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ABSTRACT
This paper argues for a clean-slate redesign of wireless sen-
sor systems to take advantage of the extremely low power
consumption of backscatter communication and emerging
ultra-low power sensor modalities. We make the case that
existing sensing architectures incur substantial overhead for
a variety of computational blocks between the sensor and
RF front end — while these overheads were negligible on
platforms where communication was expensive, they become
the bottleneck on backscatter-based systems and increase
power consumption while limiting throughput. We present
a radically new design that is minimalist, yet efficient, and
designed to operate end-to-end at tens of µWs while en-
abling high-data rate backscatter at rates upwards of many
hundreds of Kbps. In addition, we demonstrate a complex
reader-driven MAC layer that jointly considers energy, chan-
nel conditions, data utility, and platform constraints to en-
able network-wide throughput optimizations. We instan-
tiate this architecture on a custom FPGA-based platform
connected to microphones, and show that the platform con-
sumes 73× lower power and has 12.5× higher throughput
than existing backscatter-based sensing platforms.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

Keywords
Architecture, Backscatter, Sensor, Wireless

1. INTRODUCTION
A fundamental assumption that has driven the design of

sensor networks for decades is that communication is the
most power-hungry component of an individual sensor sys-
tem. The power consumption gap between communication
and other modules has driven a plethora of design choices
in sensor networks, primarily by encouraging designers to
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Table 1: Power consumption of accelerometer, au-
dio, ecg, and image sensors.

Accel [1] Audio [2] ECG [3] Camera [14]
Power 6µW 15.3µW 60µW 0.7µW

reduce data at the source, thereby minimizing the amount
of data that needs to be communicated.

We argue that this assumption does not hold when it
comes to passive radios such as backscatter. Backscatter re-
quires extraordinarily simple circuitry since the carrier wave
is generated by a reader, and a sensor only needs to mod-
ulate the signal to transmit information, thereby eschewing
power-hungry components of a typical active radio. The
simplicity and inherent efficiency of backscatter means that
the energy gap between communication and other compo-
nents of a system has narrowed dramatically.

These observations have profound implications on the de-
sign of next-generation wireless sensing systems that operate
using backscatter. The primary implication is that the bot-
tleneck in terms of power consumption has shifted away from
communication to computation and sensing. But sensing is
often not the bottleneck as well — the past decade has seen
dramatic reductions in the power consumption of sensors
such as microphones, cameras, ECG, accelerometers, and
others, many of which consume only µWs of power while
sampling at high rates (Table 1). Thus, both backscatter
communication and a variety of low-power sensors can op-
erate at µWs of power, and the key question becomes one of
optimizing the rest of the system to match these numbers.
This requires that we re-think every component between the
sensor and RF interface — data acquisition, data processing,
buffering, packetizing, MAC, and many others now become
the bottleneck for achieving ultra-low power operation.

In this paper, we overturn the design principle governing
wireless sensor design from one that is focused on minimiz-
ing communication to one focused on optimizing the com-
putational elements between the sensor and RF interface.
But optimizing computation is easier said than done, and
requires an understanding of every module of the sensing
platform, in-depth analysis of how to eliminate overhead
from these modules, and design of a modified architecture
to support an optimized design.

But our efforts to optimize computation raises an unex-
pected problem. If we do nothing to reduce data at the
source, we need the bandwidth to be able to transfer raw
data from the sensor to infrastructure. While backscatter
communication is efficient in terms of power, throughputs
achieved by practical backscatter-based systems have been



abysmal. Despite several efforts at improving throughputs
of backscatter [13, 27, 8, 22, 12], the best case through-
put is still only around 20 kbps even when only a single
node is present, and drops dramatically to barely hundreds
of bits/second when there are multiple devices sharing the
network. These numbers are not encouraging — for exam-
ple, a microphone sampled at 8-44 KHz requires transmit
rates upwards of 704 kbps, a far cry from the throughput
that backscatter platforms are able to support today.

This leads us to the central question that we address in
this paper: how can we design a backscatter-based wireless
sensor system that achieves whole-system power consump-
tion of µWs, while simultaneously increasing data rates to
support raw data transfer from sensors at several hundreds of
kilobits/second. Our goal is aggressive — as a point of com-
parison, an existing backscatter-based sensor, the UMass
Moo (or the UW WISP) consumes about 2mW of power
while transmitting at a few kilobits/second when there are
multiple devices present. Thus, we seek to drop the system-
wide power consumption by more than two orders of magni-
tude while simultaneously enabling two orders of magnitude
increase in the data rates.

Our contributions are two-fold. First, we present a novel
backscatter-based sensor platform, Ekho, that achieves our
design goal to optimize power by eliminating computational
overhead from the sensor to RF pipeline. We start with a
deep dive at what computational modules are present be-
tween the sensor and RF interface on a typical low-power
sensor platform, and measure their power consumption, be-
fore launching into a minimalist design that is optimized
for power. Our second contribution is a network stack,
EkhoNet, that is designed to be minimalist and enable band-
width scale up to support data rates of hundreds of Kbps
while supporting tens of nodes. While each Ekho node is
minimalist, our MAC layer leverages resources at the reader
to enable utility-energy and channel-aware optimization of
bit rates and slot sizes across nodes.

Our results on a USRP reader and Ekho nodes show that:
I For operating an accelerometer at 400Hz, Ekho con-

sumes 35µW of power, 7.6× lower than the 266µW of
the Moo and 3.3× lower than the 118µW of WISP5.0.
For operating an audio sensor at 44kHz, Ekho con-
sumes 37µW of power, 76× lower than the Moo and
13.5× lower than the WISP5.0.

I We show that EkhoNet can scale to a network of sev-
eral high bandwidth sensors. When a network of ten
Ekho nodes equipped with microphones transmit si-
multaneously to a reader, we achieve a throughput of
780 kbps as a result of interleaving the data streams at
the MAC layer. We also use an energy-utility-channel
aware scheduler, and show that over 50% of the audio
sensors achieve a median MOS score larger than 2, sig-
nificantly higher than a baseline scheme that assigns
sampling rates evenly across all nodes.

2. CASE FOR Ekho
In this section, we make the case that backscatter commu-

nication is extremely cheap and overturns the widely held
premise that communication is more expensive than compu-
tation. We focus on the tradeoff between computation and
communication since many commonly used sensors are al-
ready extremely efficient in terms of power. We begin with
a discussion of why backscatter is efficient.
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Figure 1: Backscatter communication basics.

2.1 Backscatter radio RF front end
Backscatter radios are designed to enable ultra low power

wireless communication. As shown in Figure 1, a reader
provides a carrier wave, which can be modulated with infor-
mation to enable ultra low power wireless communication.
While the carrier wave can also be rectified by a sensor for
energy harvesting, our focus in this paper is on backscatter
as a low-power radio, whether energy is obtained via har-
vesting or a battery, hence we focus on the communication
rather than harvesting aspects of backscatter.

