
Low-latency Speculative Inference On Distributed Multi-modal
Data Streams

Tianxing Li#,†, Jin Huang†, Erik Risinger†, and Deepak Ganesan†
#Department of Computer Science and Engineering, Michigan State University, East Lansing, MI

†Department of Computer Science, UMass Amherst, Amherst, MA
litianx2@msu.edu,jinhuang@cs.umass.edu,erisinger@umass.edu,dganesan@cs.umass.edu

ABSTRACT
While multi-modal deep learning is useful in distributed sensing
tasks like human tracking, activity recognition, and audio and video
analysis, deploying state-of-the-art multi-modal models in a wire-
lessly networked sensor system poses unique challenges. The data
sizes for different modalities can be highly asymmetric (e.g., video
vs. audio), and these differences can lead to significant delays be-
tween streams in the presence of wireless dynamics. Therefore,
a slow stream can significantly slow down a multi-modal infer-
ence system in the cloud, leading to either increased latency (when
blocked by the slow stream) or degradation in inference accuracy
(if inference proceeds without waiting). In this paper, we introduce
speculative inference on multi-modal data streams to adapt to these
asymmetries across modalities. Rather than blocking inference un-
til all sensor streams have arrived and been temporally aligned,
we impute any missing, corrupt, or partially-available sensor data,
then generate a speculative inference using the learned models
and imputed data. A rollback module looks at the class output of
speculative inference and determines whether the class is suffi-
ciently robust to incomplete data to accept the result; if not, we
roll back the inference and update the model’s output. We imple-
ment the system in three multi-modal application scenarios using
public datasets. The experimental results show that our system
achieves 7 − 128× latency speedup with the same accuracy as six
state-of-the-art methods.
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1 INTRODUCTION
The proliferation of low-power yet data-rich sensors such as cam-
eras, microphones, LIDAR, hyperspectral imagers, and RF imagers,
has led to increased use of these sensors on IoT devices. There is
also growing evidence that multi-modal inference is more effective
than using a single modality in applications such as speech recog-
nition [61], 3D scene understanding [56], health monitoring [27],
safety [3], material identification [23], augmented reality [59], ro-
botics [46], and self-driving vehicles [13].

These advantages are also leading to distributed deployments
of multi-modal systems, particularly for monitoring complex en-
vironments where monitoring needs to be done around corners,
through walls, in low light, under foliage, or in other occluded set-
tings [16, 78]. The ability to observe a scene from different vantage
points allows us to reconstruct various physical properties of a
dynamic scene independently from multiple sensing modalities.
This allows us to extract a rich set of parameters about the physical
scene from diverse sensors — for example, the location, displace-
ment, speed, direction and material properties of objects may be
inferred from various imaging modalities. These parameters can be
leveraged to independently cross-check information from alternate
sensors from different vantage points, which is particularly im-
portant in complex environments. Many applications exhibit such
complexity including city-scale real-time analytics about the urban
environment, infrastructure, and activity [43, 64], industrial IoT set-
tings for predictive control and fault detection [63], and healthcare
settings where data from body-worn sensors (e.g., Fitbit) need to
be fused with environmental sensors (e.g., Wi-Fi access points) for
measuring the contextual environment around the user [76].

An overarching challenge in these systems is how to process
the distributed multi-modal data from these sensors. Advanced
sensors are capable of producing extremely large and continuous
data streams, and it is impractical to stream all collected data to
the cloud for data fusion. At the same time, it is important to fuse
these signals and leverage advances in neural networks that have
significantly improved in their ability to combine data frommultiple
modalities.

While a number of recent efforts have been exploring the prob-
lem of partitioned machine learning models across IoT devices and
the cloud to deal with this issue (e.g. [50]), we face additional chal-
lenges in the context of distributed multi-modal inference since
data generation rates can vary widely across these data-rich sensor
modalities. For example, a video stream requires one or two orders
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of magnitude more bandwidth than an audio stream, even though
both are considered rich sensors. The underlying assumption in
existing data analytic pipelines, however, is that data from individ-
ual edge devices will arrive at roughly the same time. But in cases
where audio and video streams from distributed nodes need to be
fused, audio data about an event is likely to arrive much earlier
than video data due to the smaller data size.

We currently have limited options to deal with such a scenario. A
cloud-based inference system can either block the inference pipeline
and wait for all inputs to be available or ignore the delay and
force output by running inference over a subset of the expected
sensormodalities (video in the above example). However, the former
introduces indefinite inference latency, whereas the latter sacrifices
accuracy and robustness. Our experimental results show that a
naive blocking method for audio-video data fusion can lead to tens
of seconds of inference latency in event detection, which is not
acceptable for many real-time applications. If the cloud ignores
the delay and executes incomplete data, accuracy drops can be
substantial (up to 35% in our experiments), leading to erroneous
decisions and poor user experience.

Existing approaches do not provide a complete solution to the
above problem. For example, some efforts have been made to find
optimal resource-accuracy trade-offs to reduce latency in single-
modality scenarios [29, 39, 84, 85]. These systems can find an opti-
mal configuration by analyzing the impact of configurations/knobs
(e.g., resolution) on resource consumption (e.g., bandwidth) and ac-
curacy. However, these will all block inference when employed in a
distributed multi-modal context — i.e., if one stream is much larger
than the other or if wireless network bandwidth results in one
data stream being more impacted than another, the slower stream
blocks the entire inference pipeline. Frame sampling [85] and top-
K candidate-object detection [35] minimize inference latency by
reducing the bandwidth required to upload. However, accuracy
suffers significantly with these approaches under poor network
conditions. Retraining the deep learning model under varying net-
work dynamics may achieve a better trade-off between accuracy
and inference latency. However, such an approach often introduces
high training overhead. Our experiment in Sec. 5 shows that it can
take several hundred hours (10 times higher than our system) to
retrain inference models to account for delays in the data stream.

