly, by limiting the phase within 2𝜋 , we have:

𝑑 <
𝑐0

𝜖 𝑓 sin𝜃2
. (21)

The common range of 𝜖 is 4 to 36 in soil moisture estimation [10].
Given the central frequency range of 700-800 MHz, we obtain the
upper bound of the distance 𝑑 < 9.37 𝑐𝑚.

The distance is also lower bounded by several factors. First, to
deal with the non-homogeneity of the soil, the antenna distance Δ𝑑
should be large enough to achieve stable results. Second, closely-
placed antennas suffer from mutual coupling effects [38], which
introduces an additional phase rotation and thus affects the TDoF
estimation. Based on extensive experiments (§5.3), we set the an-
tenna distance to 4 cm, which optimizes the performance.

5 EVALUATION
In this section, we evaluate the accuracy of our system. We present
the end-to-end evaluation of the soil moisture estimation accu-
racy (§5.1), followed by a micro-benchmark to investigate the im-
pact of different factors on the accuracy of soil moisture estima-
tion (§5.2). Finally, we evaluate the power consumption of our
system (§5.3).

Setup. In our lab experiments, We use a large plastic box as the
soil container, just as shown in Figure 17. We place two antennas
horizontally in the soil at a depth of 7 cm (the typical insertion
depth of high-end sensors [18]) and set the antenna distance 𝑑 to
4 cm. We set calibration duration to be 0.125 s and the LTE signal
collecting duration to be 2 s. We precisely control the water added
to the soil and use the ratio of water to the total volume of soil
and water as the groundtruth. In our field experiments, we use the
same antenna configurations as lab experiments and use the soil
moisture measured with a high-end commercial soil sensor [18] as
the groundtruth.
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Figure 17: Laboratory setting overview.

5.1 Soil Moisture Estimation Accuracy
In this section, we first evaluate the overall accuracy of our system
using a set of controlled lab experiments. We then perform field
tests to investigate the performance of LTE-Soil-Meter in the wild.

Overall accuracy.We first evaluate the accuracy of our system and
compare the performance with the high-end soil sensor ($850) and
another low-end soil sensor [17] ($50). We conduct controlled ex-
periments in the lab to accurately control the moisture. Specifically,
we change the soil moisture level from 0% to 50% at a step size of
5% and then measure the soil moisture using our LTE based sensor,
the high-end and the low-end sensor, respectively. We repeat the
experiments at each moisture level 50 times.

We plot the estimation error in Figure 18, from which we see
that the mean estimation errors are 3.15%, 2.50% and 9.38%, for
our system, the high-end and low-end commercial soil sensors,
respectively. Our system achieves three times higher accuracy than
the low-end sensor at similar prices. Compared with the high-end
sensor which is ten times more expensive, our system achieves
comparable accuracy.

We also observe that, when the soil moisture is lower than 20%,
the estimation error of our system decreases with the increase of
soil moisture, which matches the result in Figure 14. When the
soil moisture is higher than 40%, the effects of signal attenuation
caused by high soil moisture gradually become noticeable. Higher
attenuation leads to decreased signal-to-noise ratio at the receiver,
and accordingly higher error in soil moisture estimation.
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Figure 18: Mean absolute error at different soil moisture levels.

Soil type. To investigate the effect of soil diversity, we conduct
experiments with four different types of soil (see Figure 19) in a
residential house backyard: the potting mix, the soil with grass
covered, the sandy loam, and the stony ground. We conduct experi-
ments at five different locations with one pit shown in Figure 20
for each soil type to avoid bias.

Figure 21 plots the absolute estimation errors measured in four
types of soil. We see that the mean estimation errors for the plant
covered soil and the potting mix are 3.18% and 2.94% respectively.

(a) Grass covered (b) Potting mix (c) Sandy loam (d) Stony ground

Figure 19: Different soil types in field experiments.