To transmit data, a sensor toggles the state of a transistor
to detune its antenna and reflect the carrier wave back to
the reader with its own information bits. Because the sensor
does not actively generate RF signal as active radio systems,
the power consumption of the backscatter radio is very low.
In addition, the on-off transition overhead of backscatter ra-
dios is very short because backscatter radios do not have to
warm up the RF analog circuits for data transmission unlike
active radio systems. As a result, there is little overhead in-
curred while transmitting via backscatter, even when trans-
mitting at a high rate. For example, one key component of
the backscatter analog RF front end of the WISP [6] is a
MOSFET transistor (BF1212WR). Its power consumption
follows the equation of CV 2F where C is the capacitance of
the transistor, V is the digital drain-source voltage, and F
is the frequency of operating the transistor. When this tran-
sistor is toggled at a slow rate of 10Hz, it consumes 55pW
of power, and even when toggled at a high rate of 1MHz,
it only consumes 5.5µW of power. Thus, backscatter radios
consume of the order of µWs of power, even for high rate
data transfer.

2.2 Why compute if its cheaper to transmit?
The power consumption of backscatter radio has surpris-

ing implications on sensor system design, and challenges
long-held views about communication vs computation trade-
offs in these systems.

Computation vs Communication: A common assump-
tion in designing sensor systems has been that computation
is significantly cheaper than communication, often by many
orders of magnitude. This view has shaped a plethora of
efforts for in-network processing, signal compression, sub-
sampling, and other such approaches to reduce data at the
source prior to communication. Indeed, this tradeoff has
been reinforced by performance/power trends over the past
decade — power consumption of embedded processors have
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Figure 2: 1 bit adder and 1 bit shift register circuit.

source prior to communication. Indeed, this tradeo↵ has
been reinforced by performance/power trends over the past
decade — power consumption of embedded processors have
dropped dramatically, while power reduction in active radios
has been relatively slower.
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However, backscatter communication challenges this long-

held view. Backscatter is inherently extraordinarily e�cient
since the carrier wave is generated by the reader, and the tag
only backscatters the signal without any additional ampli-
fication. Thus, each bit of backscatter is extremely simple,
and only requires a handful of gates (Figure 2). This implies
that for computation to be cheaper energy-wise, the compu-
tational operations on each bit would have to use fewer gates
than that required to communicate the bit. This is often a
tall order due to the simplicity of backscatter.

Consider, for example, a simple aggregation operation
that sums ten sensor readings before transmitting the aggre-
gate value over the radio. On traditional sensor platforms,
such data reduction would have direct and significant power
benefits since communication dominates power, and our ag-
gregation scheme cuts this cost by a factor of ten. The same
operation on a backscatter-based platform has dubious ben-
efits. Figure 2 shows that the number of gates required for
summing two bits is roughly nine, but only four gates are
needed to transmit the same data via the shift register cir-
cuit of backscatter! As power consumption is proportional
to number of gates, a nine gate adder consumes 2.2⇥ more
power than the a four gate backscatter circuit.

It is necessary to add a few caveats to our simplified com-
parison of computation and communication. The clock rates
of communication subsystems are limited by signal to noise
ratio considerations, whereas the clock rates of processors
can be higher, and thereby reduce power. In addition, low-
power processors use many tricks to reduce power consump-
tion including optimized signal processing circuits, di↵er-
ent power domains, extremely tight duty-cycling, and so on.
Despite these optimizations, the cards are stacked against
computation. Backscatter is so incredibly simple in terms
of circuitry that even matching the e�ciency of backscatter
becomes a challenging architectural design problem.

Thus, the crux of our argument is the following: backscat-
ter drives down the optimal cross-over point between compu-
tation vs communication, such that communication of raw
data may be preferable to computation in a wider spectrum
of real-world scenarios.

Implications on architecture design: This observa-
tion has an immediate implication on the architecture of a
backscatter-based sensor platform. Traditional sensing plat-
forms add a lot of computational modules between the sensor
and the radio for sensor data acquisition, processing, filter-
ing, bu↵ering, etc. The contribution of these components to
overall power consumption of an active radio-based sensor
system is minimal and can largely be ignored. However, on
backscatter-based platforms, these components become the
bottleneck.

This raises an intriguing question — with the power con-
sumption of backscatter being so low, would it in fact be
more e�cient to eliminate all of these modules en-bloc, and
just connect the sensor directly to the radio? In other words,
would it be better to just stream every bit of data that is
sensed directly through the radio?

We take a measurement-driven approach towards answer-
ing these questions. First, we look at the computational
blocks between sensing and the RF interface on existing
backscatter-based sensing platforms to understand how much
power they consume, as well as why they su↵er in terms
of throughput. Second, we build on our empirical study
and design a radically new backscatter-based sensor plat-
form that addresses these limitations.

3. INVESTIGATING EXISTING WIRELESS
SENSING ARCHITECTURES

In this section, we investigate why current backscatter-
based platforms are unable to achieve end-to-end power con-
sumption of µWs for high-rate sensing and transfer. We also
investigate why they are unable to achieve high-data rate
communication, particularly while operating at low power.
To empirically understand these factors, we look at the UMass
Moo/UW WISP class platforms that are equipped with sen-
sors, a low-power MCU (MSP 430 family) and a backscatter
radio.

3.1 Poor energy efficiency
We start with a break down of the power consumed by

three key computational modules on a UMass Moo (Fig-
ure 3): 1) the sensor data acquisition subsystem which han-
dles the protocols for operating sensors, 2) the data handling
subsystem on a micro-controller where sensor data is stored,
processed (if needed), formatted into packet, and sent to the
network stack, and 3) the network stack implemented in a
combination of hardware and software.

3.1.1 Sensor data acquisition
Sensor data acquisition is a relatively simple operation —

some sensors have an on-board ADC, hence data acquisition
is via a protocol such as SPI or I2C, whereas other sensors
just provide an analog signal which is digitized using the
micro-controller’s ADC. Despite its simplicity, even these
operations are not as cheap as one might expect. For exam-
ple, sampling an accelerometer via the SPI bus would require
periodic wakeup of the MCU to fill the SPI bu↵er, sending
the read command and read address to the sensor, as well as
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(b) 1 bit shift register circuits for
backscatter.

Figure 2: 1 bit adder and 1 bit shift register circuit.

source prior to communication. Indeed, this tradeo↵ has
been reinforced by performance/power trends over the past
decade — power consumption of embedded processors have
dropped dramatically, while power reduction in active radios
has been relatively slower.
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since the carrier wave is generated by the reader, and the tag
only backscatters the signal without any additional ampli-
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and only requires a handful of gates (Figure 2). This implies
that for computation to be cheaper energy-wise, the compu-
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than that required to communicate the bit. This is often a
tall order due to the simplicity of backscatter.

Consider, for example, a simple aggregation operation
that sums ten sensor readings before transmitting the aggre-
gate value over the radio. On traditional sensor platforms,
such data reduction would have direct and significant power
benefits since communication dominates power, and our ag-
gregation scheme cuts this cost by a factor of ten. The same
operation on a backscatter-based platform has dubious ben-
efits. Figure 2 shows that the number of gates required for
summing two bits is roughly nine, but only four gates are
needed to transmit the same data via the shift register cir-
cuit of backscatter! As power consumption is proportional
to number of gates, a nine gate adder consumes 2.2⇥ more
power than the a four gate backscatter circuit.