In this paper, we introduce speculative inference on multi-modal
data streams to adapt to constrained bandwidth and unpredictable
network dynamics. Unlike prior approaches, our system does not
modify the deep learning models used in existing multi-modal appli-
cations but enables speculative execution of these models without
waiting for all inputs to be completely available. Instead of blocking
the inference pipeline, our system leverages the fact that different
modalities are complementary (e.g., they can provide additional
information measured from the same object) and correlate tempo-
rally to impute missing, corrupt, or partially-available sensor data,
and then generate a speculative inference using the imputed data.
We show that most classes are robust to such speculative inference
over lower-fidelity data, and only a few classes are more sensitive
to such imputation. Thus, rollback is only needed for a small subset
of classification categories and can be sufficiently infrequent that
average latency can be dramatically improved without compromis-
ing inference accuracy. When the inference results are determined

to be insufficiently accurate based on prior information, such as the
sensitivity of different classification categories to data imputation
and volume, our system rolls back the speculative inference and
updates the model’s output.

Instantiating our idea in practice requires that we address three
challenges. First, it is difficult to fully reconstruct the missing data
from one modality using only data from another modality due to
differences in the underlying sensing principles and potentially
discrepant dimensions of the data between modalities. Second, we
need to design a computationally-efficient rollback module that
can accurately detect when the speculative inference may be in-
sufficiently accurate, which allows us to offer the best trade-off
between accuracy and end-to-end latency. Third, we need to deal
with the fact that IoT devices are often not well synchronized to
a global clock, and timestamps generated on devices cannot be
trusted due to clock drift. IoT devices have limited resources and
are often duty-cycled; hence clock synchronization methods such
as NTP are not ideal for these devices [52]. In addition, IoT devices
are often equipped with low-cost clocks that can drift quickly and
unpredictably, resulting in transient inaccuracy even if they are
periodically re-synchronized.

Our system uses three core techniques to address these chal-
lenges. First, we use a conditional Generative Adversarial Net-
work (GAN) model to reconstruct the intermediate features of the
multi-modal model, which can be input directly to the multi-modal
model to compute the speculative predictions. Second, to design
a computationally-efficient rollback mechanism, we observe that
many classification categories are more resilient to diminished data
quality than others; thus, we only roll back speculative inferences
for a subset of categories that are more sensitive to data quality con-
siderations. Third, to align multi-modal data streams, we compute
two sets of intermediate feature maps: one generated from a single
modality only, and a series of intermediate feature maps generated
from multiple modalities under a variety of delay configurations.
We then align the data streams by minimizing the distance between
the two sets of feature maps.

Contributions Our main contributions are as follows:

• We present a novel architecture for multi-modal models that
enables speculative inference to adapt to fluctuating network
bandwidth and asymmetry in data sizes between modalities.
• We propose techniques to effectively align data streams,
impute the delayed data, compute speculative inference, and
roll back when necessary.
• We implement the system in three multi-modal application
scenarios using public datasets to examine the feasibility and
performance of speculative inference on multi-modal data
streams.
• Experimental results show that the system achieves 7−128×
latency speedup with the same accuracy as six state-of-the-
art methods, enabling fast and accurate multi-modal learning
under fluctuating network bandwidth.

2 THE CASE FOR SPECULATIVE INFERENCE
The notion of speculative inference is inspired by speculative execu-
tion in modern processors and OS kernels, which is highly effective
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at improving performance when different modules operate at dif-
ferent speeds [45, 57]. For example, the CPU is much faster than
external physical memory, often executing hundreds of clock cycles
before a required value becomes available. During the waiting time,
instead of idling, the CPU tries to predict the direction of control
flow, checkpoint the calling process’s state, and speculatively exe-
cute the program based on the prediction. If the prediction is correct,
the checkpoint will be removed; otherwise, the CPU will revert the
register state to the stored checkpoint and retry the execution.

We observe that the fast and slow data streams in a distributed
multi-modal fusion model are analogous to the CPU and memory in
computer systems. When data from a fast stream has been received
in the cloud, the inference pipeline does not need to stall waiting for
the slow stream’s data to arrive. Instead, it can use the fast stream’s
data together with partially received data from the slow stream
to impute the rest of the slow stream’s data. Then, the cloud can
speculatively execute the inference pipeline using the predicted
values. As with speculative execution, the speculative inference
engine needs to check if the prediction is statistically correct or not,
and re-execute the inference if incorrect.

2.1 Challenges
There are several challenges to implementing the imputation-with-
rollback scheme that underlies the speculative inference concept.

The first key challenge is in the design of the rollback method.
Unlike traditional speculative execution, there is no straightforward
way to confirm whether the speculative inference is correct or not.
The naïve way to check whether the speculation is accurate is to
re-execute the inference when more data has arrived, but this is
clearly impractical. Thus, the core challenge with rollback is gaug-
ing the accuracy of speculative predictions without re-executing
the entire inference pipeline and doing so in a computationally
efficient manner.

A second challenge is the design of an imputation method that is
broadly applicable across different sensor modalities with different
data sizes, different inference tasks, and unpredictable delays aris-
ing from dynamic network conditions. In addition, the imputation
method should also be lightweight, since the practical deployment
of speculative inference may not only be in the deep cloud, but also
on more resource-constrained edge clouds and mobile devices.

A third challenge is that the speculative inference method should
not make assumptions about the availability of accurate and syn-
chronized timestamps from different devices, and should operate
effectively despite time-synchronization errors. IoT devices are gen-
erally not tightly synchronized with a global clock, and timestamps
on such devices may not be accurate due to clock drift or sensor fail-
ure. Because IoT devices are often battery-powered, clock synchro-
nization frequency is low, and many devices may not implement
synchronization at all [58]. Thus, a robust inference pipeline must
tolerate and deal with typical levels of synchronization inaccuracy.

