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ABSTRACT

Besides the communication function, wireless signals are recently

exploited for sensing purposes, enabling diverse applications. How-

ever, designing a wireless sensing system that provides truly per-

vasive coverage at city or even national scale and at the same time

does not affect ongoing data communication is still challenging. In

this work, we propose to involve the pervasive LTE signals into

the ecosystem of wireless sensing. Although LTE sensing solves

the coverage issue and does not compromise the communication

function, it brings unique challenges. Due to the long distance be-

tween LTE base stations and terminals, the LTE signal interacts

with diverse objects during the propagation process which causes

severe interference in sensing. We enable LTE sensing by designing

delicate signal processing schemes to combat against the severe

interference. We demonstrate the advantages of LTE sensing using

two typical applications, indoor respiration sensing and outdoor

traffic monitoring. Extensive experiments show that the proposed

system can achieve highly accurate respiration sensing with the

blind spot and orientation-sensitive issues greatly mitigated. For

traffic monitoring, the error of car speed estimation is lower than

2 mph, as good as commercial devices on the market.
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•Human-centered computing→Ubiquitous andmobile com-
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1 INTRODUCTION

Wireless sensing has become a popular area of research in the

last few years. Different from traditional sensor-based sensing,

wireless sensing relies on signals reflected from target to obtain the

target information. The contact-free nature of wireless sensing is

particular appealing in current COVID pandemic. Various wireless

technologies have been exploited for sensing includingWiFi [25, 33,

47], RFID [45], mmWave [9, 18] and LoRa [42, 43, 48, 49]. Among

these technologies, WiFi sensing attracted most attention owning

to the pervasive deployment of WiFi access points (APs) in indoor

environments. A large variety of WiFi-based sensing applications

have been proposed such as gesture recognition [24, 52], respiration

monitoring [36, 47, 50], and activity tracking [25, 40].

Though promising, WiFi signals cover the indoor-only environ-

ment which is just a small portion of the whole area. Furthermore,

we observe that even inside a university building with densely

deployed WiFi APs, the coverage is still not enough for sensing

purposes. This is because WiFi APs are deployed for communica-

tion and there is a huge gap between the communication coverage

and sensing coverage. While both light-of-sight (LoS) signal and

reflection signals can be used for communication, only weak re-

flection signals from the target contain the sensing information.

Therefore, while the WiFi communication range in indoor envi-

ronment can reach 30-50 m, the state-of-the-art sensing range is

merely 5-10 m [40, 47]. Therefore, even in indoor environment, the

deployedWiFi infrastructure is only able to cover a small portion of

area for sensing. In a typical house, one WiFi AP can usually cover

the whole house for communication but can only cover one or two

rooms close to the AP for sensing. From our empirical studies, only

15% of the area in a typical university building is covered in WiFi

sensing range.

Another practical issue which was not paid much attention to

is that WiFi sensing can greatly affect WiFi data communication.

The uncontrolled WiFi data packets are not suitable for sensing

due to the random time interval between adjacent packets and

frequent packet loss. On the other hand,WiFi beacons are uniformly

distributed in time but the beacon frequency (10 Hz) is not high

enough for a lot of sensing applications. Therefore, existing WiFi

sensing systems need to fully control the WiFi device to transmit

dedicated dumb packets at a high frequency (100-250 Hz) to support

sensing applications such as gesture recognition [2, 35] and gait

recognition [20, 37]. This dedicated packet transmission greatly

affects the primary communication function of WiFi.
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The third issue withWiFi sensing is that the sensing performance

is highly sensitive to target location and orientation. This is a major

limitation that hinders the adoption of WiFi sensing in real world.

Take respiration sensing as one example, the sensing performance

can severely degrade when a target slightly moves or changes the

orientation. The location-dependency results in blind spot issue in

wireless sensing [50].

Given the issues above, our conclusion is that while WiFi is per-

vasive for communication in indoor environments, it is not pervasive

for sensing. WiFi sensing also affects communication and the sensing

performance is not stable.

In this work, we ask this question: can we achieve truly pervasive

and reliable sensing without compromising data communication?

Instead of usingWiFi signals for sensing, we propose to exploit LTE

signals to achieve the above objectives. We introduce the unique

features of LTE signals and the advantages of exploiting LTE signals

for sensing below.

• Pervasive coverage. LTE base stations are deployed nation-

wide, and LTE signals cover not just indoor but also outdoor

environments. According to the official communication mar-

ket report of the USA in 2020 [11], 98% of the population

and 84% of area are covered by LTE networks.

• Frequency diversity and spatial diversity. LTE signals

occupy a large frequency range from 400 MHz to 6 GHz with

more than 30 frequency bands. In comparison, WiFi APs

operate mainly on two narrow bands located at 2.4 GHz and

5 GHz. Also, LTE base stations are delicately deployed to

form hexagonal tiling so that there are usually multiple LTE

base stations distributed around a user [17]. In our experi-

ments, more than 15 base stations with different frequencies

can be detected in our university located in a suburb area.

• Everlasting high-rate uniform frames. Different from

contention-based CSMA/CA protocol for WiFi, LTE trans-

missions are precisely organized among adjacent LTE base

stations in both time and frequency domains. LTE frames are

uniformly distributed in time domain. Even when there is

no data transmission going on, the everlasting broadcasted

reference subframes (similar to WiFi beacons) can achieve

a frequency of 1000 Hz which is much higher than the fre-

quency of WiFi beacons (10 Hz). Therefore, there is no need

to transmit dedicated frames for sensing which affect data

communication.

These unique features bring LTE advantages overWiFi and other

signals for sensing. The national coverage of LTE signals enables

ubiquitous sensing across both indoor and outdoor environments.

The frequency and spatial diversities help combat against the well-

known blind spot issue and orientation-sensitive issue in WiFi sens-

ing. The uniform frame transmission is essentially ideal for sensing

purposes. The high frequency broadcasting of reference frames

enables LTE to sense high speed movements which is previously

challenging for WiFi sensing. Without a need of transmitting any

dedicated frames for sensing, the communication function is not

affected, which is critical for real-life adoption of wireless sensing.

Inspired by the unique features of LTE signals, we propose LTE-

Track, a new sensingmodality leveraging LTE signals to realize truly

pervasive sensing. We demonstrate the powerful sensing capability

of LTE with two typical applications, indoor respiration sensing

and outdoor traffic monitoring.

Respiration sensing is an example of fine-grained activity sensing.

The chest displacement during the respiration process is around

0.5 cm [50]. For respiration sensing, we resolve the orientation-

sensitive issue and blind spot issue by utilizing the frequency and

spatial diversities of LTE signals. Traffic monitoring is an example

of high-speed movement tracking. Due to the low packet frequency,

WiFi signals have difficulties to accurately track movements with

a speed larger than 5 m/s. We show that with the high frame fre-

quency of LTE, we can track a car moving at 50 mph (i.e., 22 m/s,

15x faster than human walking). We show that LTE signals can be

used to count the number of cars passing by and also the car speed.

Though promising, challenges need to be tackled before we can

turn our idea into a functional system. Due to the long propagation

distance (200 m to 10 km) from the LTE base station to the LTE

terminal, the signal-to-noise-ratio (SNR) of the received signals

is usually 25 - 40 dB lower compared with that of WiFi signals.