It is necessary to add a few caveats to our simplified com-
parison of computation and communication. The clock rates
of communication subsystems are limited by signal to noise
ratio considerations, whereas the clock rates of processors
can be higher, and thereby reduce power. In addition, low-
power processors use many tricks to reduce power consump-
tion including optimized signal processing circuits, di↵er-
ent power domains, extremely tight duty-cycling, and so on.
Despite these optimizations, the cards are stacked against
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of circuitry that even matching the e�ciency of backscatter
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Thus, the crux of our argument is the following: backscat-
ter drives down the optimal cross-over point between compu-
tation vs communication, such that communication of raw
data may be preferable to computation in a wider spectrum
of real-world scenarios.

Implications on architecture design: This observa-
tion has an immediate implication on the architecture of a
backscatter-based sensor platform. Traditional sensing plat-
forms add a lot of computational modules between the sensor
and the radio for sensor data acquisition, processing, filter-
ing, bu↵ering, etc. The contribution of these components to
overall power consumption of an active radio-based sensor
system is minimal and can largely be ignored. However, on
backscatter-based platforms, these components become the
bottleneck.

This raises an intriguing question — with the power con-
sumption of backscatter being so low, would it in fact be
more e�cient to eliminate all of these modules en-bloc, and
just connect the sensor directly to the radio? In other words,
would it be better to just stream every bit of data that is
sensed directly through the radio?

We take a measurement-driven approach towards answer-
ing these questions. First, we look at the computational
blocks between sensing and the RF interface on existing
backscatter-based sensing platforms to understand how much
power they consume, as well as why they su↵er in terms
of throughput. Second, we build on our empirical study
and design a radically new backscatter-based sensor plat-
form that addresses these limitations.

3. INVESTIGATING EXISTING WIRELESS
SENSING ARCHITECTURES

In this section, we investigate why current backscatter-
based platforms are unable to achieve end-to-end power con-
sumption of µWs for high-rate sensing and transfer. We also
investigate why they are unable to achieve high-data rate
communication, particularly while operating at low power.
To empirically understand these factors, we look at the UMass
Moo/UW WISP class platforms that are equipped with sen-
sors, a low-power MCU (MSP 430 family) and a backscatter
radio.

3.1 Poor energy efficiency
We start with a break down of the power consumed by

three key computational modules on a UMass Moo (Fig-
ure 3): 1) the sensor data acquisition subsystem which han-
dles the protocols for operating sensors, 2) the data handling
subsystem on a micro-controller where sensor data is stored,
processed (if needed), formatted into packet, and sent to the
network stack, and 3) the network stack implemented in a
combination of hardware and software.

3.1.1 Sensor data acquisition
Sensor data acquisition is a relatively simple operation —

some sensors have an on-board ADC, hence data acquisition
is via a protocol such as SPI or I2C, whereas other sensors
just provide an analog signal which is digitized using the
micro-controller’s ADC. Despite its simplicity, even these
operations are not as cheap as one might expect. For exam-
ple, sampling an accelerometer via the SPI bus would require
periodic wakeup of the MCU to fill the SPI bu↵er, sending
the read command and read address to the sensor, as well as
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dropped dramatically, while power reduction in active radios
has been relatively slower.

However, backscatter communication challenges this long-
held view. Backscatter is inherently extraordinarily efficient
since the carrier wave is generated by the reader, and the tag
only backscatters the signal without any additional ampli-
fication. Thus, each bit of backscatter is extremely simple,
and only requires a handful of gates (Figure 2). This implies
that for computation to be cheaper energy-wise, the compu-
tational operations on each bit would have to use fewer gates
than that required to communicate the bit. This is often a
tall order due to the simplicity of backscatter.

Consider, for example, a simple aggregation operation
that sums ten sensor readings before transmitting the aggre-
gate value over the radio. On traditional sensor platforms,
such data reduction would have direct and significant power
benefits since communication dominates power, and our ag-
gregation scheme cuts this cost by a factor of ten. The
same operation on a backscatter-based platform has dubi-
ous benefits. Figure 2 shows that the number of NAND
gates required for summing two bits is roughly nine (thirty
six transistors), but only four NAND gates (sixteen tran-
sistors) and an additional transistor for backscattering the
signal are needed to transmit the same data via the shift-
register controlled backscatter RF! As power consumption
is proportional to number of transistors, a nine gate adder
consumes 2.1× more power than the shift-register controlled
backscatter RF.

It is necessary to add a few caveats to our simplified com-
parison of computation and communication. The clock rates
of communication subsystems are limited by signal to noise
ratio considerations, whereas the clock rates of processors
can be higher, and thereby reduce power. In addition, low-
power processors use many tricks to reduce power consump-
tion including optimized signal processing circuits, differ-
ent power domains, extremely tight duty-cycling, and so on.
Despite these optimizations, the cards are stacked against
computation. Backscatter is so incredibly simple in terms

of circuitry that even matching the efficiency of backscatter
becomes a challenging architectural design problem.

Thus, the crux of our argument is the following: backscat-
ter drives down the optimal cross-over point between compu-
tation vs communication, such that communication of raw
data may be preferable to computation in a wider spectrum
of real-world scenarios.

Implications on architecture design: This observa-
tion has an immediate implication on the architecture of a
backscatter-based sensor platform. Traditional sensing plat-
forms add a lot of computational modules between the sensor
and the radio for sensor data acquisition, processing, filter-
ing, buffering, etc. The contribution of these components to
overall power consumption of an active radio-based sensor
system is minimal and can largely be ignored. However, on
backscatter-based platforms, these components become the
bottleneck.
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sumption of backscatter being so low, would it in fact be
more efficient to eliminate all of these modules en-bloc, and
just connect the sensor directly to the radio? In other words,
would it be better to just stream every bit of data that is
sensed directly through the radio?

We take a measurement-driven approach towards answer-
ing these questions. First, we look at the computational
blocks between sensing and the RF interface on existing
backscatter-based sensing platforms to understand how much
power they consume, as well as why they suffer in terms
of throughput. Second, we build on our empirical study
and design a radically new backscatter-based sensor plat-
form that addresses these limitations.

3. INVESTIGATING EXISTING WIRELESS
SENSING ARCHITECTURES

In this section, we investigate why current backscatter-
based platforms are unable to achieve end-to-end power con-
sumption of µWs for high-rate sensing and transfer. We also
investigate why they are unable to achieve high-data rate
communication, particularly while operating at low power.
To empirically understand these factors, we look at the UMass
Moo/UW WISP class platforms that are equipped with sen-
sors, a low-power MCU (MSP 430 family) and a backscatter
radio.

3.1 Poor energy efficiency
We start with a break down of the power consumed by

three key computational modules on a UMass Moo (Fig-
ure 3): 1) the sensor data acquisition subsystem which han-
dles the protocols for operating sensors, 2) the data handling
subsystem on a micro-controller where sensor data is stored,
processed (if needed), formatted into packet, and sent to the
network stack, and 3) the network stack implemented in a
combination of hardware and software.

3.1.1 Sensor data acquisition
Sensor data acquisition is a relatively simple operation —

some sensors have an on-board ADC, hence data acquisition
is via a protocol such as SPI or I2C, whereas other sensors
just provide an analog signal which is digitized using the
micro-controller’s ADC. Despite its simplicity, even these
operations are not as cheap as one might expect. For exam-
ple, sampling an accelerometer via the SPI bus would require



Accelerometer)

Microphone)

Temperature)

Sensors)

A/D)
Converter)

SPI)

I2C)

Sensing))
subsystem)

Timer)ISR)

DMA)

RAM)

Data)handling)
subsystem)

BackscaBer)
Radio)

Encoding)

Network)
Stack)

CommunicaFon)
subsystem)

Figure 3: Computational blocks on existing
backscatter-based sensors.