2.2 Overview of Speculative Inference
We introduce speculative inference, which executes a multi-modal
deep-learning pipeline without waiting for inputs from all modali-
ties to be available. The system takes data from both fast and slow

Figure 1: An overview of our system, comprising data imputation,
rollback, and data alignment modules.

data streams as inputs, predicts features of the delayed data, specu-
latively executes the inference pipeline, and rolls back execution if
the inference result is statistically likely to be wrong. Compared
with state-of-the-art approaches [29, 35, 39, 84, 85], our method
further reduces inference latency while maintaining good accuracy.

Figure 1 shows the main modules involved in speculative infer-
ence over a multi-stream, multi-modal data pipeline, including a
data imputation module, a rollback module, and a data alignment
module. The data imputation module leverages a conditional Gen-
erative Adversarial Network (GAN) to reconstruct features of any
missing, corrupt, or partially-available sensor data. The rollback
module provides a lightweight rollback mechanism that leverages
the fact that many classification categories do not need data from
all modalities to be present at high fidelity, and only a small number
of categories are sensitive to the effects of speculative inference.
The module, therefore, learns how robust the different classification
categories are to the availability of data from different modalities,
and triggers the rollback operation judiciously. The data alignment
module aligns multi-modal data streams without using timestamps
or injecting any synchronization pulses or frames, which is more
general than state-of-the-art methods[1, 41, 86]. This module lever-
ages a series of generative models to generate (a) intermediate
features using the faster data stream (e.g., audio) only and (b) a se-
ries of intermediate features using both fast and slow data streams
with different delay configurations. It aligns the two data streams
by searching for the minimum 𝐿1 distance between (a) and (b).

Applications: Speculative inference can benefit data-driven ap-
plications that involve the fusion of multi-modal data under latency
constraints. Wirelessly networked distributed smart camera and mi-
crophone systems are common in security, automation, biometric
and environmental applications [22, 81]. Speculative inference is
an effective way to fuse such multi-modal signals in real-time while
being robust to bandwidth differences. Wireless health is another
domain where speculative inference can be useful. For example, an
adverse health event detection system might fuse information from
a body-worn sensor like a smartwatch and a remote monitoring
sensor at home to determine the likelihood that a serious event
has occurred [76]. Real-time actuation can also benefit from these
techniques. For example, robotic navigation or grasping in occluded
conditions can leverage multiple modalities from different vantage
points to complete difficult tasks in complex environments [24].

3 DESIGN
Speculative inference on multi-modal data streams consists of three
core modules — the data imputation module, the rollback module,
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and the data alignment module. Together, these modules optimize
the accuracy of multi-model models while minimizing end-to-end
latency under variable network dynamics.

We focus on the two-modality case (e.g., video and audio) because
there is a dearth of distributed multi-modal datasets involving more
than two modalities[8]. We expect that our methods will generalize
to more modalities, but we leave this to future work when labeled
datasets of such scenarios are more widely available. In this work,
we assume that data from the two modalities is transmitted from
two separate devices to the cloud using any common network
protocol (e.g., TCP, UDP). We also assume that the IoT clocks are
not always going to be time synchronized, either because time
synchronization has been turned off to reduce resource usage or
because the clock crystals used on these devices have a high drift-
rate, resulting in transient loss of synchronization.

3.1 Data Imputation Module
We propose the use of a conditional GAN to predict the features
of missing or delayed input data from one modality. A GAN trains
two separate neural networks simultaneously: a generator𝐺 learns
to map from a latent space to a data distribution of interest, and
a discriminator learns to 𝐷 distinguish between real samples and
synthetic samples produced by the generator. To effectively train
the generator, the discriminator provides feedback to the genera-
tor about the quality of the synthetic samples, and the generator
imputes better samples to try to fool the discriminator. During
training, the generator and the discriminator play a competitive
game, resulting in synthetic samples that are very close to real sam-
ples. A vanilla generator usually takes a noise vector as input, but
when conditioned generation is needed, the noise vector can be an
explicit source [60]. The generator then leverages receptive fields
to denoise and densify the input samples by referring to the genera-
tor’s spatial or temporal contexts [51]. In our system, the generator
leverages data from both fast and slow streams to learn and predict
the features of one modality from the raw data of another.

Directly applying the GAN in our system does not work well due
to the difference in data sizes and underlying sensing modalities.
For example, a raw audio stream is a 2D vector and contains rich
temporal information, whereas raw video is a 3D vector which
contains rich spatial and temporal information. Also, the noise
distributions of audio and video data are different due to inherent
differences between the sensors and their respective noise sources.
Therefore, training a GAN that is capable of generating realistic
raw sensor data from partially received multi-modal sensor data
is extremely challenging. Recent efforts have made some progress
in generating images from audio signals [14, 74]. But the predicted
images lose significant detail compared with the originals, which
degrades performance in predictive applications.

To address this challenge, we propose to impute missing or in-
complete data by generating intermediate feature maps, rather than
attempting to generate realistic raw sensor data. This method is
inspired by computer vision applications in which intermediate
features from pre-trained deep neural networks are used to guide
the generator in a GAN [9, 37, 75]. Figure 2 illustrates a typical
audio-visual multi-modal model that has been widely used in the
computer vision and deep learning communities [32, 68], which

Figure 2:A typical audiovisual multi-modal model. The learning lay-
ers 𝑓𝑐𝑎𝑚𝑒𝑟𝑎 and 𝑓𝑎𝑢𝑑𝑖𝑜 take the raw sensing data as input and com-
pute intermediate feature maps Fcamera and Faudio. Then the fusion
layer 𝑔 concatenates Fcamera and Faudio to generate another interme-
diate feature map Fconcat. Finally, the learning layer ℎ uses Fconcat to
compute the inference class.

Figure 3: An overview of the data imputation module in our system.
We first extract intermediate featuremap Fcamera from a pre-trained
multi-modal model, which will be the discriminator’s input. We
then compute the concatenated featuremap Fconcat within the learn-
ing model as the generator’s input.

takes raw sensor data from a camera and a microphone as inputs,
and computes intermediate feature maps Fcamera and Faudio via the
feature extraction layers 𝑓𝑐𝑎𝑚𝑒𝑟𝑎 and 𝑓𝑎𝑢𝑑𝑖𝑜 , respectively. A fusion
layer, 𝑔, concatenates Fcamera and Faudio to generate an intermedi-
ate feature map, Fconcat. Finally, the prediction layer ℎ uses Fconcat
to compute the final output, which can be derived by Equation 1.