Therefore, the signal variation induced by target movements can be

easily buried in noise. Also, due to the long propagation path, there

is more interference during the signal propagation process from

moving objects such as swinging trees, moving cars and pedestrians.

To mitigate the effect caused by the interference, we propose signal

processing methods consisting of coordinate shifting and multi-

base-station combining. Leveraging delicate signal processing, we

enable accurate respiration sensing and car speed measurement

using free signals from LTE base stations.

We summarize the main contributions of this work as follows:

• We effectively utilize the unique features of LTE to address

several fundamental issues associated with existing wireless

sensing systems. We believe LTE sensing moves one step

towards truly pervasive sensing.

• We propose delicate signal processing schemes to combat

against severe interference, making LTE sensing possible.

• We demonstrate the unique advantages of LTE sensing us-

ing two typical applications, respiration sensing and traffic

monitoring. Extensive experiments show that the proposed

system can achieve accurate respiration sensing with the

blind spot and orientation-sensitive issues greatly mitigated.

For trafficmonitoring, the car speed estimation error is lower

than 2 mph, as good as commercial devices on the market.

The rest of this paper is organized as follows. Section 2 intro-

duces the preliminary knowledge related to LTE sensing. Section 3

explains the unique advantages of LTE sensing in detail. Section

4 presents the challenges and signal preprocessing steps. Section

5 and 6 present the design of two sensing applications. Section 7

presents the hardware implementation and detailed evaluation for

both applications. Section 8 surveys the related work. Section 9

discusses the limitations followed by a conclusion in Section 10.

2 LTE PRELIMINARY

In this section, we introduce the background knowledge of LTE

protocol and the CSI measurements related to sensing. There are

two types of LTE physical layer modes, i.e., frequency division

duplexing (FDD) mode and time division duplexing (TDD) mode.
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Figure 1: (a) The time-frequency resource grids in LTE physical-

layer. (b) One resource block contains 14 OFDM symbols in time and

12 subcarriers in frequency. The four colors represent the reference

signals transmitted by four transmitter antennas.

We focus on FDD in our design since it is the most widely adopted

mode in commercial LTE networks.

2.1 LTE physical-layer frame structure

As shown in Figure 1 (a), LTE physical layer is based on frame

structure, which is divided into 10-millisecond frames in the time

domain. Each frame is further divided into one-millisecond sub-

frames. Each subframe contains 14 OFDM symbols. LTE groups

the 14 OFDM symbols (time domain) and 12 subcarriers (frequency

domain) into a basic time-frequency unit named resource block (RB),

as shown in Figure 1 (b).

2.2 Channel measurement in cellular network

LTE transceivers utilize channel state information (CSI) measure-

ment to reverse the impact of propagation channel for frame de-

coding. To facilitate channel estimation, LTE base station transmits

pre-defined reference signals. An LTE terminal is able to estimate the

channel using the received reference signal. Specifically, if we use

𝑋 (𝑠, 𝑓 ) to represent the transmitted known reference signal, and

𝑌 (𝑠, 𝑓 ) to represent the received reference signal at the 𝑠-th OFDM

symbol and 𝑓 -th subcarrier, the CSI 𝐻 (𝑠, 𝑓 ) can be calculated as:

𝐻 (𝑠, 𝑓 ) =
𝑌 (𝑠, 𝑓 )

𝑋 (𝑠, 𝑓 )
=

𝐿∑
𝑙=1

𝛼𝑙 exp(− 𝑗2𝜋
𝑑𝑙
𝜆
) + 𝑛(𝑠, 𝑓 ) (1)

where 𝛼𝑙 denotes the complex attenuation, 𝑑𝑙 denotes the length of

the 𝑙-th signal path, L is the number of paths, 𝜆 is the wavelength

of the signal, and 𝑛(𝑠, 𝑓 ) denotes noise. In Figure 1 (b), we show

the distribution of reference signals inside each resource block,

with four different colors (red, blue, green and yellow) representing

four transmitting antennas at the base station. The terminal first

estimates the channel of the 𝑠-th OFDM symbol and 𝑓 -th subcarrier

that contains reference signal and then interpolates across time and

frequency to obtain the full CSI matrix.

3 ADVANTAGES OF LTE SENSING

In this section, we explain the unique advantages of sensing using

LTE signals in detail.

Pervasive coverage. The broad coverage of deployed LTE infras-

tructure provides a sensing coverage that none of the current tech-

nologies, including WiFi, Bluetooth and LoRa, can possibly achieve,

Uneven Building surface (Scattering)

Base Station Flat Wall (Reflection)
Target

Receiver

Static 
Path

Dynamic 
Path

Figure 2: Multiple propagation paths from the transmitter (LTE

tower) to the receiver (LTE terminal). The yellow line reflected from

the tree represents dynamic path caused by swinging.

and thus opens a new window for designing seamless sensing ap-

plications at city or even national scale.

Free access. Reference signal is broadcasted by the base station

twenty-four seven and receiver device can passively listen and

decode the reference signal transmitted from an arbitrary base

station. Since decoding the reference signal requires no handshake

with the base station, there is no need to purchase a data plan for

LTE sensing. In a word, the broadcasted LTE reference signals are

free resources available for sensing.

Well-organized and high-frequency channel sampling. As il-

lustrated in Figure 1 (a), the LTE frames and subframes are well-

organized without any interframe gap. Therefore, the correspond-

ing CSIs of two consecutive subframes have a strict one millisecond

interval in between. Such well-organized uniform sampling is ideal

for discrete signal processing. Without dedicated control, other

wireless techniques such as WiFi which uses CSMA/CA and LoRa

which uses ALOHA, cannot guarantee uniform sampling. Such non-

uniform sampling results in either complicated signal processing

design or severe degraded sensing performance if blindly assuming

uniform sampling.

Another unique advantage is the very high frequency of CSI

sampling. If we sample each subframe once, we can obtain 1000 CSI

readings per second. This high frequency is critical for applications

involving movements of high speed (e.g., car tracking) or high

frequency (e.g., motor vibration sensing).

Does not affect on-ongoing data communication.As shown in

Figure 1 (b), the time-frequency slots that contain the reference sig-

nals are reserved by the cellular protocol so transmitting reference

signals do not affect the normal data transmission. On the other

hand, sensing usingWiFi or LoRa signals usually requires dedicated

packets to be transmitted, which occupies the air-time for normal

data transmission and affects the overall network throughput.

Frequency and spatial diversity. LTE infrastructure provides

rich frequency and spatial diversities, which could be harnessed to

improve sensing performance. On the one hand, a single base sta-

tion supports a large coverage ranging from 200 m (in urban areas)

to 10 km (in rural areas) [14]. The placements of LTE base stations

are also carefully optimized by the cellular service providers to

maximize the signal coverage. Therefore, one mobile device could

overhear multiple base stations deployed at diverse locations. Ac-

cording to our experiment results, we are able to detect 15 base
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Figure 3: Phase distribution before (grey) and after (blue) random

phase offset removal.

stations inside our university. The diverse locations of the overheard

base stations provide spatial diversity. Combining the sensing infor-

mation from various operating frequencies (e.g., 739 Hz,1937.5 Hz

and 2115 Hz), the orientation-sensitive and blind spot issues in

wireless sensing can be mitigated.