These results demonstrate that the grass covering the soil sur-
face has negligible effect on soil moisture estimation. Our system
achieves the lowest mean error and the least deviation in the sandy
loam, which is actually the most common field soil in our geo-
graphic area. Last but not least, we observe that the small stones
on the ground have a noticeable impact on the performance. One
possible reason is that stones may cause an extra phase change,
degrading the sensing performance.

Figure 20: A pit dug for experi-
ments.
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Figure 21: Effects of different
ground types.

Types of covering plants. We evaluate the performance of our
system in soil that is covered by three types of plants, i.e. , flowers,
grass, and trees. As shown in Figure 22, the flower stems are around
50 cm long, and the surface of the soil is about 3 meters below the
tree crown. Figure 23 shows the performance in these scenarios.
Dense flowers increase the mean error by 0.5%, and also result in
larger variations of soil moisture estimation. A possible reason is
that the flowers are not still and the swinging leaves affect signal
propagation, leading to a slightly larger error. As a comparison, the
trees also slightly affect the accuracy.

50 cm

3 m

Figure 22: Types of plant cover-
ing scenarios. Left: flower bed ;
right: under tree.
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Figure 23: Effects of different
covering plants on soil moisture
estimation.

Distance to the base station (Soil sensing coverage).We now
evaluate the soil sensing range with respect to the LTE base stations,
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i.e., the sensing coverage in downtown and suburban areas. In the
downtown experiments, We evaluate the moisture sensing accuracy
by varying the distance between the LTE base station and receiver
from 200 m to 1200 m at a step size of 200 m. For each distance, we
randomly pick five locations to evaluate the performance of soil
moisture sensing. For experiments in the suburban area, we vary
the distance from 400 m to 2400 m at a step size of 400 m.
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(b) Suburban area

Figure 24: Effects of distance to the base station.

We plot the soil moisture estimation errors in Figure 24a. We
see from the figure that, due to signal attenuation and complex
multipath in the downtown area, the estimation error increases
with distances, but not monotonically. Even when the distance is
1200 m, the soil moisture estimation error (8%) is still lower than
the low-end commercial soil sensor [17]. Note that the radius of
the communication coverage of a downtown LTE base station is
about 1 km [11]. Figure 25a shows the real coverage on the map, in
which LTE soil sensing covers all of the downtown area and part
of our university at the northwest corner. In the suburban area, the
estimation error increases monotonically with the distance. The
moisture sensing error is still reasonably low (8%) at a distance
of 2400 m, demonstrating a larger sensing range in open areas.
Figure 25b shows the farm fields within the sensing coverage.

(a) Downtown (b) Suburban area

Figure 25: Sensing coverage on the map, blue areas represent the
farm fields within the sensing coverage.

Compared with the existing WiFi based solution [10] and RFID-
based solution [43], the proposed LTE-based system achieves a
sensing coverage hundreds of times larger, moving a big step to-
wards large-scale deployments in real-world scenarios.

Times of day andweather.We observe that the LTE signal quality
is affected by the times of day (i.e. , daytime or night) and weather.
To quantify their impacts on soil moisture sensing, we conduct

experiments at different times of day and under varying weather
conditions. In each experiment, the LTE receivers are placed at
the same location. For times of day, we collect data in the daytime
and in the night separately for five continuous days. For varying
weather conditions, we collect data under four different weather
conditions, i.e. , sunny, cloudy, windy and rainy. We average 20
measurements for each setup.
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Figure 26: Effects of times of day and weather conditions.

We could see from Figure 26a that on average, the soil moisture
error at night is 0.2% higher than that in the daytime. A possible rea-
son is that the LTE base stations switch to power-saving mode [45]
during nights when there are fewer users. The lower signal strength
results in lower SNR and slightly affects the sensing performance.
On the other hand, we could see from Figure 26b that weather
conditions do have a noticeable impact on the sensing performance.
Specifically, the mean absolute error in rainy days is 0.53% higher
than that in the sunny days.