Output = ℎ(𝑔(𝑓𝑐𝑎𝑚𝑒𝑟𝑎 (Icamera), 𝑓𝑎𝑢𝑑𝑖𝑜 (Iaudio)) (1)

Since the bandwidth requirement for audio is less than that of
video, it is typically the faster of the two data streams to arrive
for inference in the cloud. Thus, our system aims to impute the
features of the slower video stream. We design our GAN models
to leverage the features from audio and incomplete video data to
generate synthetic featuremaps of the full video stream. Specifically,
we use audio features Faudio and features F′camera from video data
that is incomplete due to transmission delays to mimic the features
Fcamera of the complete video stream. Figure 3 shows an overview
of our data imputation module.

We use the intermediate feature map Fcamera prior to the fusion
layer as the input to the discriminator because 𝑓𝑐𝑎𝑚𝑒𝑟𝑎 acts as a
feature extraction and denoising module, so Fcamera has a higher
signal-to-noise ratio than the raw sensing data Icamera. We leverage
the feature map Fconcat after the fusion layer 𝑔 as the generator’s
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input to better utilize the correlated cross-modal information, be-
cause simply concatenating the intermediate feature maps Fcamera
and Faudio does not extract correlations between audio and visual
content. We observe that many multi-modal models use Long Short
Term Memory (LSTM) networks or Bidirectional Gated Recurrent
Unit (BGRU) networks in the fusion layer, which jointly models
temporal dynamics [32, 68].

Training ofGANmodels The objective function considers losses
from two sources: a conditional GAN, L𝑐𝐺𝐴𝑁 , and a perceptual
loss, L𝑝 . We leverage a conditional GAN to model the conditional
distribution of the real intermediate feature map Fcamera from the
complete video input Icamera given the intermediate feature map
Fconcat, which is generated from the full audio data Iaudio and par-
tial video data I′camera. The conditional GAN loss can be expressed
as:

Fcamera = 𝑓𝑐𝑎𝑚𝑒𝑟𝑎 (Icamera) (2)
Fconcat = 𝑔(𝑓𝑐𝑎𝑚𝑒𝑟𝑎 (I′camera), 𝑓𝑎𝑢𝑑𝑖𝑜 (Iaudio)) (3)

L𝑐𝐺𝐴𝑁 (𝐺,𝐷) = EFcamera [log𝐷 (Fcamera, y)]+
EFconcat [log(1 − 𝐷 (𝐺 (Fconcat, y))] (4)

where y is the ground truth and the generator 𝐺 tries to minimize
this objective function against an adversarial discriminator, 𝐷 , that
tries to maximize it [38]. Then, we follow [40, 51] and introduce a
perceptual loss, L𝑝 , in our objective function to compare high-level
differences and stabilize GAN training:

L𝑝 (𝐺) =E[
𝑁∑
𝑛=1
| |𝑉 (𝑛) (𝐺 (Fconcat)) −𝑉 (𝑛) (Fcamera) | |1] (5)

where 𝑉 is a pre-trained VGG network that helps to quantify the
perceptual differences of the content between our intermediate
feature maps. In the VGG network, each layer 𝑛 measures different
levels of perception.

Our final objective, therefore, is
𝐺∗ = argmin

𝐺
max
𝐷
L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) + 𝜆L𝑝 (𝐺) (6)

where 𝜆 is a hyper-parameter for regularization.

OfflineTraining Wefirst extract intermediate featuremap Fcamera
within the multi-modal model. Fcamera will then be the discrimina-
tor’s input. We next compute the concatenated feature map Fconcat
within the learning model as the generator’s input. We modify
the quality (e.g., resolution) and the quantity (e.g., delay time) of
video data I′camera and train a series of GANs (𝐺𝑖 𝑗𝑘 , 𝑖 ∈ [1, 𝑛], 𝑗 ∈
[1, 𝑟 ], 𝑘 ∈ [1, 𝑑]) to adapt to fluctuating network bandwidths, where
𝑛, 𝑟 , 𝑑 are the number of frame rate settings, resolution settings,
and delay configurations, respectively. The definition of the delay
configuration 𝑘 ∈ [1, 𝑑] is the number of the video frames received
when audio data is fully received. Therefore, the number of GANs
is 𝑛 × 𝑟 × 𝑑 . For example, for the speech-recognition model in
Sec. 5.1, the number of GANs is 4 × 2 × 25 = 200. The data sizes of
the intermediate features that our models learn to reconstruct are
significantly smaller than those of the raw data, resulting in signif-
icantly lower training overhead than the state of the art [28, 66].
Experimental results in Sec. 5.6 show that our system reduces the
training overhead by 80-90%, while still retaining good accuracy.
For each resolution setting 𝑗 ∈ [1, 𝑟 ], we use an Image Expansion

to transform the input resolution to a model-specific resolution (e.g.
256× 256 for speech recognition, 224× 224 for event detection); for
each delay configuration 𝑘 ∈ [1, 𝑑], we pad the input with empty
frames to reach the full frame count per sample (e.g. 29 frames for
speech recognition, 300 frames for event detection).

Our system does not require the retraining of models pre-trained
for individual inference tasks. Rather, it utilizes pre-trained models
by replacing Fcamera with F∗camera, which is the output of the gen-
erator 𝐺 . As a result, our system can also be used to impute other
sensing modalities (e.g., accelerometer) by retraining the set of
GANs, which only takes 8–20 hours while retaining high accuracy.

Online Inference As sensing data arrives in the cloud, our system
first uses the data alignment module in Sec 3.3 to align the data
streams. Then it uses the corresponding GAN𝐺𝑖∗ 𝑗∗𝑘∗ to compute a
synthetic feature map F∗camera via Eq. 7. Since only a single GAN
needs to be loaded into memory at one time, the resource overhead
is very small (< 100 MB memory in the GPU). The speculative
inference can be derived via Eq. 9.