4 SIGNAL PREPROCESSING

While there are numerous advantages for LTE sensing, there are

challenges we need to tackle before we can make LTE sensing

happen. In this section we introduce the challenges and present the

corresponding approaches to address these challenges.

4.1 Challenges

We observe three major challenges when exploiting LTE signals

for sensing tasks, which are summarized below:

• Random phase offsets. The lack of synchronization be-

tween LTE base stations and the terminal results in ran-

dom phase offsets including carrier frequency offset (CFO),

sampling frequency offset (SFO) and sampling timing off-

set (STO), corrupting the phase information which is critical

for sensing.

• Interference from faraway moving objects. As the base

station could be kilometers away, the signal arriving at the

LTE receiver interacts with diverse moving objects along the

propagation path shown in Figure 2, such as swinging trees,

moving cars and pedestrians. Such interactions cause severe

dynamic interference on the received signal.

• Slow fading. Slow fading [12] happens when a large ob-

struction such as a hill or a large building obscures the main

signal path between the transceivers, which is quite common

for LTE signals. Slow fading causes signal fluctuations that

fall into the same frequency range of our daily activities,

such as human respiration.

4.2 Signal processing step by step

We present three corresponding signal processing schemes to ad-

dress the above challenges step by step.

4.2.1 Random phase offset removal. To obtain stable phase for

sensing, we need to eliminate the phase offsets caused by CFO, SFO

and STO. To facilitate reception diversity, LTE receivers usually

have two radio chains connected with two antennas. Since these

radio chains share the same oscillator, the random phase offsets are

the same at these two radio chains [47]. By conducting a division

Q

I

Periodic movement:
Back & forth

[ ]

Static 
Path

Dynamic 
Path

Composite

t

Phase variation along time

Figure 4: Phase variation induced by periodic movements. By

adding the static path signal (blue) and the dynamic path sig-

nal (target movement, orange) together, we obtain the composite

signal (red). The time series of phase variations form a sinusoidal-

like pattern, matching the periodic target movement.

Q

I
C1 Q

I
C3 Q

IC5

Q

I
C4

Q

I
C2

Figure 5: The amount of signal phase variation differs with coordi-

nates.

operation between the complex CSIs from the two antennas, we are

able to cancel the common random phase offsets and obtain a stable

phase difference for sensing. Figure 3 shows the effect of random

phase removal, where the grey circles represent the phase readings

of the original CSI from one antenna. We can see that random phase

offsets cause phase drift in all directions, i.e., all 360◦. After random

phase offset removal, we obtain stable phase difference (blue circles)

between two antennas, which falls into a small range of about 25◦.

4.2.2 Interference mitigation. After random phase offset removal,

we retrieve stable phase readings and thus clean CSI in the I-Q

plane. CSI consists of information from signal paths including both

static paths and dynamic paths [38]. Figure 4 shows the case with

one dynamic path reflected from the target and one combined

static path. The phase variation in [−𝜃, 𝜃 ] forms a sinusoidal-like

pattern along time. This matches the periodic target movement

and we can then extract the movement information from the signal

phase variation. In reality, sensing using LTE signals suffers from

interference reflection from other moving objects. We propose a

signal processing scheme named heuristic coordinate shifting to

mitigate the dynamic interference from other reflectors.

Key intuition. The key intuition of our solution is that the amount

of phase variation varies with different coordinates. Therefore,

by searching the optimal coordinate, we can amplify the phase

variation induced by the target and at the same time suppress the

phase variation induced by other interfering reflectors. We use

an example in Figure 5 to illustrate this concept. The green arc

represents the variation of the complex composite signal in the I-Q

plane. It is interesting to see that the phase variations observed

from different coordinates (𝐶1 - 𝐶5) are dramatically different. The

small phase variation in 𝐶1 is increased to 180◦ in 𝐶5.
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Figure 6: Amplifying target-induced phase variation and sup-

pressing interference-induced phase variation through coordinate

change.

We now explain how we address the interference. As shown

in Figure 6, we visualize the phase variation induced by target

and interference respectively in two coordinates 𝐶1 (orange) and

𝐶2 (purple). We can see that, the target-induced phase variation is

significantly increased when we change the coordinate from 𝐶1 to

𝐶2. On the other hand, the interference-induced phase variation is

decreased.

Heuristic coordinate shifting. Based on the above intuition, we

search for the optimal coordinate that can maximize the phase

variation introduced by the target.

To maximize the phase variation, another important property

we leverage is that phase variation induced by a lot of applications

is periodic. Periodic movement such as respiration obviously in-

duces periodic phase variations. The car movement also induces

near-periodic phase variations. This is because within a short time

window (e.g., 0.2 s), the car speed can be assumed as constant. Due

to the high speed of car, the signal phase varies for multiple cycles

within the short time window and the phase variation shows rough

periodicity. When the interference is smaller, the phase variation

pattern and accordingly the periodicity is clearer as shown in Fig-

ure 6(e). Based on the property of periodicity, we search for the

optimal coordinate that can maximize the self-correlation of the

observed phase variation. For a time windowwith N complex signal

samples {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁 , 𝑦𝑁 )}, the self-correlation of the

phase variation is calculated as:

𝑅𝜏 =
1

𝑁 − 𝜏

∑𝑁−𝜏
𝑘=1 𝜃𝑘𝜃𝑘+𝜏

𝜋2
(2)

where 𝜃𝑘 is the phase value of sample (𝑥𝑘 , 𝑦𝑘 ) and 𝜏 is the time lag

of the self-correlation. The phase value 𝜃𝑘 depends on the chosen

coordinate:

𝜃𝑘 = arctan(𝑥𝑘 −𝑂𝑥 , 𝑦𝑘 −𝑂𝑦) (3)

where (𝑂𝑥 ,𝑂𝑦) is the origin of the coordinate. Combining Eq. 2

and Eq. 3, we derive our final objective function 𝑅𝜏 (𝑂𝑥 ,𝑂𝑦) and

the optimization problem we are solving is given by:

argmax
𝑂𝑥 ,𝑂𝑦 ,𝜏

𝑅𝜏 (𝑂𝑥 ,𝑂𝑦) (4)

The optimization problem described in Eq. 4 is a constrained

nonlinear objective function with the coordinate origin (𝑂𝑥 , 𝑂𝑦 )

and the time lag 𝜏 as the variables. We employ the iterative gradient

descend algorithm [13] to solve it. Evaluation of heuristic searching

is presented in Section 7.2.1.
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Figure 7: Comparison between FFT-base filter and the proposed

WTMRA scheme. (a) Phase variation after coordinate shifting and

smoothing. (b) Slow fading extracted by FFT-based filter. (c) Ex-

tracted target movement information after slow fading removal

using FFT-based filter. (d) Slow fading extracted by the proposed

WTMRA scheme. (e) Extracted target movement information after

slow fading removal using WTMRA.

We need to adjust several hyper-parameters based on the sensing

application. The first parameter we need to adjust is the length of

the observation window. With a larger window, we have a larger

number of phase cycles1 for correlation calculation, and accordingly

more accurate searching results. However, a larger window also

brings a higher computational overhead. Therefore, we adjust the

length of the observation window based on application. For a larger

target speed which induces a much shorter phase cycle, we reduce

the length of the observation window accordingly. For example, the

length of the observation window is set to 12 seconds for respiration

monitoring and 0.2 second for car speed measurement.