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Po
w

er
 (u

W
)

Time (ms)
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mode due to frequent interrupts.
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Figure 6: Power consumption of DMA transfer at
100Hz. DMA is slow to return to sleep mode.

periodic wakeup of the MCU to fill the SPI buffer, sending
the read command and read address to the sensor, as well as
providing the clock for the SPI bus. The overall result is that
the MCU is active for about 40% of the time when acquiring
data from an accelerometer sampling at 400 Hz. This ac-
quisition operation, in itself, consumes 84µW of power, 14×
higher than the accelerometer (6µW). The cost of acquiring
audio data is equally high — when sampling an audio sen-
sor (ADMP803) at 44KHz, acquisition consumes 492µW of
power, 14.5× higher than the audio sensor (34µW).

3.1.2 Data handling subsystem
The data handling subsystem is the block that processes

the acquired sensor data, formats and packetizes it, and
sends it to the network stack. To minimize this overhead,
sensor systems typically operate in a duty-cycled mode where
the MCU is turned on for a minimal amount of time needed
to handle the data, before switching back into sleep mode
to conserve energy.

However, this optimization is no longer effective when this
subsystem handles high-rate sensors. Figure 4 shows the
power consumption for executing the timer interrupt ser-
vice routine to handle each acquired audio sample. At high
rate, the MCU is rarely able to switch completely back into
the ultra-low power sleep mode due to frequent interrupts.
Thus, the overall power consumption of the data handling
module is roughly the ballpark of active mode power con-
sumption of the MCU (a few mW), which is several orders of
magnitude higher than the power consumed by the sensor.

One method to reduce power of the data handling subsys-
tem is to use Direct Memory Access (DMA), which allows
transfer of data from the sensor to memory without wak-
ing up the MCU. This raises the possibility that waking up
the MCU can, perhaps, be avoided altogether if the data is
transferred directly from the sensor to the network queue
without any processing.

Surprisingly, DMA does not reduce power consumption.
Figure 5 shows empirically measured power consumption for
DMA transfer on an MSP 430, which moves the sensor data
from a sensor to a local memory at different frequencies. We
observe that while DMA is efficient at low rates (e..g below
100Hz), it has high power consumption at high transfer rates
— for example, DMA transfer consumes 149.2 µW of power
at 44 kHz, 60× higher than the 2.5 µW of LPM3 sleep mode
of the MCU. This is surprising since one would expect that
the MCU is in sleep mode while DMA operates.

The culprit for high power consumption of DMA turns out
to be its tail energy consumption. Figure 6 shows the power
consumption of repeated DMA transfer at 100 Hz. This ex-
periment is done with an MSP 430 set to LPM3 sleep mode
and a timer that periodically triggers DMA transfer. When
a DMA transfer is initiated, its power consumption increases
to 40µW within 10us, and starts decreasing once the DMA
transfer is done. However, the power consumption decays at
a relatively slow rate compared to the sharp increase, result-
ing in a long tail of roughly 3.5ms. When the DMA transfer
frequency is high, such as 5kHz shown in Figure 5, the long
tail leads to high power consumption. While we are not
certain about the cause of this behavior, one hypothesis is



that the system waits for more data before it times out and
switches to a lower power mode. This behavior is common
in many power savings circuits, for example, in smartphone
radios [7, 17], and is typically done to amortize the cost of
waking up and shutting down a hardware subsystem.

3.1.3 Communication subsystem
The final computational component of a sensor platform

is the communication stack, which includes the PHY, MAC
and upper layers. While the RF interface of backscatter
is extremely low-power, the other layers add more over-
head. For example, on the UW WISP or UMass Moo plat-
forms, the backscatter radio is controlled by a hardware
timer which needs to be configured and handled in software.
In addition, the EPC Gen 2 network stack on these devices
is implemented in software, and results in substantial over-
head since the MCU needs to handle protocol messages. In
fact, the MCU needs to be on for 67% of the time for pro-
cessing network stack messages at the software layer while
only 7% of the time is used for data transmission. As a con-
sequence, the software on UMass Moo platform consumes
2mW of power, which is three orders of magnitude higher
than the power consumption of a low-power sensor.

As with the data handling subsystem, the software over-
head of the network stack can be reduced by using hard-
ware peripherals to control the radio. One commonly avail-
able hardware peripheral on MCUs is the Universal Asyn-
chronous Receiver and Transmitter (UART). This is particu-
larly useful for a backscatter radio since UART generates an
ASK signal, which can be directly transmitted via backscat-
ter (which uses OOK). At the first glance, the UART pe-
ripheral has the potential to dramatically reduce the cost of
running the network stack because it can operate when the
MCU stays in deep sleep mode. However, its buffer needs
to be filled with sensor data, which in turn needs to be done
with either DMA or software, both of which are expensive
energy-wise. As a result, even the UART-driven backscatter
radio consumes roughly 2mW.

3.2 Poor transmission efficiency
The second key drawback of existing backscatter-based

sensors is the abysmal throughputs that they achieve. For
example, even though there have been many efforts to im-
prove backscatter throughput, the ceiling is still less than
20kbps for a single node [13, 27, 8, 22], and drops to hun-
dreds of bits/second in a network with multiple devices.
Clearly, this is far below what is needed for streaming raw
sensor data from high-rate sensors.

One factor that limits the throughput is the poor efficiency
in clock utilization. For example, the UMass Moo and WISP
take 48 clock ticks to send a single bit of data, which causes
a 48× reduction of the maximum possible throughput that
is achievable with the system clock. We find three reasons
for this inefficiency. First, both transmission and reception
logic is implemented in software which, naturally, is inef-
ficient in the use of the clock. Although the transmission
and reception code on the Moo and WISP platforms are op-
timized in assembly instructions, one bit transmission and
reception still has substantial overhead. Second, EPC Gen
2 PHY-layer encoding further reduces the clock utilization
efficiency. To minimize the DC components during data
transmission, each bit is encoded into a sequence of pulses
using Miller encoding. For example, the Miller-4 encoding
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Figure 7: The key components of Ekho.

used by Moo and WISP platforms uses eight pulses to en-
code one bit of data, resulting in further drop of throughput
by a factor of eight. Third, the EPC Gen 2 MAC layer is ex-
tremely inefficient for high bandwidth data transfer. While
this is a point that has been made many times before [13, 27,
8, 22], an efficient alternative that achieves high throughput
using backscatter is lacking.

3.3 Summary
Thus, the limitations of the computational blocks on exist-

ing backscatter-based sensor platforms lead us to the follow-
ing observation. The primary culprit in terms of power is the
MCU’s active mode power consumption, and the fact that
many operations (sensor acquisition, data handling, com-
munication) require execution of instructions on the MCU.
Surprisingly, optimizing the system by leveraging hardware
peripherals such as DMA and UART do not solve the prob-
lem, particularly at high data rates due to tail power con-
sumption, and coupling between different components of the
sensing to communication pipeline. In terms of throughput,
the primary issues stem from inefficient utilization of the
clock due to a combination of software overheads, encoding
overheads, and an inefficient MAC layer standard. In con-
junction, these limitations call for a clean-slate re-design of
a backscatter-based sensor platform from the ground up for
extremely low power consumption and high data rates.