F∗camera = 𝐺𝑖∗ 𝑗∗𝑘∗ (𝑔(𝑓𝑐𝑎𝑚𝑒𝑟𝑎 (I′camera), 𝑓𝑎𝑢𝑑𝑖𝑜 (Iaudio)))) (7)
Faudio = 𝑓𝑎𝑢𝑑𝑖𝑜 (Iaudio) (8)
Output = ℎ(𝑔(F∗camera, Faudio)) (9)

3.2 Rollback Module
So far, we have described how the system imputes incomplete data
in the slow data stream and speculatively infers the class output
without waiting for all inputs to be available. But what do we do if
the speculative inference is insufficiently accurate to use in a partic-
ular application? The rollback module helps our system to achieve
a critical balance between high accuracy and latencies incurred
by discarding already-computed inferences. The key question is:
how can the speculative inference module ensure that its output is
suitable for downstream processing, and when should it decide to
roll back and wait for more (or higher-quality) data? To ensure that
latency is minimized, this decision must be made rapidly, without
waiting for all inputs to arrive.

A simple observation inspires our design: some prediction classes
are resilient to incomplete data in one sensor modality, whereas
others are more sensitive to incomplete or lower-quality data. Re-
silience to data quality issues depends on both the duration and
the complexity of a classifiable event. For example, based on the
complexity of lip movement, an audiovisual lipreading model can
recognize the word "under" with less visual data than is required for
the word "allegations." Due to event duration, an audiovisual event
detector can recognize "dog bark" with less visual data than that
for "toilet flush." For activity recognition, some activities like sitting
and standing are easier to infer with incomplete data than others,
such as discriminating between modes of transportation. There-
fore, the rollback module will green-light predictions for certain
inference classes if the speculative inference is statistically likely
to achieve the desired accuracy. For other inference classes, the
rollback module will hold onto the inference and wait for additional
data to verify the output.

To validate this observation, we conduct an experiment using two
public datasets andmulti-modal models in Sec. 5. In this experiment,
we enforce various delay configurations on the validation data
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(b) Event detection
Figure 4: The CDF of theminimumpercentage of full video data that achieves
the best accuracy.

and measure the minimum data requirements to achieve the best
accuracy. Figure 4 shows the CDF of the minimum ratio of full video
data to achieve the highest accuracy. We make two observations:
• For about 50% the inference classes, the speculative infer-
ence can achieve the best accuracy with less than 50% of the
full video data in both application scenarios. This validates
our assumption that most classes are robust to the specu-
lative inference over low fidelity data. For these inference
classes, if the cloud has already received half of the total
video frames in a prediction window (e.g., one second for
speech recognition and ten seconds for event detection), the
rollback module can release the lock and output the result
of the speculative inference.
• For less than 10% of inference classes, the cloud needs to
receive over 90% of total video frames to achieve the best
accuracy in both application scenarios. For these inference
classes, if the cloud receives less than 90% of the total video
frames, it will discard the speculative inference and wait
for the additional video frames. Once the cloud receives the
additional data, the rollback module will re-compute and
output the inference.

Our system considers latency as the main optimization objective
and accuracy as the constraint. The objective of the rollback module
is shown in Eq. 10:

I∗camera, 𝑙
∗, 𝑠∗ = argmin

Ircamera,𝑙,𝑠

𝑆𝑖𝑧𝑒 (Ircamera)

𝑠 .𝑡 . 𝐴𝑐𝑐𝑚𝑎𝑥 −𝐴𝑐𝑐 (𝐺𝑖 𝑗𝑙 , Iaudio, I
′
camera + Ircamera) <= 𝑥% (10)

where 𝐺𝑖 𝑗𝑙 is the GAN model, Iaudio is the audio data,and I′camera
is the delayed video data; Ircamera is additional video data acquired
by the rollback module, and the total length and specifications are
𝑙 and 𝑠 . The rollback module aims to achieve the desired accuracy
(𝑥% less than the maximum accuracy 𝐴𝑐𝑐𝑚𝑎𝑥 ) with minimum data
size 𝑆𝑖𝑧𝑒 (Ircamera).

Alternatively, we can also optimize accuracy against a desired
latency. The objective function is shown in Eq. 11:

I∗camera, 𝑙
∗, 𝑠∗ = argmin

Ircamera,𝑙,𝑠

(1 −𝐴𝑐𝑐 (𝐺𝑖 𝑗𝑙 , Iaudio, I
′
camera + Ircamera))

𝑠 .𝑡 . 𝑆𝑖𝑧𝑒 (Ircamera) <= 𝑦 (11)

where 𝑦 is the maximum number of additional frames after the
speculative inference.

Algorithm 1 shows the details of the rollback module using the
objective function in Eq. 10. Once the cloud receives the audio data
Iaudio and partial video data I′camera, it counts the available video

Algorithm 1: Rollback module.
input :1) A validation accuracy lookup table of𝐶 labels, 𝑛 frame

rates, 𝑟 resolutions, 𝑑 delay configurations:
𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒 [1 : 𝐶, 1 : 𝑛, 1 : 𝑟, 1 : 𝑑 ];
2) Data imputation modules:
𝐺 = {𝐺𝑖 𝑗𝑘 |𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑟 ], 𝑘 ∈ [1, 𝑑 ] };
3) The number of available video frames:𝑚;
4) Audio data: Iaudio;
5) Partial Video data: I′camera;

output : Inference class 𝑐
𝑐 ← ∅;
// Get multiple inference classes using different

delay configurations

for 𝑘 ← 1 to𝑚 do
𝑐.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑔𝑒𝑡_𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑐𝑙𝑎𝑠𝑠 (𝐺𝑖 𝑗𝑘 , Iaudio, I′camera,k)) ;

end
𝑐 = 𝑣𝑜𝑡𝑖𝑛𝑔 (𝑐) ;
// Check if the speculative inference achieves the

desired accuracy. When x=0, the desired accuracy is
the best accuracy of the corresponding inference
class.

if𝑚𝑎𝑥 (𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒 [𝑐, 𝑖, 𝑗, 1 : 𝑁 ]) −𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒 [𝑐, 𝑖, 𝑗,𝑚] <= 𝑥%
then

output 𝑐 ;
end
else

// Search for the next speculative inference that
achieves the desired accuracy with minimum data
size.