The searching range of time lag 𝜏 can also be constrained to

reduce the amount of computation. For respiration, the range of

human respiration rate is in the range of 10 bpm to 37 bpm [47].

Therefore, we set the search range of 𝜏 as [ 6037 × 50, 6010 × 50], where
60
10 × 50 indicates the time lag in terms of number of samples for

10 bpm respiration rate at a sampling rate of 50 Hz.

4.2.3 Residual noise removal. After mitigating the effect of interfer-

ence, we still need to deal with large-scale signal variation induced

by slow fading [12]. Slow fading is caused by large obstructions

such as buildings or hills and therefore it is not a problem for WiFi

sensing. For LTE signals, because of the long-distance propagation,

slow fading is usually noticeable and the slow fading induced vari-

ation can sometimes be larger than the variation induced by target

movements, degrading the sensing performance. We also observe

that the frequency of slow fading is rather close to the frequency

of the target movements in frequency domain. Conventional FFT-

based filtering methods thus perform poorly to remove the slow

fading. Figure 7 (c) shows the result after bandpass filtering in the

range of [0.16 𝐻𝑧 − 0.62 𝐻𝑧] (corresponding to 10 bpm to 37 bpm

for respiration rate). We can see that there is still residual slow

fading left and the periodic signal variation pattern is still distorted.

To better remove the low-frequency slow-fading induced signal

variation, we leverage the wavelet-based multiresolution analy-

sis (WTMRA) [7] algorithm, which is a type of filter specialized

1One phase cycle corresponds to 360◦ .
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Figure 8: Respiration rate estimation and experiment setting. (a)

Respiration pattern obtained after signal preprocessing. (b) FFT of

respiration pattern. The peak location represents of respiration rate.

(c) A corridor area in the office building. (d) An office room blocked

by three walls from the outdoor in the office building.

for low frequency component extraction. One key difference be-

tween WTMRA and FFT-based filter is that WTMRA has a higher

resolution in low frequency part and therefore can perform more

fine-grained filtering in the frequency region of human activities

and slow fading.

In detail, WTMRA decomposes the original signal with slow fad-

ing into multiple components from the highest Nyquist frequency

(half the sampling rate) to low frequency.We set the maximum num-

ber of components to be ten, which is enough for both respiration

sensing and car speed estimation. We remove the components suc-

cessively from low frequency to high frequency, and calculate the

self-correlation of the remaining signal. We output the remaining

signal with the highest self-correlation. Comparing the correspond-

ing results of WTMRA and FFT-based filtering shown in Figure

7, we can see that WTMRA better separates the slow fading, and

helps extract cleaner target-induced signal variation pattern.

5 RESPIRATION SENSING

After signal preprocessing, the effect of interference and noise is

mitigated. In this section, we present the issues associated with ex-

isting respirationmonitoring based onwireless sensing and propose

methods to address these issues leveraging the unique advantages

of LTE signals.

5.1 Respiration rate estimation

To extract the respiration rate, we apply FFT operation on the time-

domain signal variation as shown in Figure 8 (a), and then take the

peak frequency 𝑓0 to calculate the respiration rate as:

𝑅(𝑟𝑝𝑚) = 60 × 𝑓0 (5)

where 𝑟𝑝𝑚 represents respiration per minute.

5.2 Robustness issues

There are two major robustness issues in existing wireless sensing:

the blind spot issue and the target orientation-sensitive issue. In

this section, we briefly introduce these two issues and then study

their impacts on LTE-based respiration sensing.

Blind spot issue. Blind spot appears because of multipath. De-

pending on the phase difference, two signals from two propagation

paths may superimpose constructively or destructively. Locations

N

2115 MHz 1937.5 MHz 739 MHz

Figure 9: Reflected signal strength distribution around an LTE

terminal for 2115 MHz, 1937.5 MHz, 739 MHz base stations, respec-

tively. The three base stations are located in different directions.

Combining information from multiple base stations enhance respi-

ration sensing performance.

where signals superimpose destructively, become blind spots for

sensing tasks because of the low SNR of the received signal.

Orientation-sensitive issue. Orientation-sensitive is another is-

sue that compromises the robustness of wireless sensing [36, 47, 50].

When the signal is reflected from the human back but not the front

chest, the induced signal variation is much weaker due to a much

smaller back displacement during the respiration process.

Impacts on LTE-based respiration sensing. We conduct an ex-

periment to verify the existence of the blind spot issue and orientation-

sensitive issue in LTE-base sensing. In this experiment, we measure

the strength of signals reflected off a target at locations near an

LTE terminal. We repeat the experiment for base stations with a

central frequency of 2115 MHz, 1937.5 MHz and 739 MHz. The

measured signal strengths are plot in Figure 9, from which we have

three observations. First of all, the signal strength shows alternating

peak-valley patterns along the signal radial direction, and the blind

spots for LTE-based sensing locate in the valley area. Second, the

peak-valley pattern is an ellipse and the orientation of the ellipse

depends on the location of the base station. Third, the width of the

peak and valley region depends on the central frequency, i.e., the

lower the frequency, the wider peak or valley regions.

We see from Figure 9 that the blind spots still exist in LTE-based

sensing. However, different from the blind spots where almost no

power can be observed in WiFi sensing [36], the signal strength

of the valleys in Figure 9 still maintains at a reasonable high level.

Furthermore, since the base stations are distributed in different

directions, the orientations of the ellipses are also different, so the

blind spots for one base station are highly unlikely still blind spots

for another base station. The orientation issue still exists since

the signal strength pattern is still an ellipse just like the Fresnel

zones [50] in WiFi. If we combine the signal strength pattern of

multiple base stations, the target is much less likely to be in the

valley regions of all the ellipses.

Takeaway: Blind sport issue and orientation-sensitive issue still

exist in LTE sensing. However, these issues can be well mitigated

via fully exploiting the spatial and frequency diversities provided

by the distributed base stations.

5.3 LTE-based respiration sensing using
measurements from multiple base stations

The large number of deployed LTE base stations provide an opportu-

nity to realize truly perverse respiration sensing that can cover both
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residential house and large commercial buildings. What is more,

the frequency and spatial diversity of LTE base stations can help

improve system robustness. We, therefore, propose a scheme that

combines the channel measurements from multiple base stations

to achieve pervasive and robust respiration sensing.

Combining information from multiple base stations. Each

base station has a unique cell identifier, which is encoded into the

synchronization sequence [21]. Each LTE terminal is able to acquire

the cell identifier in the initial stage of synchronizing with the base

stations. Equally combining channel measurements from all base

stations may not improve the sensing performance as those bad

respiration patterns cause large errors. We need to assign high-

quality respiration patterns with larger weights in the combination.

Therefore, the problem is how to define a high-quality respiration

pattern? LTE communication mainly relies on the signal strength

or SNR to quantify the signal quality. However, they are not de-

signed for sensing and the sensing performance can not be fully

quantified by these metrics. We therefore define a new metric to

quantify the respiration sensing quality of LTE signals and we name

it RSNR (Respiration SNR).