4. THE Ekho PLATFORM
Our solution is Ekho, a backscatter-based sensor platform

that is optimized for ultra low power operation and high-
speed streaming from sensors. We outline the platform ar-
chitecture followed by the MAC layer.

4.1 Eliminating computational blocks
At the platform level, the design of Ekho is minimalist.

We simply remove as many computational blocks between
the sensor and RF analog front end as possible in favor of
communicating raw data. Figure 7 shows the key compo-
nents in Ekho.

Ekho reduces the overhead of data acquisition from the
sensor by implementing the SPI and ADC sampling logic on
a small CPLD (FPGA). Implementing these blocks in hard-
ware means that we can make them as fast as needed with-
out incurring the software overhead of waking up a micro-
controller.

Ekho substantially reduces the overhead of handling sen-
sor data by a minimalist approach that uses a FIFO buffer
between the sensors with RF analog front end. The FIFO
buffer is the minimum element that is needed between sens-
ing subsystem and communication subsystem to deal with
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short delays in transmitting the data over the backscatter
link, for example, due to intermittent scheduling of a device.
In this manner, Ekho eliminates software and tail energy
overhead that was observed on existing backscatter-based
platforms.

The final computational component of the pipeline is the
communication subsystem. Unlike EPC Gen 2 that is de-
signed for a broad range of RFID tags, Ekho is designed
solely for streaming sensor data from nodes to a reader. A
protocol designed solely for streaming data from sensors can
be quite simple. The reader informs each node of a timer
value that specifies the period with which to transfer data
in its FIFO buffer, and a rate that determines how fast to
transfer the data. The only hardware component required
for this protocol to work is a timer and shift register. Once
the timer fires, a shift register converts the input sensor data
to an ASK signal that is used to modulate backscatter ra-
dios.

In the current instantiation of Ekho, we do not perform
any encoding of data. While the need for encoding to deal
with harsh wireless conditions and interference is well-known,
it also makes the hardware more complex, and consequently
more power hungry. For example, the default configuration
on the UMass Moo/UW WISP platforms is Miller-4 encod-
ing incurs overhead of several hundreds of gates. Thus, while
encoding may be useful in some cases, we do not employ it
in Ekho.

4.2 The EkhoNet MAC layer
We now turn to the second part of our performance puz-

zle — achieving high throughputs that are upwards of many
hundreds of kilobits/second across different nodes in the net-
work. A high speed MAC is important for supporting an ar-
chitecture where raw data transfer is the norm rather than
the exception.

MAC layer designs are very well understood, particularly
in cases such as ours where a central controller performs
TDMA-like scheduling of sensor nodes. However, the key
point in our design is two-fold: a) even though the sen-
sor node is designed to be extremely simple, the decision
making logic can be placed at the reader, thereby enabling
surprisingly complex scheduling mechanisms across a net-
work of extremely simple sensor nodes, and b) our MAC is
holistic in that it takes into account utility of data, channel-
awareness, energy consumption, as well as other hardware
considerations, in-order to maximize throughput.

4.2.1 MAC Design Considerations

At the heart of EkhoNet is the logic that is used to deter-
mine when each node should transfer, and what rate they
should transfer. Before we answer this question, we need to
understand several characteristics of Ekho including: a) how
do MAC-layer parameters impact the energy-efficiency of
the platform? b) what are the signal-to-noise ratios at which
data transmitted by Ekho can be successfully decoded? c)
what criteria should we use to decide what sampling rate
to use when sufficient bandwidth is not available? and d)
what are the implications of platform considerations such as
clock drift and buffer size? We now empirical examine these
considerations in greater detail, and discuss the implications
on selection of MAC layer parameters.

Bits/Joule: The first question we ask is how energy-
efficiency of data transfer depends on the bit rate. Figure 8
shows the efficiency of a shift register controlled backscat-
ter radio across different bit rates. At low rates, there is
a steep increase in efficiency as bit rate increases due to
the fact that constant power consumption by the system is
amortized over more bits being transferred. However, im-
provements in efficiency diminish once the bit rate increases
beyond 1Mbps since the relationship between power and fre-
quency of the shift register is roughly linear, hence there are
not much improvements possible. The power curve suggests
that, from energy perspective, we should choose the fastest
bit rate possible for data transmission.

Signal to Noise Ratio: While faster bit rates are prefer-
able due to higher energy efficiency of transfer, SNR de-
grades as bit rate increases. Figure 9 shows the SNR when
we deploy a transmitter 1 meter from the reader and change
its transmission bit rate. As bit rate increases, the SNR
decreases steadily as one would expect. When the SNR is
lower than 10dB, decoding becomes difficult on our software-
defined radio based reader platform, which gives us an upper
bound on the fastest bit rate that can be supported by the
system without losing bits.

Utility of data: Since EkhoNet is designed for high-rate
sensors, one question that needs to be addressed is how to
decide on appropriate sampling rates when the overall data
rates at full sampling rates exceed capacity. On our exist-
ing system, we are limited to 1Mbps aggregate transfer rate
across all nodes since the SDR-based reader is only able to
support 8M samples per second due to the limitations of the
realtime signal processing logic. This means that we can
easily reach the SDR limit when we operate a network of
sensors. For example, a network of five audio sensors sam-
pling at 44 KHz, and transmitting raw data generates an



aggregate bandwidth of 3.5Mbps, well above what can be
supported by EkhoNet.

Our solution is to take into consideration the utility of
data generated by the different sensor nodes. Figure 10
shows an example of one utility function, Mean Opinion
Score (MOS), which is a commonly used metric for char-
acterizing the quality of transmitted audio [5]. The MOS
score can be used to guide decisions regarding which node
is allocated bandwidth.

Clock drift: Another consideration in determining slot
sizes is clock drift. For example, in our implementation of
Ekho, we use a crystal oscillator driven system clock that
can drift at upwards of 50 ppm. If two nodes transferred at
1 Mbps, then they would drift by 1200 clock cycles each
minute. The reader can handle clock drift in two ways.
First, when assigning slots, it can allocate guard bands in
each slot to allow for some drift. However, guard bands
should be kept to a minimum to reduce bandwidth wastage.
Second, the reader has the luxury of observing how the gap
between slots varies as nodes transfer, and can detect when
collision occurs by looking at the constellation plot of the
signal [22]. Thus, when the reader suspects that slots have
bled into each other, it can send a reset pulse that informs
all nodes to reset their timers. Note that this is possible
for backscatter because reader messages are broadcast and
received by all nodes. A reset pulse is simply implemented
by shutting off the carrier for a short, pre-defined duration,
which is detected by each node. While reset pulses can be
short, it should be used infrequently since there can be ro-
bustness issues if a node does not receive the pulse. This
can result in further collisions resulting in more reset pulses
until the network synchronizes.

Buffer size: One additional constraint introduced by the
Ekho hardware platform is that the FIFO buffer size on the
device is limited, hence if the slot sizes are too long, samples
will be lost since the buffer will overflow.

4.2.2 Channel-Utility-Energy aware Rate Selection
Given the above constraints, the overall problem that the

reader faces can be described as follows: select the optimal
bit rate and slot size such that aggregate utility of received
data is maximized and aggregate energy consumption min-
imized, subject to constraints on the buffer sizes, SNR, and
guard bands. We formalize this problem below.