Long-term performance evaluation. To evaluate the long-term
performance of our system, we deploy our system in the sandy loam
to measure the soil moisture. We also deploy another high-end soil
moisture sensor and use its measurements as the ground-truths.
We configure both sensors to measure the soil moisture once per
hour and plot the measured results in Figure 35. We see that the
proposed system works robustly and reports accurate soil moisture
levels during the process of the seven-day experiment.

5.2 Micro-benchmarks
We perform micro-benchmarks to evaluate the impact of various
factors on the final moisture estimation accuracy.
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Figure 27: Effects of different
antenna depths.
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Figure 28: Effects of different
antenna distances.

Antenna depth. The antenna depth represents the distance be-
tween the soil surface and the upper antenna, just as shown in
Figure 17. We vary the antenna depth from 3 cm to 15 cm at a step
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size of 3 cm and test the soil moisture sensing accuracy. We repeat
the experiments by varying the soil moisture levels from 5% to 45%
at a step size of 10%. We plot the results in Figure 27, from which
we see that the mean estimation error increases with the antenna
depth, i.e. , from 2.83% to 4.50%. The main reason is that when the
antennas are buried deeper in the soil, the signal attenuation is
higher and lower signal-to-noise ratio (SNR) leads to larger error.

Antenna distance. We investigate the impact of antenna distance
𝑑 on the estimation accuracy. Since we have derived the upper
limit (9.37 cm) for the antenna distance in §4, we vary the antenna
distance 𝑑 from 1 cm to 9 cm at a step size of 2 cm. For each distance
𝑑 , we conduct experiments at five different moisture levels (5% to
45% at a step size of 10%). The average errors are plotted in Figure 28.
We see from the figure that, when the two antennas are close to each
other (1 cm), the sensing error is larger than 10%. The root cause
of this high error is the mutual coupling effects between antennas.
With a larger separation between antennas, the mutual coupling
effect is greatly mitigated and the error drops significantly. We
however note that the error also increases slightly with the distance
𝑑 (5% at 9 cm). We believe both the larger signal attenuation at the
deeper antenna and the varying soil moisture in a larger range
contributes to the increased errors. In summary, a distance between
3 cm and 5 cm achieves the best sensing performance and we
therefore choose 𝑑 = 4 cm in our implementation.

Figure 29: Two different
types of LTE antennas.
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Figure 30: Mean absolute error
with different antenna size.

Antenna size. To investigate the impact of the antenna size, we
conduct an experiment using two antennas with different sizes
but a similar gain of 8 dBi, as shown in Figure 29. We conduct
controlled experiments in the lab to accurately control the moisture.
We change the soil moisture level from 10% to 50% at a step size of
10% and repeat the experiments at each moisture level for 50 times.
Figure 30 shows the results. We observe a very small increase of
error when the small antenna is adapted.

Soil surface
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Figure 31: Illustration of the an-
gle between antennas and the
soil surface.
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Figure 32: Effects of different
angles on soil moisture estima-
tion.

Angle between the antennas and the soil surface. In real de-
ployments, it is hard to place the antennas parallel to the soil surface.
We denote the angle between the antennas and the soil surface as
𝛼 (shown in Figure 31), and evaluate the effect on soil moisture
estimation. Specifically, for all tested angles, we keep the vertical
distance (i.e. , depth difference) of the two antennas as 4 cm. During
the experiments, we change 𝛼 from 0◦ to 45◦. For each setting, we
compute the average error on five moisture levels from 5% to 45%.
As shown in Figure 32, larger angle 𝛼 leads to a slightly higher
error. In conclusion, an angle less than 30◦ between the antennas
and the soil surface is suggested, which is easy to achieve in real
deployments.