After signal prepossessing, we obtain the respiration patterns

from different base stations. There are always some residual fre-

quency components besides the respiration frequency, as shown

in Figure 8 (b). We calculate the ratio between the peak frequency

bin’s power and the overall power as RSNR. We combine the ex-

tracted respiration patterns from multiple base stations using the

obtained RSNRs as the weights. The final respiration sensing rate

is calculated as:

𝑅 =

∑
𝑅𝑆𝑁𝑅𝑖 × 𝑅𝐿𝐵𝑖∑

𝑅𝑆𝑁𝑅𝑖
(6)

where 𝑅𝑆𝑁𝑅𝑖 denotes the respiration SNR of base station 𝑖 , and
𝑅𝐿𝐵𝑖 denotes the respiration rate obtained from base station 𝑖 using
Equation 5. We empirically remove those base stations with SNR

lower than 6 dB, which contribute little to the respiration rate esti-

mation. By combining information from multiple base stations, the

amount of blind spots can be significantly reduced as demonstrated

in Section 7.2.3.

6 SENSING HIGH SPEED CAR MOVEMENT

Sensing high speed movement in outdoor environments is an es-

sential component of pervasive sensing. To demonstrate the effec-

tiveness of high-speed movement sensing, we build an LTE-based

car speed estimation and car counting system.

Car speed estimation and car counting are fundamental services

required by many applications for urban traffic monitoring and

smart city scheduling. Existing commercial technologies are mainly

based on cameras, radar and lidar. Camera-based approaches are af-

fected by illumination, wind, occlusions, etc. Radar and lidar-based

car speed estimation devices are usually expensive and require

calibration [8] to work properly. By leveraging the advantages of

LTE signals, for the first time, we propose an LTE-based passive

car movement sensing system that is capable of performing both

car speed estimation and car counting.

(a) (b)Time sample

Power spectral densitySignal phase variation

Figure 10: Results of car speed estimation. (a) Phase variation

extracted after signal preprocessing. (b) FFT operation on the ex-

tracted phase variation, and choose the first peak (not 0 Hz) on the

spectrum as the Doppler frequency shift.

LTE terminal 

(a) (b)

Curb

Figure 11: Car speed estimation setup. (a) Diagram of car speed

estimation. LTE terminal is placed on the curb of the road. (b) The

geometry model used for car speed estimation.

6.1 Car speed estimation

Car movements induce Doppler frequency shift at the signal re-

flected from the car. We therefore leverage this Doppler shift to es-

timate the car speed. By applying the signal preprocessing schemes

introduced in Section 4, we are able to retrieve clean signal phase

variations induced by car movements as shown in Figure 10 (a).

This phase variation can be further utilized to obtain the Doppler

shift in Figure 10 (b) for speed estimation.

Car detection. Before we estimate the car speed, we need to de-

tect the existence of a car that is approaching or leaving the LTE

terminal. Since the car movement causes periodic phase variations

as shown in Figure 10 (a), we leverage the window-based self-

correlation introduced in Section 4.2 to detect the existence of a

moving car. We set the window size as 0.2 second with a 0.1 sec-

ond overlap between adjacent windows, which is enough to detect

at least five cycle of phase variation caused by a car moving at

20 mph. When a peak value greater than five times the other peaks

is observed, a moving car is detected.

Speed estimation. We first model the relationship between the

car speed and Doppler shift. The root cause of Doppler shift is the

change in the length of the signal propagation path [28]. When the

path length of the reflection signal changes one wavelength, the

phase rotates for a cycle [47]. Supposing the car is moving along

the road at a speed of 𝑣 and the LTE terminal is placed on the curb

of a road, then we have 𝑣 cos(𝜃 )𝑇 = 𝜆, where 𝑇 is the time period

required to change the path length by one wavelength 𝜆. Thus, the
Doppler shift 𝑓𝑠 induced by the car movement to the signal received

at the LTE terminal can be calculated as:

𝑓𝑠 =
1

𝑇
=

𝑣

𝜆
cos(𝜃 ) (7)
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(a) (b)

Figure 12: (a) Two cars pass by at the same speed from the same

direction. (b) Two cars pass by from opposite directions. The star

represents the LTE terminal.

where 𝜃 is the angle between the direction of car movement and

the direction from the car to the LTE terminal, as shown in Figure

11 (a). 𝜆 is the wavelength of the received LTE signal. To estimate the

Doppler shift from the received signal, we perform FFT on the phase

variations received within one correlation window, i.e., 0.2 second.

We extract the highest peak on the spectrum whose frequency is

the estimated Doppler shift 𝑓𝑠 , as shown in Figure 10 (b). We know

from Eq. 7 that, to calculate car speed 𝑣 , we still need to know the 𝜃 ,
whose value, however, changes with the car movement as shown

in Figure 11 (b). To accurately estimate the car speed in presence of

the unknown time-varying 𝜃 , we propose a maximum likelihood

estimator.

We assume that the speed of the car is a constant during a period

of two seconds (a period of 10 correlation windows). Inside each

correlation window, the car travels a distance of Δ𝑙 = 𝑣𝑡 , where
𝑡 = 0.2 𝑠 is the length of the window, as shown in Figure 11 (b).

Supposing the horizontal and vertical distances between the car

and the LTE terminal in the first window are 𝑙 and 𝑑 , respectively,
we then obtain the angel 𝜃𝑖 of the 𝑖-th window as:

𝜃𝑖 = arctan

(
𝑑

𝑙 − (𝑖 − 1)𝑣𝑡

)
(8)

After obtaining 𝜃 , we calculate the theoretical Doppler shift vector
𝐹 (𝑑, 𝑙, 𝑣) as:

𝐹 (𝑑, 𝑙, 𝑣) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑓𝑠1 (𝑑, 𝑙, 𝑣)
𝑓𝑠2 (𝑑, 𝑙, 𝑣)

· · ·

𝑓𝑠𝑀 (𝑑, 𝑙, 𝑣)

⎤⎥⎥⎥⎥⎥⎥⎦
=

𝑣

𝜆

⎡⎢⎢⎢⎢⎢⎢⎣

cos(𝜃1)
cos(𝜃2)
· · ·

cos(𝜃𝑀 )

⎤⎥⎥⎥⎥⎥⎥⎦
(9)

where 𝑓𝑠𝑖 (𝑑, 𝑙, 𝑣) represents the Doppler shift introduced in the 𝑖-th
window. On the other hand, we could estimate the Doppler shift

𝐹 ′ =
[
𝑓 ′𝑠1 𝑓 ′𝑠2 · · · 𝑓 ′𝑠𝑀

]𝑇
(10)

by performing FFT on the received phase variations. We then es-

timate the three unknown parameters 𝑑 , 𝑙 , and 𝑣 by solving the

maximum-likelihood problem below:

(𝑑, 𝑙, 𝑣) = argmin‖𝐹 (𝑑, 𝑙, 𝑣) − 𝐹 ′‖ (11)

We solve this maximum-likelihood problem using the Gurobi Li-

brary [15]. We update the estimation every two seconds.