We assume that the following parameters are given:

I The minimum SNR, 10 dB in our system, at which the
reader can decode bits with low bit-error rate.

I The maximum achievable bit-rate ri that is higher
than the minimum SNR.

I The maximum sampling rate of each node smax(i).

I The size of each sample in bits, b, bits/sample.

I The fraction of each slot that should be a guard band
δ.

Given these values, we need to choose the sampling rates
for each sensor si, and the fraction of time allocated to each
node ti by taking into account the following objective:

• ∑n
i=1 U(s) which is a measure of the aggregate utility

obtained from all sensor data received from the nodes.

The constraints are the following:

• ∑
i ti ≤ 1, i.e the fraction of time allotted to nodes

sum up to at most one (less than one if the network is
operating below its limit).

• si ≤ smax(i), which restricts the sampling rate for a
sensor to be below the maximum.

• (1 − δ)tiri = b si, which ensures that the production
of data from the sensor, and transmission of data from
the radio are matched i.e. the node can transmit what
is being sensed. The term (1−δ) is present since there’s
a guard band for each slot.

The overall optimization is shown below (in vector form
for compactness). Here, s and t are the vectors of sampling
rates and the fraction of time allocated to each node, which
need to be determined, and r is the vector of bit rates cho-
sen for each node based on SNR. The symbol � stands for
element-wise inequality (i.e. one for each node).

maximize
s,t

1TU(s)

subject to tT1 ≤ 1

s � smax1

(1− δ)diag(t)r = b s

Typically, the utility function is concave, for example in
the case of MOS score (Figure 10). Hence, the objective
is to maximize the sum of concave utility functions, and
the constraints are linear, hence the optimization can be
solved by standard convex optimization methods. Note that
the optimization returns the fraction of time for each node
— this can be converted to an actual slot size by scaling
by an appropriate period such that each node is capable of
buffering the data in its local FIFO buffer.

5. IMPLEMENTATION
Figure 11 shows the prototype of Ekho, which implements

all the design elements described in section 4. The current
prototype measures 1.8 by 2.4 inches, but we believe future
revisions can shrink this even further. We now briefly de-
scribe the key sub-components used in the prototype.

5.1 Hardware
The first key hardware element is an ultra low power

FPGA (Igloo Nano AGLN250) that manages the various
sub-components of the Ekho platform. Most key compo-
nents of the Ekho architecture, including the sensing, data
handling, and communication subsystems, are implemented
within the FPGA. The particular FPGA was chosen be-
cause it has low static current consumption and has a 32k
bits (2KB) RAM, which also determines the maximum size
of our FIFO buffer.

The next key design element is the backscatter circuit that
can operate at high speed. As the device toggles the state
of a transistor that connects to the antenna, an OOK signal
that carries modulated information is generated. However,
on existing backscatter platforms, the static current of the
transistor is provided by the harvested RF energy, which
might vary across time. The varying RF power affects the
amount current that is provided to the transistor and leads
to unstable edges of the generated OOK signal. Therefore,
decoding becomes challenging when the data rate is high.
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Our backscatter circuit directly provide a small bias current
to the transistor and retains a sharp edge for the generated
OOK signal.

A critical element of our hardware design is the clock sys-
tem which drives the FPGA logic. The core of our clock
system is a 1MHz ultra low power crystal oscillator that di-
rectly feeds into the FPGA. The 1MHz clock is divided to
drive different components of the architecture because sens-
ing, data handling, and communication subsystems operate
at different speeds. Our clock system is different from the
Moo and WISP platforms, where a digital generated clock
(DCO) is used. Although the DCO can also be divided
for driving different components, it couples the operational
modes of the system and its clock speed, as a result of which
the high speed clock is only available when the system op-
erates as a whole in a high power mode.

5.2 Software defined backscatter reader
We used the USRP N210 mother board and the SBX

RF daughterboard to build our software defined backscat-
ter reader for receiving high speed backscatter signals from
Ekho. We construct a signal processing pipeline that is able
to track the amplitude of the carrier wave that is used as the
reference for decoding the OOK signal generated by Ekho.
Our decoding is different from Moo and WISP platforms
where Miller-4 encoding is used on top of the OOK signal
and a decoding template can be used for correlating the re-
ceived signal and output a bit when the template matches
the received signal. In Ekho, the data is sent directly via
OOK and encoding is not used. Therefore, we need to track
the amplitude of carrier wave to determine whether the re-
ceived signal is a high or low pulse.

5.3 MAC layer protocol
Figure 12 shows the timing diagram of the Ekho MAC

layer. The first stage is to inventory the nodes in the net-
work, and obtain information about their SNR and other
sensor-related information. This phase executes very sim-
ilar to an EPC Gen 2 singulation phase, where nodes can
select a slot to transfer in, and send a short sequence of
bits with the appropriate information. After the singulation
phase, the reader executes the optimization algorithm de-
scribed in §4 and determines the time period and bit rate
for each sensor, which is then relayed to the sensor. The
reader initiates the singulation phase under several circum-
stances: a) when significant changes are observed in SNR,
which might signify changes in position or orientation, and
b) when collisions are detected, which might signify that a
new node is attempting to join the network.

Once the reader informs each sensor of its bit rate and
period, it initializes slots by sending a synchronization signal
during which it shuts down the carrier for a short 10 µs
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Figure 12: Timeline of Ekho MAC.

window. This pulse informs all nodes simultaneously that
they should start their timers, thereby initiating the TDMA
schedule. The length of the sync message needs to be chosen
small enough to amortize overhead, but large enough to be
detectable at the sensor, hence our choice of 10µs.

When the reader detects that data transmitted during ad-
jacent slots are overlapping into each other (due to clock
drift), it re-issues a synchronization pulse to restart the
timers on all nodes. Overlap between sensors can be de-
tected by looking at the constellation map of the received
signal — if two clusters are present, it indicates that a
collision-free signal is received and if more clusters are present,
it indicates that a collided signal is observed [22]. If multiple
synchronization pulses fail to eliminate collisions, the reader
switches back into inventory mode.

6. EVALUATION
We now evaluate the overall performance of EkhoNet in-

cluding 1) demonstrating the power benefit of the Ekho ar-
chitecture, 2) benchmarking the performance of the EkhoNet
MAC, and 3) evaluating EkhoNet’s ability to support high-
rate streams from many sensors while operating at extremely
low power consumption.

6.1 Experimental setup
We deploy 10 Ekho nodes 1 feet to 9 feet from a backscat-

ter reader. Our experiments do not cover distances larger
than 9 feet because of the poor signal quality beyond 9 feet.
This is a result of the 100mW maximum power issued by the
SBX RF daughterboard, which is 10× smaller than commer-
cial RFID readers.

To understand the power benefits of Ekho, we compare
against the UMass Moo (equivalent of Intel WISP 4.0) and
the WISP5.0 platforms. Since the WISP5.0 platform is not
currently available, we evaluate its power consumption with
a prototype that uses the same MCU (MSP430FR5969).
Since the MCU is the main power hog in the system, this
provides a good proxy for measuring power consumption.
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Figure 13: Power reduction for sensing subsystem: a) sampling an
accelerometer, b) sampling a microphone.
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6.2 Ekho power benchmarks
We begin our evaluation by validating the claim that the

power optimizations on Ekho can substantially reduce the
overheads incurred by existing platforms. We follow the
organization in §4, and show benchmarks for each module —
sensor data acquisition, sensor data handling, and network
stack.