[I∗camera, 𝑙
∗ ] = 𝑔𝑒𝑡_𝑚𝑜𝑟𝑒_𝑓 𝑟𝑎𝑚𝑒𝑠 (𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒, 𝑐, 𝑖, 𝑗,𝑚)

// Re-compute the speculative inference and output

the inference classes.
𝑐 = 𝑔𝑒𝑡_𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑐𝑙𝑎𝑠𝑠 (𝐺𝑖 𝑗𝑙∗ , Iaudio, I′camera + I∗camera)
output 𝑐 ;

end

frames𝑚 in the current time window. The module then uses the au-
dio data Iaudio,𝑚 image frames, and𝑚 generators𝐺𝑖 𝑗𝑘 (𝑘 ∈ [1,𝑚]),
each of which uses the intermediate result Fconcat,k generated from
the audio data and the video data I′camera,k from 𝑘 frames. We com-
pute𝑚 inference classes and generate the speculative inference via
voting. For this we utilize an accuracy table 𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒 , evaluated
on validation data, to check if the speculative inference achieves
the desired accuracy. The inference result will be accepted if the
accuracy of the speculations on which that output depends has
historically been above the desired accuracy or if the bandwidth
is sufficient. Otherwise, based on the current network bandwidth,
the cloud uses 𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒 to search for the next spatial configura-
tion and frame count that will achieve the desired accuracy while
minimizing the size of transferred data. Finally, the cloud rolls back
the inference, waits for additional data, and updates the model’s
inference result when sufficient data is available.

The rollback module assumes that the distribution of the testing
data is similar to the distribution of the validation data. However,
we observe that if the test and validation data are limited (e.g., less
than 5% of data is available to train 𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒), the rollback module
tends to be erroneous. We also observe that the distribution of
input data may vary over time. For these scenarios, the rollback
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module can periodically update𝐴𝑐𝑐𝑇𝑎𝑏𝑙𝑒 in the cloud when as data
becomes available.

3.3 Data Alignment Module
This module aims to align multi-modal data streams without using
timestamps or injecting synchronization pulses, as the former can
be incorrect due to sensor failure or clock drift [83] and the lat-
ter may not be available under certain scenarios (e.g., low light or
noisy environments). The key idea is to re-use the data imputation
module in Sec. 3.1 to generate (a) a synthetic feature map F∗camera,0
generated by audio-only data, and (b) a series of synthetic feature
maps F∗camera,k generated by both audio and video data with multi-
ple delay configurations 𝑘 . F∗camera,0 and F∗camera,k can be derived
by Eq. 12 and 13.

F∗camera,0 = 𝐺 (𝑔(𝑓𝑎𝑢𝑑𝑖𝑜 (Iaudio))) (12)
F∗camera,k = 𝐺𝑘 (𝑔(𝑓𝑐𝑎𝑚𝑒𝑟𝑎 (I′camera,k), 𝑓𝑎𝑢𝑑𝑖𝑜 (Iaudio))) (13)

We observe that when the delay configuration 𝑘 (𝑘 ∈ [1, 𝑑])
matches the corresponding generator 𝐺𝑘 , the output is close to
F∗camera,0. Specifically, when the delay configuration 𝑘 matches the
corresponding generator 𝐺𝑘 , the corresponding synthetic feature
map F∗camera,k should be close to the real featuremap Fcamera. In this
case, the distance between F∗camera,0 and F

∗
camera,k is at a minimum.

Therefore, we search for the minimum 𝐿1 loss of the two feature
maps F∗camera,0 and F∗camera,k among all possible delay configura-
tions 𝑘 ∈ [1, 𝑑] to find the best alignment 𝑘∗ and align multi-modal
data streams, which can be derived in Eq. 14. We use this obser-
vation to design a new method for aligning multi-modal streams
without using timestamps.

𝑘∗ = argmin
𝑘∈[1,𝑑 ]

| |F∗camera,0 − F
∗
camera,k | |1 (14)

Figure 5 shows some examples of data alignment in our system.
For all examples, the L1 loss is minimized when the delay configu-
ration matches the corresponding generator. We also observe that
all the curves are concave downward. When the two data streams
are not well aligned, the intermediate feature map tends to be erro-
neous, which increases the L1 distance. And the error increases with
more misalignment between the two streams, leading to a larger L1
distance. To further improve the efficiency of data alignment, we
apply a binary search algorithm to find the minimum L1 loss. Each
alignment is an independent operation, so the alignment error will
not accumulate. Our module assumes that the delay between two
streams is less than a full window, e.g., the system needs to receive
at least one frame from both streams within the same inference
window. If the delay is larger than a full window, the system will
wait until it receives one frame from the slow stream or discards
the alignment task after the timeout.

One-time computational cost Executing a GAN for each pos-
sible delay configuration has a high cost, but we note that this
cost is only incurred the first time that streams need to be fused.
Once the synchronization offset has been determined, only minor
adjustments are needed to mitigate the effects of clock drift over
time. For example, a 15ppm clock crystal will drift by roughly 50
ms/hr, so infrequent re-synchronization can be done by looking for

a few delay configurations around the current minima to obtain a
new delay configuration.

4 IMPLEMENTATION

Overview We implement our system on a server utilizing two
GTX-1080Ti GPUs, 32 GB RAM, and a Xeon E5-2620 v3 2.40 GHz
CPU, which serves as a stand-in for the cloud. We use two Rasp-
berry Pi 4Bs as IoT devices, one to send fast-stream data (e.g.,
audio) and the other to send slow-stream data (e.g., video). Execu-
tion of the GAN and inference models takes place on the cloud; the
IoT devices are only used for data pre-processing and transmission.
Thus, during the experiment we profile and benchmark the latency
for GAN models and inference models on the cloud side.