6.2 Car counting

As the proposed system can detect the approaching of a car, natu-

rally, our system can be utilized to count the number of cars passing

by. In most cases, we can detect cars using the scheme introduced

in Section 6.1. When there are two cars very close to each other as

shown in Figure 12 (a) and (b), even if the two cars move at the same

speed, they cause different Doppler frequency shifts because angle

𝜃1 is not equal to 𝜃2. Therefore, two prominent peaks will be shown

on the spectrum plot, and we count them as two cars. Our current

system targets at two-lane roads (one lane at each direction). We

discuss the cases with more lanes in the discussion section.

Our system can also distinguish cars from other small objects

such as bicycles and motorcycles on the road by signal strength.

We observe that the signal reflections from cars are much stronger

than those from bicycles and motorcycles, because a car is made of

large pieces of metals and thus has much stronger RF reflections.

7 EVALUATION

In this section, we conduct experiments in different indoor and

outdoor environments to evaluate the performance of LTE sensing.

7.1 Hardware implementation

We build a prototype receiver on an NI USRP B210 [29] which can

be powered by a 5V USB power source (e.g., a laptop) or a portable

power bank. It is suitable for both indoor and outdoor experiments.

We use a Lenovo Thinkpad x1 carbon laptop (i7-8665U, 1.9GHz,

16GB RAM) for signal processing. For the software part, we modify

the codes from srsLTE [32] (an open-source 4G structure project)

to continuously extract LTE CSI, and process the received signals

with MATLAB.

7.2 Evaluation of respiration sensing

In this section, we evaluate the performance of the proposed LTE-

based pervasive respiration sensing system.

Experiment setup.We deploy the proposed respiration sensing

system in two typical indoor environments, a small residential

house and a large university office building that has over 50 rooms.

We divide the whole residential house into two areas: home living

area which includes the living room and three bedrooms, and home

corridor area which includes the corridor and bathroom. We con-

duct experiments at 25 selected areas inside the office building. We

classify the 25 areas into three categories: office 1-wall area that

has one wall between the area and the outdoor, office 2-wall area

that has two walls between the area and the outdoor, and office

3-wall area that has at least three walls between the area and the

outdoor. Among the 25 selected areas, we have 12 office 1-wall

areas, five 2-wall areas and eight 3-wall areas. Six volunteers are

involved in the experiments, including two males and four females.

As shown in Figure 8 (c) and (d), they are asked to sit during the ex-

periments and change their orientations following our instructions.

In total, we obtain more than 6000 records of one-minute human

respiration trace in a period of half year. We use the Hexoskin Smart

Garments [16] to measure the ground-truth respiration rate.

7.2.1 Coverage of LTE-based respiration sensing. We first investi-

gate the coverage of our LTE-based respiration sensing system. In

this experiment, we randomly choose 40 locations from the home

living area and 20 locations from the home corridor area inside the

residential house. We also choose 10 locations from each of the 25

areas inside the office building. We place the LTE terminal at each

location and then let the volunteer sit 0.5 m away from the terminal.
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Figure 13:Overall detection rate

at different types of areas. Per-

formance comparison between

with Heuristic Coordinate Shift-

ing (HCS) and without HCS.

Figure 14: The CDF plot of max-

imum detectable receiver-target

distance at different locations.

“Detectable” means the average

respiration rate error is less than

1 bpm.

We repeat the experiments 10 times at each location and compute

the average respiration rate error. One location is considered as

covered if the average respiration rate error is smaller than 1 𝑏𝑝𝑚.

We calculate the coverage percentage as the ratio of the number

of covered locations over the total number of locations and plot the

results in different areas in Figure 13. We see from Figure 13 that the

coverage percentages at different types of areas are always above

90% and the overall coverage is 95.4%. Specifically, we observe 100%

coverage in the home living area and office 1-wall areas, which

include bedrooms, living rooms and those office areas one wall

from the outdoor. These areas are usually the places that need

respiration rate monitoring most in real life. In home corridor area

and office corridor areas, the coverage is slightly lower due to

signal attenuation caused by walls. For those rooms deep inside the

building, i.e., with three walls between the area and the outdoor,

the coverage is 90% which is still reasonably good. In comparison,

the coverage for WiFi sensing in the office building is merely 15%.

We further evaluate the effectiveness of the proposed heuristic

coordinate shifting scheme. Without heuristic coordinate shifting,

the detection rates are decreased by 12.5%, 21%, 14.2%, 32.6% and

54.2% respectively. The results show that the proposed heuristic

coordinate shifting scheme can help extract signal variation induced

by target activities.

7.2.2 Receiver-target distance. For LTE sensing, the transmitter is

far away from the target. We now evaluate the effect of distance

between the receiver and target. We conduct experiments at the

310 locations selected in Section 7.2.1. We place an LTE terminal

at the location and let the target move away at a step size of 0.5 m

from the LTE terminal to measure the maximum distance between

the target and LTE terminal that can still achieve a respiration

rate estimation error less than 1 rpm. To reduce randomness, we

repeat the experiment 10 times for each configuration and calcu-

late the average error. We plot the CDF of measured maximum

distances in the house and office building in Figure 14. We see that

the mean detectable ranges in home and office are 3.1 m and 3.3 m,

respectively.

To further demonstrate the relationship between the accuracy of

LTE-based respiration rate estimation and the distance between the

LTE terminal and the human target, we conduct an experiment in

Rx

Target

TV

Chairs Window

Table

Whiteboard

6.8m

4.
5m

2m 3m 4m

(a) (b)

(c)

Target-Rx distance (m)

Av
er

ag
e 

ab
so

lu
te

 e
rr

or
(b

pm
)

Ph
as

e

Ph
as

e

Ph
as

e

Ph
as

e

Ph
as

e

Ph
as

e

Ph
as

e

Ph
as

e

Time (s) Time (s) Time (s)

Figure 15: Experiment settings for accuracy vs. distance evalua-

tion. (a) The layout of the conference room with furniture, target

and receiver marked. (b) Mean error of respiration rate estimation

versus distance to the LTE terminal. (c) Respiration patterns at three

target locations with different distances to the LTE terminal.

a large conference room full of furniture as shown in Figure 15 (a),

where the LTE terminal is placed close to the window, and the

human target sits in a chair and breaths naturally. We let the target

change locations and vary the distance from the receiver at a step

size of 0.5 m. We use a laser distance meter [6] to measure the

distance between the target chest and the LTE terminal.

Figure 15 (b) depicts the average absolute errors of the estimated

respiration rate. When the target moves away from the LTE ter-

minal, the average error increases. This is because the reflected

signal from the target chest attenuates along the reflection path,

causing a lower SNR and thus a larger estimation error. However,

we want to point out that at a distance of 6 m, the error is still

reasonably small at 0.93 rpm. To further demonstrate the impact of

distance between the human target and LTE terminal, we also plot

the extracted respiration pattern in Figure 15 (c). We could see that

the pattern is much clearer when the distance is smaller. Generally,

the respiration rate estimation error of 1 bpm is considered accept-

able for real-life applications [46]. That is to say, the target-device

distance of LTE-Track can be six meters, which is large enough

to monitor human respiration in a room using an LTE-equipped

device such as a smartphone or a smartwatch.