Calibration duration. In the calibration process, the number of
subcarriers is far more than the number of phase offsets to be com-
puted. So we do not need frequency hopping on all the subcarriers.
On the other hand, less hopping leads to less calibration time. We
now evaluate the effect of different calibration durations, i.e. , the
number of hopping subcarriers. We change the calibration time
from 0.041 second to 0.250 second, i.e. , the number of hopping
subcarriers from 2 to 12. For each setting, we evaluate the average
error on five moisture levels from 5% to 45%. Figure 33 shows that
longer calibration duration leads to higher accuracy. From 0.041 sec-
ond to 0.125 second, the average accuracy increases by about 1.5%.
Further increasing the duration only leads to subtle performance
improvement. We therefore set the calibration duration as 0.125
second (6 hopping subcarriers) to balance accuracy and latency.
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Figure 33: Effects of differ-
ent calibration duration on soil
moisture estimation.
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Figure 34: Effects of different
data collecting duration on soil
moisture estimation.

Data collection duration. The received data is affected by ran-
dom noise from the environment, thermal effects, etc. We need to
receive a certain amount of data to mitigate the issue of noise. In
this part, we evaluate the effect of different durations of LTE signal
collection (excluding the calibration duration). We evaluate on five
moisture levels from 5% to 45% and compute the average moisture
error to avoid bias. Figure 34 shows that longer data collection tends
to stabilize the estimation results and leads to a slightly higher ac-
curacy. However, extending the collection duration would increase
the power consumption and shorten the operational life. When we
increase the data collection duration from 0.5 second to 2 seconds,
the average accuracy increases by around 1%. We also observe that
further increasing the duration does not help improve the sensing
accuracy much. We therefore set 2 seconds as the data collection du-
ration in our experiments to maintain a balance between accuracy
and power consumption.
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5.3 Power Consumption Measurement
Wenow investigate the power consumption of our soil moisture sen-
sor. We interconnect a USB power source with our system through
a USB power meter [25]. We use the USB power meter to measure
the power consumption of each component in our sensor.

Table 3 shows the power consumption in one duty cycle. The
LTE receivers collect 2-second data to mitigate the effect of random
noise and improve the robustness in estimating hardware-caused
offsets. The collected data is processed in real time. The reason for
the much longer total time is the boot-up and shutdown time of the
Raspberry Pi. The total energy consumption for one measurement
cycle is 5.385 mWh.

Table 3: Power consumption of the main components and the
whole system in one duty cycle.

Raspberry Pi LTE receiver Whole System
Mean power (W) 1.071 1.412 1.583
Working time (s) 12.245 2.191 12.245
Energy (mWh) 3.644 0.865 5.385

Based on the power consumption of one cycle, we calculate the
total work time of our sensor without replacing battery and plot
the results in Figure 36. We see that, when we set the cycle length
to two hours, our system can work over 16 months with 4 common
rechargeable batteries (1.5 V and 5000 mAh). In comparison, the
WiFi-based system [10] uses a laptop to work with the commercial
WiFi chip, which incurs a much higher cost and also a much larger
power consumption.
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Figure 35: Long term experi-
ment comparison in seven days.
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Figure 36: Battery life at differ-
ent measurement intervals.

6 RELATEDWORK
LTE-based sensing. LTE signals have been utilized for localiza-
tion/tracking [21, 28, 36, 37, 47], vehicle detection [35, 39] and hu-
man sensing [3, 12, 24]. Applications leveraging the broadcast LTE
downlink signals include fingerprint-based localization [21, 28, 47]
and tracking [36, 37]. By collecting and analyzing the reflected
signals from cars, car type classification [35] and parking moni-
toring [39] are realized. For human sensing, researchers achieve
hand gesture detection [3] and keystroke recognition [24]. Both
these systems require strong received signals to work in indoor
environments, and they require microcells or high-gain directional
antennas to boost LTE signals. In our previous work [12], we resolve
the signal strength limitation through delicate signal processing,
and realize fine-grained respiration sensing and car speed monitor-
ing across indoor and outdoor environments.