IoT devices In our setup, both of the IoT devices connect to the
cloud via either Wi-Fi or Bluetooth Low Energy(BLE) for data and
control-signal transmission. We use Linux command wondershaper
to directly limit upload bandwidths based on real-world traces of
network dynamics to run evaluations under different bandwidth
settings. We emulate the video streaming process by buffering raw
camera sensor data on the IoT devices and periodically extracting
and transmitting a new camera frame.

Video Encoding and Decoding We use the standard libav* li-
brary from ffmpeg for video encoding on IoT devices and decod-
ing in the cloud. The rollback module requires additional, lower-
resolution frames and a specific range of frames. The specification
of the resolutions and number of frames is sent from the cloud
and received by the IoT devices. After receiving the specifications,
the IoT devices re-initialize the encoder codec AVCodecContext and
discard all the encoded frame packets in the buffer. We maintain
another buffer of raw input data so that the discarded encoded
frame can be re-encoded at a lower resolution.

Test-bed Execution We duty-cycle the IoT nodes to better em-
ulate a distributed sensor scenario to which speculative inference
and rollback are well-suited. During cycle-off periods, the audio
node sleeps, awaiting the execution of the rollback module if nec-
essary. During cycle-on periods, both the audio and video nodes
stream continuously to the cloud. The duration of the cycle-on
period varies across tasks: the cycle-on period for speech recog-
nition is 1 second, but for event detection, the active period is 10
seconds. Due to asymmetric data rate requirements, audio data is
fully transmitted while only the partial video data is transmitted at
the end of each active period. On the cloud side, we align the partial
video data and full audio data to generate inference results, which
are compared against a statistical accuracy threshold to determine
whether to perform a rollback. Following the determination of the
rollback module, the cloud sends the specifications and number of
additional video frames back to the video node, then waits until the
cloud receives the additional frames. Finally, we compute the final
output based on both the initial and additional data.

5 EVALUATION
We start by describing the datasets we use and baselines we compare
against, followed by a comprehensive evaluation.
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Figure 5: Examples of data alignment.

5.1 Datasets and setup
We look at three application scenarios — speech recognition, event
detection, and activity recognition — that require high accuracy
with minimal inference latency. We run our system on three multi-
modal models using public datasets [17, 67, 68]. As described in
Sec. 2.2, we assume that sensor data for each modality is streamed
continuously from a separate device to the cloud during active,
cycle-on periods. We then describe the four baselines — naïve block-
ing, adaptive bitrate streaming, one-time profiling, and periodic
profiling — that we compare against.

Speech Recognition Dataset We use a large Lip Reading in the
Wild (LRW) dataset [17] consisting of 500 English word classes [5,
18]. Many words are either visually or verbally similar, making the
words harder to recognize by a single modality only. The dataset
consists of over 1,000 individual short video clips (1.16 seconds)
from BBC news and talk shows for each word class; hundreds of
different speakers are present in the videos. The LRW clips have
been cropped to extract speakers’ faces only. The native resolution
of the original videos is 1080p or higher, with the resolution of the
LRW video cropped down to 256×256. The video frame rate is 25
FPS. The audio sampling rate is 44.1 kHz.

Event Detection Dataset We use the Audio-Visual Event (AVE)
dataset, containing over 4,000 10-second videos covering a wide
range of 28 audio-visual events (e.g., church bell ringing, dog bark-
ing) and domains (e.g., human activities, musical performances) [68].
There are at least 60 videos for each event category, and over half
of the videos contain audio-visual events that span the full ten
seconds. Each video contains ten labels (one label per second). The
native resolution of the original video varies from 360p to 720p,
and the authors resized the image resolution to 224×224 to extract
visual features. The video frame rate is 30 FPS. The audio sampling
rate is 44.1 kHz.

HeterogeneityActivityRecognitionDataset Weuse the STISEN
dataset [67] comprising 43 million accelerometer and gyroscope
readings from nine users performing six activities: biking, sitting,
standing, walking, stair up, and stair down. Readings were recorded
from four smartwatches, 31 smartphones and one tablet, represent-
ing 13 device models from four manufacturers. Note that, unlike
audio-visual data, inertial data is not considered high-bandwidth;
however, BLE radios are highly duty-cycled to minimize energy
consumption, so delays of tens to hundreds of millisecond still
occur.

Multi-modal Models We leverage three end-to-end multi-modal
models for speech recognition [61], event detection [68], and ac-
tivity recognition [62]. The speech recognition model leverages

two separate residual networks (ResNet [32]) to extract features
from raw images and audio signals, and two two-layer BGRUs
to model the temporal dynamics of each modality. Two cascaded
BGRU layers fuse the video and audio data by concatenating the
features of each modality. Finally, a softmax activation function
is used to predict the inference class. The event detection model
utilizes two pre-trained CNNs to extract visual and audio features.
Two LSTMs model temporal dependencies between the two modali-
ties. A multi-modal fusion network, based on Multi-modal Residual
Network [44] is used to generate a joint audiovisual representation.
Finally, a fully-connected layer with a softmax activation function
is used to classify audiovisual events. For activity recognition, each
sensing modality has a dedicated CNN to extract preliminary fea-
tures. These features are combined through fully-connected layers
to infer the output.

Evaluation Metrics Performance is evaluated by two metrics:
accuracy and latency. The best accuracy 𝐴𝑐𝑐𝑏𝑒𝑠𝑡 is defined as the
accuracy achieved using all data from both modalities within a
given time window. End-to-end latency is computed by subtracting
the timestamp of the final output from the timestamp recorded
when incoming data from the faster steam (e.g., audio) reached the
cloud for processing.