7.2.3 Impact of blind spot and target orientation. We evaluate the

robustness of the proposed LTE sensing system against the blind

spot issue and orientation issue. We place the LTE terminal at

one position and then uniformly select 30 locations from the area

within a radius of two meters from the terminal. We let the target

sit at 30 locations and then estimate the target’s respiration rate.

At each location, we also let the target change his/her orientation

by facing six different directions. For each combination of location

and orientation, we repeat the experiment for 10 times. At each

location, we check whether we can obtain a reliable respiration rate

estimation with an error less than 1 bpm. We conduct experiments

in a bedroom of the residential house and in two rooms of the office

building, one office 1-wall area and one office 3-wall area.
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2115MHz 2127.5MHz 1937.5MHz 739MHz

(a) (b)
50% 100%0 50% 100%0

Figure 16: (a) The aggregated detection rate at different locations

using information frommultiple base stations with the target facing

the LTE terminal. (b) The aggregated detection rate with both target

location and orientation varied.

We calculate the detection rate as the ratio of the number of

combinations (location, orientation) that we can obtain reliable res-

piration estimation over the total number of combinations. We plot

the results in Figure 16, from which we could see that LTE-Track se-

lects four base stations, i.e., 2115 MHz, 2127.5 MHz, 1937.5 MHz and

739 MHz for respiration rate estimation in the three rooms. In Fig-

ure 16 (a), we plot the aggregated detection rate when the target is

facing the LTE terminal. From left to right, we sort the base stations

in the descending order based on the RSNR values. We aggregate

information from multiple base stations to improve robustness. We

can see that by aggregating information from four base stations,

LTE-Track is able to cover 100%, 98% and 95% locations we have

tested in the bedroom, office 1 and office 2, respectively. Note that

for office 1, those locations covered by the 739 MHz base station

are all covered by the other three base stations, that is, 739 MHz

does not make additional contribution in office 1. Therefore, it is

not plotted on the stacked bar. The ratio decreases to 93%, 90% and

60%, if we only use the single base station that has the strongest

RSNR in the three rooms, causing significantly more blind spots. In

summary, by utilizing the spatial diversity of multiple base stations,

LTE-Track successfully reduces the number of blind spots in the

three rooms by 70%, 80% and 87.5%, respectively.

To further investigate the impact of target orientation, we plot

the average detection rate for six different directions at each loca-

tion in Figure 16 (b). We could see that LTE-Track is able to cover

95%, 92% and 83% locations in the bedroom, office 1 and office 2,

respectively. Note that for office 2 which is blocked by three walls

from the outdoor, the sensing performance of every single base sta-

tion is degraded. Even for the base station with the highest RSNR,

the detection rate is just about 40%. By involving multiple base

stations, we improve the detection rate by more than 100%. To

summarize, orientation indeed affects the detection rate but LTE-

Track still achieves robust performance across different orientations

by fully utilizing the LTE frequency and spatial diversity.

7.2.4 Effect of weather and times of day. We observe that the LTE

signal received is affected by times of day (i.e., daytime or night) and

weather. To quantify their impacts on respiration rate estimation,

we conduct experiments with varying times of day and weather. In

each experiment, we place the LTE terminal at the same location,

and let the target face the LTE terminal. We estimate the respiration

rate with a target sitting at 10 predetermined locations that have

(a) (b)

Figure 17: Impacts of times of day and weather on respiration

sensing. Detectable means the respiration rate estimation error is

smaller than 1 bpm.
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Figure 18: The distribution of LTE base stations and experiment

sites. Orange towers denote the base stations, yellow cars denote

the road experiment sites, red star denotes the office building and

parking signs denote the parking lots.

varying distances with respect to the LTE terminal. We repeat

the experiments 10 times for each configuration. Based on the

estimation results at the 10 locations, we calculate the maximum

target-receiver distance which can still maintain an error smaller

than 1 bpm. To evaluate the effect of daytime and night, we repeat

the experiment and record data for a week. To evaluate the effect

of different weather conditions, we collect the data for one month,

with 14 sunny days, five cloudy days, seven windy days and four

rainy days. We plot the results in Figure 17. We could see from

Figure 17 (a) that on average, the maximum target-receiver distance

at night is 0.17 m shorter than that in daytime. A possible reason is

that LTE base stations switch to power-saving mode [41] at night.

The lower signal strength results in lower SNR and lower sensing

capability. On the other hand, we could see from Figure 17 (b)

that the weather has a noticeable impact on sensing performance.

Specifically, the maximum target-receiver distance in rainy days is

about one meter smaller than that in sunny days.

7.3 Evaluation of car speed estimation and
counting

In this section, we evaluate the performance of our LTE-based car

speed estimation and car counting system.

Methodology. We deploy our system at five different sites includ-

ing two parking lots and three roads in our university, as shown

in Figure 18. Two experiment scenarios are shown in Figure 19. In

each scenario, we measure the speed of five different cars including

two sedans and three SUVs. In the parking lots, we increase the car

speed from 25 mph to 50 mph at a step size of 5 mph. Due to the
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LTE Receiver

Target

LTE Receiver

Target

(a) (b)

Figure 19: Experiment scenarios of car speed estimation. (a) Road

scenario. (b) Parking lot scenario.

Table 1: Distance to base stations and corresponding signal

strength.

(𝑑, 𝑆), 𝑑 is the site-BS distance in meter and 𝑆 is signal strength in dB.

Sites 2115 MHz 2127.5MHz 1937.5 MHz 2172.5MHz

Parking lot #1 (1262, -76) – – (971,-69)

Street #1 (182, -59) (978, -63) (341, -64) –

Street #2 (508, -65) (1151, -68) (794, -69) –

Street #3 (519, -65) (1312, -66) (793, -71) –

Parking lot #2 (497, -61) (1189, -65) (705, -69) –

(a) (b)

Figure 20: (a) Average speed estimation error versus the actual

speed. (b) Average speed estimation error at different sites. The dot

line indicates the accuracy requirement for Lidar.

speed limit, we only increase the speed from 25 mph to 35 mph for

the three roads. We repeat each experiment for ten times. We use

the cruise control during the experiment process and use the speed

as the ground truth.

7.3.1 Accuracy of speed estimation. Figure 20 (a) shows both the

average and 90% absolute error of the car speed estimation. We

observe that from 25 mph to 35 mph, the speed error decreases,

while the speed error increases from 35 mph to 50 mph. We believe

the increasing accuracy when we first increase the speed is because

a larger Doppler shift can be measured more accurately. However,

when we further increase the speed, the 1000 Hz sampling rate

becomes the bottleneck for sensing. We plan to utilize higher fre-

quency sampling rate leveraging the LTE OFDM symbols (14 OFDM

symbols per subframe) in the future for higher speed monitoring.

Figure 20 (b) shows the average speed error across multiple

locations marked on the map in Figure 18. The corresponding signal

strengths from different base stations are shown in Table 1. We

choose the base station with the highest signal strength for sensing,

which is 2172.5 MHz for Parking lot #1 and 2115 MHz for the other

locations. We observe lower speed estimation error in Parking lot #2

compared with other locations. The main reason is that Parking

(a) (b) (c)

Figure 21: (a) Detection rate of car counting in a day. (b) A 120-s

record of the car flow on street #2. Each data point represents the

aggregated number of cars in a window of 10 s. (c) A 120-s record

of the car flow on street #1.

lot #2 is close to a base station (497 m) and therefore has a high

signal strength (-61 dBm). On the other hand, Street #1 is closer

to one base station (182 m) but it shows higher speed error. We

believe this is because there exists interference from nearby woods

and buildings. The results at other locations are consistent with the

received signal strengths and their distances to the base stations.