In this work, we for the first time realize LTE-based soil mois-
ture sensing, greatly extending the capability of LTE sensing. More
importantly, compared with existing LTE sensing works using ex-
pensive equipment (e.g. , USRP), we move a big step towards real-
world deployments. Our low-cost LTE sensing system facilitates
the development of affordable RF sensing on a large scale.
RF-based soil moisture sensing. Researchers have realized soil
moisture sensing leveraging different RF technologies. Remote sens-
ing technologies [26] are proposed for coarse regional soil mois-
ture sensing which is suitable for environment monitoring and
geographical imaging in a region. But the low spatial resolution
makes it not adequate for agriculture applications. Ground pene-
trating radar (GPR) [20] is another classic method measuring the
light speed in soil to estimate soil moisture. This method achieves
a high accuracy and high spatial resolution at the cost of using
expensive ultra-wideband radars. In recent years, researchers ex-
plore low-cost substitutes leveraging commercial wireless technolo-
gies such as RFID [30, 43] WiFi [10] and LoRa [48]. RFID-based
works measure the signal attenuation affected by different soil
moisture levels. WiFi- and LoRa-based works measure the signal
speed leveraging available commercial devices. All these systems
can only achieve a limited sensing range, preventing them from
real-life large-scale deployments. In comparison, our work enables
kilometer-level sensing coverage leveraging LTE signals, which
is tens to hundreds of times larger than the existing works. What
is more, the proposed system removes the requirement of infras-
tructure deployment, which greatly reduces the cost and effort for
real-world deployments. In a most recent work [19], researchers
propose a contactless RF soil moisture sensing method. To achieve
accurate ToF measurements for soil moisture sensing, this method
requires an expensive SDR [33] (over $8000) to receive signals on a
large GHz-level bandwidth, which is not scalable for real-world de-
ployment. In comparison, the cost of the proposed system is merely
$55.
Soil moisture sensors. Commonly-seen soil moisture sensors in-
clude gypsum blocks [6, 40], tension meters [1] and capacitance [14,
27, 27]. Gypsum blocks and tension meters measure the soil ten-
sion. When soil water enters the block structures of the sensor, the
resistance between the electrodes inside the sensors decreases, and
the soil moisture level is indicated by the resistance. The major
drawback of these types of sensors is that the effective components
decay over time, and thus require a replacement in a few months.
Capacitance sensors release an electrical charge into the soil and
measure the soil dielectric permittivity. The dielectric permittivity
can be mapped to the water volume level in the soil. Capacitance
sensors are usually expensive. Our system leverages the RF signal
property, i.e. , propagation speed in the soil to measure the dielec-
tric permittivity, which facilitates the low-cost realization of soil
moisture sensing.

7 DISCUSSION
Indoor soil moisture sensing. Though our system is mainly
aiming at outdoor soil moisture monitoring, our system can also
support indoor soil moisture sensing. All the experiments under the
lab settings are conducted in indoor environments, which validate
the effectiveness of the proposed system for indoor soil moisture
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sensing. Most greenhouses and balconies are usually surrounded
by windows or transparent films, which facilitate the reception of
reasonably good quality LTE signals in indoor environments. Thus,
our system supports soil moisture monitoring for indoor planting.

Soil moisture higher than 50%. Soil moisture is usually in the
range of 5% to 45% [4]. We notice that in some special scenarios
such as rice paddy, the moisture level can be higher than 50%. The
larger signal attenuation in higher-moisture soil can degrade the
sensing performance of the proposed system.

Limitations.Although the proposed system can support kilometer-
level coverage leveraging the existing LTE infrastructure covering
most of the areas [5], there are still blind spots such as uninhab-
ited farm fields far away from the residential areas. In these areas,
commodity LTE extenders could be deployed to facilitate both com-
munication and soil moisture sensing.

8 CONCLUSION
In this paper, for the first time, we realize LTE-based soil moisture
sensing. We present the unique advantages of LTE-based sensing
including wide coverage and always-on signal emitters, i.e. , ex-
isting LTE base stations already pervasively deployed. Through
extensive experiments, we demonstrate the superior performance
of the proposed low-cost and low-power sensing system. We be-
lieve this work moves a big step towards real-world adoption of RF
sensing for smart agriculture.
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