Figure 13 measure the power of the sensing subsystem
when Ekho interacts with two types of sensors — an ac-
celerometer with on-board ADC that connects to the MCU
via a SPI interface, and an audio sensor where the MCU’s
ADC is used to sample the sensor. We compare Ekho versus
a WISP/Mote-class sensor device (i.e. a device where the
sensor connects to an MCU that acquires data). In both
cases, we can see that Ekho reduces power consumption
substantially — for sampling the accelerometer, Ekho re-
duces power by 1.5× at 400Hz by eliminating the overhead
of software-controlled SPI, and for sampling the audio sen-
sor, Ekho reduces power by 22× by trimming the overhead
of running the software-controlled ADC at 44kHz.

Figure 14 measures the power consumption of the data
handling subsystem of Ekho, which is composed by a 2kB
FIFO buffer for connecting sensors to the RF analog front
end. The 2kB FIFO buffer only consumes 26.5µW of power
when data is written into the FIFO at 500kHz, 14.4× lower
than the 384µW consumed by DMA driven data migration
and 92× lower than the 1.5mW consumed by timer driven
data migration.

Figure 15 shows the power consumption of the communi-
cation subsystem which is composed of a shift register and
backscatter radio. At 1Mbps, Ekho’s communication sub-

system consumes only 77µW of power, 13.4× lower than
a UART controlled backscatter radio implemented on the
WISP and 44× lower than a software controlled backscatter
radio implemented on the WISP. For software and UART
controlled backscatter radios, we do not measure power at
bit rates higher than 6Mbps because the maximum clock on
rate on WISP platform is 24MHz, which limits the maxi-
mum achievable bit rate.

6.3 Whole-system power consumption
Having looked at power benchmarks for individual com-

ponents of Ekho, we turn to a whole-system power measure-
ment from sensing to transmission. We look at the overall
power consumed by Ekho when operating the same two sen-
sors as earlier — accelerometer and microphone.

We start with a measurement of Ekho with an accelerom-
eter. The sensor has a built-in ADC and talks via SPI to
the sensor platform. Figure 16 shows that at 1Hz, the power
consumption of Ekho is higher than Moo and WISP5.0 plat-
forms. This is because the static current consumption of the
FPGA at the core of Ekho is 8.9µA, much higher than the
0.1µA static current draw of Moo and WISP5.0. However,
when the frequency of operating the accelerometer increases,
the power consumed by Moo and WISP5.0 platforms in-
creases significantly while the Ekho system still consumes
only tens of µW. At 400Hz, the Ekho system consumes
35µW of power, 7.6× lower than the 266µW of Moo and
3.3× lower than the 118µW of WISP5.0.

We now turn to power measurements when Ekho is con-
nected to a microphone. An external ADC is used to sample
the audio sensor, and send a digital signal to the core plat-
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form (Moo, WISP5.0, or Ekho). Figure 17 shows the power
consumption of the three platforms. At 44kHz, the Ekho
system only consumes 37µW of power, 76× lower than the
Moo and 13.5× lower than the WISP5.0.

In conclusion, Ekho is particularly efficient when using
higher rate sensors that sample at frequencies of hundreds of
Hz. A crucial observation is that even when the sensing rate
increases by two orders of magnitude from the accelerometer
at 400Hz to the microphone at 44kHz, the overall power con-
sumption remains almost the same. This shows that Ekho
scales up very well as sampling rate increases. In addition,
Ekho is able to operate with sensors that use SPI or provide
an analog signal while retaining high efficiency.

6.4 Evaluating EkhoNet’s throughput
Having discussed the power benefits of Ekho, we now turn

to look at the performance of Ekho’s transfer rate.
We start with the throughput achieved by a single node.

Since the Moo and WISP platforms currently support only
a 256Kbps baud rate, we fix Ekho’s clock to operate at the
same rate. We then compare Ekho’s throughput against the
Moo executing EPC Gen 2 [24], and QuarkNet [25]. Fig-
ure 18 shows the cumulative throughput across 30 locations.
The 30 locations are chosen randomly between 1 feet to 9
feet from a backscatter reader.

There are two key observations. First, we see that the
throughput achieved by Ekho is 45× higher than Gen 2 and
8× higher than QuarkNet on the Moo. EPC Gen 2 suf-
fers greatly due to protocol overhead, and therefore achieves
abysmal overall throughput. Although QuarkNet is a highly
optimized system that is designed for micro powered sen-
sors, its throughput is limited by the fact that the PHY
layer (encoding, etc) is implemented in software on Moo,
which reduces throughput. Second, we see that there are a
few locations where our design decision to eschew encoding
hurts us. At those locations, the received signal can still be
decoded by EPC Gen 2 and QuarkNet because of the SNR
benefit of Miller-4 encoding. However, it can be seen that
this is a small fraction of the overall range of the reader.
(Note that if encoding is essential, it is possible to add this
module to Ekho at the cost of some additional power con-
sumption and reduced throughput.)

We now turn to the throughput achieved by a network of
nodes, and evaluate the benefits of our energy and utility
function aware bit rate selection algorithm. We deploy 10
Ekho nodes with microphones at three locations (3 feet, 6
feet, and 9 feet from a backscatter reader). The maximum
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sampling rate of each audio sensor is 44kHz and each sample
data is 16 bits. As a result, an audio sensor can generate
up to 706k bits data per second. In contrast, the overall
network transmission capacity of EkhoNet is 1Mbps in our
current instantiation since each device is equipped with a
1Mbps clock. Thus, 10 audio sensors in front a backscatter
reader can saturate the 1Mbps network easily, which means
that adapting the bit rate as well as the sampling rate of
each sensor is necessary.

When channel is saturated, the selection of bit rate is intu-
itive because maximum bit rate which meets the lowest SNR
decoding threshold (10dB) should be used. The selection of
sampling rate follows the energy-utility joint optimization
we formulated in §4.

Figure 19 shows the MOS score obtained by 10 audio sen-
sors at 3 locations. Our optimization framework attempts
to allocate bandwidth such that sensors with higher SNR
can get the bandwidth they need for achieving higher MOS
scores. As a baseline, we compare against a scheme that
allocates bandwidth equally across all sensors. The median
and mean MOS scores achieved by EkhoNet is higher than
the baseline scheme — 50% of the nodes have MOS scores
higher than two, which is acceptable audio quality, whereas
the uniform allocation scheme has MOS scores of about 1.7,
which means poor audio quality. A breakdown across nodes
shows that our algorithm assigns higher sampling rate to
sensor 1 to 5 because they have higher SNR. While other
application-specific utility functions are possible, these re-
sults demonstrate that despite the simplicity of Ekho plat-
forms, the EkhoNet MAC can be more complex and optimize
network-wide throughput, energy and utility.

7. RELATED WORK
Backscatter communication: There has been much re-
cent emphasis on backscatter communication. Some efforts
have explored bandwidth limitations of backscatter commu-
nication in terms of throughput including Flit [13], Buzz [22],
and Blink [27]. While there are interesting ideas underlying
each of these, the overall throughput achieved by EkhoNet
is orders of magnitude higher than the above systems as a
result of a clean-slate design. Other efforts have focused
on using harvested power in an efficient manner including
QuarkNet [25][26] and Dewdrop [8] — these approaches are
complementary to EkhoNet and can be used in conjunction
with the ideas in this paper.