Generally speaking, smaller distance and higher signal strength

improve the speed estimation accuracy. The average speed error for

all the locations is lower than 2 mph which satisfies the accuracy

requirement for commodity car speed measurement device [4].

7.3.2 Accuracy of car counting. We conduct experiments to count

the number of cars passing by on two two-lane roads (one line per

direction) in the university. Specifically, we place the LTE terminal

near the traffic light at Street #2, and near a pedestrian crossing

button at Street #1. At each location, we record signal traces for two

hours and collect the ground truth of passing cars using a camera.

We compute the detection rate as the number of detected cars

over the total number of cars and plot the results in Figure 21 (a).

We see that the detection rate is always higher than 95% across

location and time, demonstrating the robustness of LTE-Track. We

also plot the variation of the number of detected cars over time in

Figure 21 (b) and (c), from which we see that Street #2 is busier

than Street #1. From Figure 21 (b), we see that 12 cars pass by the

LTE terminal in the first period of red light (red background color).

In Figure 21 (c), when pedestrians are crossing the street (crossing

button pressed, yellow background color), the car flow is stopped

and we see two clear breaks in the figure. The car flow information

can help the traffic system to adjust the waiting time of the crossing

button to balance the car flow and pedestrian flow.

8 RELATEDWORK

LTE sensing. Existing LTE-based works for passive sensingmainly

focus on fingerprint-based localization [26, 27, 51] by collecting

CSI measurements at different locations and build up a database to

achieve coarse localization in both indoor and outdoor scenarios.

Similarly, some works [5, 30, 31] collect the reflected CSI from pass-

ing cars to build up a fingerprint database for car type classification.

A recent work [10] further utilizes LTE signals for fine-grained

hand gesture recognition under the premise that a strong line-of-

sight path exists from the base station to the receiver, while our
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work realizes fine-grained sensing in non-light-of-sight environ-

ments with interference and noise. SpiderMon [22] is an LTE-based

system on keystroke sensing. While SpiderMon does not work with

omnidirectional antennas, the authors utilize a high-gain (24 dBi)

parabolic antenna to achieve keystroke sensing. In comparison, we

achieve fine-grained sensing using omnidirectional antennas.

Respiration sensing. Respiration sensing is a popular area in

wireless sensing and mobile health. WiFi-based respiration sens-

ing has attracted a huge amount of attention. Wi-Sleep [23] is a

pioneer work on WiFi-based respiration sensing. To improve the

respiration sensing performance, Niu et al. [25] introduce a method

of adding virtual multipath to the original signal to boost the signal

variation to improve the sensing performance. On the other hand,

Fresnel zone theories [36, 50] are proposed to explain the under-

lying mechanism behind the blind spot and orientation-sensitive

issues. PhaseBeat [39] leverage the phase difference of two anten-

nas connected to the same WiFi AP to extract respiration pattern.

FarSense [47] leverages the CSI ratio and further combines the am-

plitude and phase information to increase the sensing range. People

also exploit diverse techniques such as UWB [19, 34], FMCW [3] and

LoRa [42, 48] for respiration sensing. These technologies require

dedicate hardware which is not available in most environments.

Furthermore, all existing wireless sensing systems require the target

to be located near to the transmitter, while in our system, the target

can be hundreds and even thousands of meters away from the LTE

base stations. Given the extensive deployment of LTE infrastructure,

we are able to achieve a more pervasive coverage.

Car speed estimation and counting. Car counting and speed es-

timation are key components of traffic monitoring. Researchers pro-

pose low-cost customized devices [1] to replace expensive commer-

cial equipment. The key idea is to communicate with the ETC (Elec-

tronic Toll Collection) RFID tag attached to a car, using their cus-

tomized RFID reader. The key difference between the existing design

[1] and our proposed solution is that the existing design requires

every car to be equipped with an RFID tag in order to be sensed,

while our solution does not require any dedicated hardware to

be installed on the car. Furthermore, the solution proposed in [1]

requires two RFID readers separated by a known distance to be

deployed along the road, while our solution only requires one LTE

terminal to achieve almost instantaneous speed estimation.

9 DISCUSSION

Comparison with WiFi-based “pervasive” sensing. It is hard

to conduct an absolute fair comparison between WiFi-based and

LTE-based sensing solutions, since LTE base stations are often hun-

dreds of times further away from the target compared to WiFi APs.

We compare the proposed system with FarSense, the state-of-art

long-range WiFi respiration sensing system [47]. In terms of accu-

racy, results show that FarSense achieves an error of 0.34 bpmwhen

the transmitter is 5 m away in another room and the receiver is 1 m

away in the same room. Our experiments show an error of 0.14 bpm

when the receiver is 1 m away from the target and the base stations

are at least 400 meters away. In terms of sensing coverage, FarSense

covers a range of eight meters in LOS scenarios and five meteres in

NLOS scenarios around the transmitter. The WiFi sensing coverage

is about 15% in our office building. In comparison, LTE sensing can

achieve over 90% coverage in the same office building.

Multi-target respiration sensing. When there are multiple tar-

gets, the reflection signals get mixed together at the receiver, and it

is challenging to separate them to sense each individual. Separating

signals spatially requires the LTE terminal to be equipped with an

antenna array which is currently not available at most commodity

LTE devices. One potential solution is to only amplify the signal

variation induced by one target within a specified zone while sup-

pressing the signal variation induced by other targets. However,

this method still requires the targets to be sparsely located.

Multi-lane scenario in car counting. For a wide road with mul-

tiple lanes in one direction, multiple cars may approach the LTE

terminal side by side. In this case, the signals reflected frommultiple

cars can be mixed at the receiver. We need to separate the signals

before we can obtain the information of each car. We believe we can

utilize LTE-Advanced devices with more antennas and adopt multi-

dimensional signal separation method proposed in mD-Track [44]

to enable simultaneous multi-car tracking.

LTE picocells for indoor environment. In recent years, there

are more and more LTE picocells deployed to enhance indoor LTE

communication. With the benefit of stronger signals and less inter-

ference, we believe LTE picocells favor our design and the proposed

system would perform better.

Limitations. Although the proposed system achieves more than

90% coverage in an office building with complicated structures,

there are still blind spots such as bathrooms blocked by four or five

walls. With the growing deployment of metrocells, picocells and

femtocells, we believe the blind spot issue will be further mitigated.

Another limitation is that while we successfully demonstrate the

feasibility of LTE sensing using a software-defined radio platform

as the receiver, it is still challenging for us to retrieve LTE CSI

readings from commodity devices such as a smartphone.

10 CONCLUSION

In this paper, we for the first time analyze the unique features and

advantages of LTE sensing. We demonstrate the superior perfor-

mance of LTE sensing in terms of sensing coverage and robustness

using two typical applications, indoor respiration sensing and out-

door traffic monitoring. We believe LTE-Track moves a big step

towards truly pervasive sensing and presents a new sensing modal-

ity on LTE devices.
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