In addition to the above, there have been many interest-
ing ideas on using backscatter for real-world applications.
Ambient Backscatter [20] uses the backscatter of FM sig-
nals for short-range communication between tags to enable
credit-card transactions. AllSee [18] explores the backscat-
tered signal for gesture recognition. These ideas can poten-
tially benefit from an Ekho-like platform that is designed to
reduce power consumption while increasing bandwidth.

Much literature has explored the design of MAC layer pro-
tocols for RFIDs, and several of these approaches specifically
address data collection from RFID-scale sensors [9, 13, 22,
25]. Viewed in isolation, our MAC layer protocol is sim-
plistic since its merely a stripped down version of TDMA,
hence it relates to most of the above protocols. However,
our work should be viewed not just as a MAC layer, but a
system-wide re-design to strip computational overhead from
backscatter-based sensors, and thereby achieve higher effi-
ciency.

Optimized sensing platforms: There have been many
highly optimized sensor hardware designs proposed over the
past decade. At a high level, these can be separated into two
classes — optimized hardware platforms designed for specific
applications, and optimized hardware platforms that are in-
tended as a building block for research and applications.
One example in the former class is the NeuralWISP [16], a
wireless neural interface that operates on harvested RF en-
ergy. Some examples in the latter class are the Michigan M3

[19], an impressive mm3 sensor that operates at low power,
and the Epic Mote [11], which is a modular mote-class plat-
form for enabling low-power wireless sensor network appli-
cations.

EkhoNet differs from these efforts in that it is designed
for raw data transfer from high-rate sensors at extremely
low power levels. Thus, it is a general-purpose platform for
sensors similar to the second class of devices, but focused
on backscatter and high-rate sensors. As a result, the un-
derlying design principles and optimizations are completely
different from those that drive the other class of platforms.

8. DISCUSSION
While Ekho provides substantial performance benefits over

the state-of-art in backscatter-based sensor platforms, there
are several questions that we have not completely addressed
in our evaluation. We discuss these in this section.

FPGA v.s. MCU: One of the design choices in Ekho is
the use of an FPGA rather than MCU — this choice greatly
reduces the computational and data migration overheads be-
tween the sensor and radio, but in the process, it sacrifices
ease of programmability. While FPGA programming has
become easier in recent years due to improved IDEs and
GUI interfaces [4], it requires familiarity with logic design
at the circuits level. MCUs, on the other hand, are much
more natural to program using commonly used high-level
languages such as C, which is one of the reasons for its wide
use on sensor platforms.

We believe that the greater difficulty in programming FP-
GAs is not as much of an issue for Ekho as for other plat-
forms. Wireless sensors are designed to be intelligent, au-
tonomous nodes that can adapt to dynamics in energy levels,
channel conditions, routing changes, and others. In contrast,
Ekho is designed to be a “dumb” peripheral for a power-
ful reader that simply forwards the raw sensor data over a
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Figure 20: SNR of transmitting encoded data and
raw data across 20 locations.

backscatter link. Much of the decision-making logic that is
traditionally implemented on the sensor side are performed
at the reader. Thus, Ekho can be viewed as just another sen-
sor, with an interface that allows the reader to set sampling
rates and bit rates (as shown in §4).

Power benefits: The results presented in this paper com-
pare Ekho against existing backscatter-based sensing plat-
forms such as the WISP, but one question is whether we
would have significant power benefits if we compared against
an FPGA implementation of the WISP. Our evaluation did
not address this question since re-implementing the entire
sensing, computation, and communication pipeline of the
WISP on an FPGA is a substantial effort, but we provide a
qualitative comparison.

Existing research work [21] on RFIDs suggests that an
EPC Gen 2 tag implemented on FPGA usually consumes
5K to 10K logic gates. Clearly, an EPC Gen 2 tag does
not perform any operation related to sensing. Therefore,
sensor sampling, data migration, buffering, and other tasks
would incur additional overhead. For example, Touhafi and
Glesner et al [10, 15] investigate an FPGA (Spartan3-2000)
based sensing platform which consumes 1200K gates, sev-
eral orders of magnitude higher than an EPC Gen 2 tag.
Our Ekho implementation consumes only 6K gates, which
is comparable to an EPC Gen 2 tag and significantly less
than what we would expect with an FPGA version of the
WISP. Since the power consumption of an FPGA depends
on the number of gates used, Ekho should still be signifi-
cantly more efficient.

Encoding: Another design decision that needs more dis-
cussion is that Ekho eschews encoding in an effort to be
minimalist. Unsurprisingly, this can be problematic in sce-
narios where the wireless channel is noisy. Figure 20 shows
a simple experiment where we place a tag at 20 locations
between 1–9 ft in front of a reader, and look at the SNR
with EPC Gen 2’s Miller-4 encoding, and without encod-
ing. The decoding threshold for our backscatter reader is
10dBm, so any signal lower than this threshold cannot be
decoded correctly. As expected, there is about a 10dB dif-
ference between encoded and uncoded signal. The SNR is
higher than 10dB in 80% of the locations for uncoded data,
and higher than 10dB in about 90% of the locations after
encoding. This comes at a high cost, however, since the node
consumes 8× more power for achieving the same bit rate.

Thus, our point is simply that encoding is yet another
computation block on a backscatter-based sensor platform.
While the power consumption of techniques like encoding



are insignificant in most radios, the pros and cons deserve
to be examined more carefully for ultra-low power platforms
such as Ekho.

Applications: Finally, this paper does not focus on ap-
plications of Ekho, but we view our work as an enabler for a
variety of applications. While the idea of backscatter-based
sensing is not new [23], many existing efforts are about net-
working simple, low rate sensors (e.g. temperature, pressure,
etc). But the need for backscatter in such scenarios is debat-
able — active-radio based wireless sensors operate for years
on coin cells at low sensing and communication rates. But
rich sensors such as microphones and cameras operate pri-
marily in a tethered manner since data rates are far too high
for continuous communication. Our work seeks to bridge the
gap, and enable camera networks or microphone networks
to stream data continuously in an untethered manner. The
benefits of streaming raw sensor data to internet-connected
infrastructure is immense since one can use vast amount of
computational resources to jointly process the data streams
and enable smart applications. A simple example would be
continuous speaker recognition and transcription of meeting
notes by deploying a tethered reader and dozens of unteth-
ered Ekho nodes at different locations in a conference room.

9. CONCLUSION
In this paper, we present a powerful backscatter wireless

sensing architecture, Ekho, that can sample sensors at tens
of kHz and transmit data wirelessly at several hundreds of
kbps, while only consuming tens of µWatts of power. The
key observation in Ekho is that backscatter wireless com-
munication is energy-wise much cheaper than computation.
Therefore, by eliminating the overheads of sensing subsys-
tem, data handling subsystem, and communication subsys-
tems, we enable the whole sensing-communication pipeline
to operate at extremely low power. Over the Ekho platform,
we design a MAC layer that allocates bit-rates across nodes
while taking into account energy-efficiency, utility of data,
and a variety of platform-level considerations. We believe
that EkhoNet can enable new explorations in backscatter-
based sensing systems, and enable new applications that use
ultra-low power high-rate sensors.
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