Baselines We compare our system with six baselines. The first
baseline is naive blocking, in which clients transmit the highest
data quality possible (full resolution and maximum frame-rate),
and the inference pipeline simply blocks until all inputs from all
data streams have arrived. The second baseline is adaptive bitrate
streaming (ABS), widely used in live video streaming [10, 54]. This
experiment requires the client to measure bandwidth in real time
and vary the streaming video resolution to minimize latency.

We also compare our system against three existing video an-
alytics methods. One is based on frame sampling, and the other
two are profiling methods [39, 84]. Frame sampling minimizes the
bandwidth required to transmit data by filtering out redundant
information (e.g., images with fewer objects) [35, 85]. For a fair com-
parison, we choose a key-frame sampler that streams data without
buffering or batch processing. Specifically, we sample key frames
within an inference window using optical flow [79]. We then ap-
ply linear imputation to fit within dynamic bandwidth constraints.
Profiling optimizes video streaming configurations to minimize
the inference latency while achieving a desired accuracy. In gen-
eral, state-of-the-art profiling methods can be further classified into
two categories: one-time profiling [29, 84] in which the processing
pipeline configuration is profiled oncewhen video streaming begins,
after which configuration is fixed, and periodic profiling [39, 80] in
which the configuration is profiled periodically to find an optimal
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Figure 6: Synthetic trace-driven evaluation. Our system consistently outperforms the baselines in both application scenarios. Among all of the methods that
achieve high accuracy, our system has the lowest end-to-end latency.

accuracy-latency trade-off at the cost of profiling overhead. In our
experiment, we do not take the profiling overhead into account.

Finally, we compare our system with an approach that retrains
themulti-modal models themselves with varying amounts of stream
lag. The number of the retrained models is equal to the number of
delay configurations. During the test phase, the approach will mea-
sure the delay and select a retrained model that leverages the partial
data to get the outputs without blocking the inference pipeline.

Configurations Vision algorithms often contain various config-
urable parameters or "knobs." We focus on two knobs: frame rate
and image resolution. For the LRW dataset, the frame rates are 25
FPS or 15 FPS, and the resolutions are 256×256, 128×128, 64×64, or
32×32. For the AVE dataset, the frame rates are 30 FPS or 15 FPS,
and the resolutions are 224×224, 112×112, 56×56, or 28×28.

5.2 End-to-end Improvement
We start with the end-to-end improvement of our system over the
six baselines. In this experiment, we do not consider the impact
of encoding and compression at the IoT devices, which will be
shown in Sec. 5.7. For our method, we leverage the data alignment
module in Sec. 3.3 to align the data streams. For the baselines, we
assume the data streams are perfectly aligned, as other techniques
cannot align data streams without using timestamps or injecting
synchronization pulses.

Synthetic trace-driven evaluation To demonstrate our sys-
tem’s ability to adapt to asymmetric bandwidths across different
modalities, we artificially vary bandwidths to simulate fluctuating
network conditions using synthetic network traces generated with
Pensieve [53], which uses a Markovian model in which each state
represents an average throughput in the range from 200–800 Kbps.
Each bandwidth value was drawn from a Gaussian distribution
centered around the mean bandwidth with variance uniformly dis-
tributed between 0.05–0.5. The granularity of the network traces is
one second.

Figure 6 shows that our system incurs significantly reduced la-
tency with minimal loss of accuracy under fluctuating network
dynamics and consistently outperforms the baselines. Our accuracy
drops by only 1% compared to naïve blocking but achieves 2–128x
latency speedup over this method since it can speculate using im-
puted data. We perform better than both one-time and periodic
profiling methods in terms of latency (2–43x, and 1.5–10x speedup)
while achieving the same accuracy. The profiling methods cannot
adapt to rapid bandwidth dynamics – if actual bandwidth is less
than profiled bandwidth, they block until sufficient data arrives.
Our system is more adaptive and can speculate using imputed data.
ABS, frame sampling, and model retraining have lower latency
(15% to 30%), but our method achieves 1% – 25% higher accuracy.
The advantage of our method is particularly evident under low
bandwidth conditions, in which the advantages of a rollback-based
method over changing video resolutions become apparent. We also
repeat the experiment without network fluctuations, and the re-
sults are similar to Fig. 6. We observe that when the network is
fast (e.g., > 800 Kbps bandwidth), our system offers only marginal
improvements because both streams can transmit full-resolution
data to the cloud. However, IoT nodes often leverage low-power
wireless communication technologies like BLE or Zigbee, which
only achieve a maximum of sub-Mbps throughput under practical
conditions [55], to transmit data due to strict energy constraints. For
example, [6, 7, 21] reported BLE throughputs of 221Kbps, 341Kbps
and 724Kbps for BLE 4.2, BLE 5.0 indoor environment, and BLE
5.0 body area network, respectively. Even for cellular networks
using 4G LTE, the average throughput can drop to 300 Kbps [36].
Therefore, applications using modern wireless technologies can
still see significant gains from our system.

Real-world trace-driven evaluation We now evaluate our sys-
tem against several real-world bandwidth traces. Specifically, we
look at multi-path TCP traces that were collected in a complex
city environment [20]. The dataset covers the traffic produced by
more than ten users using Nexus 5 smartphones. The Nexus 5
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Figure 7: Real-world trace-driven evaluation. Our system (blue cross) consistently outperforms the rest of the baselines in both application scenarios. Among the
models that achieve good accuracy, our system achieves the least end-to-end latency.

Methods Speech recognition
Inference Alignment Rollback End-to-end

Latency (ms) Latency (ms) Latency (ms) Latency (ms)
Naive Blocking 27 - - 2,448

ABS 27 - - 27
One-time profiling 27 - - 774
Periodic profiling 27 - - 702
Frame sampling 27 - - 27
Retrained model 27 - - 27

Ours 27 <1 62 <90
Table 1: Latency breakdown.

smartphones ran a modified Linux kernel (includes Multi-path TCP
v0.89.5) to collect both Wi-Fi and cellular traces on Android 4.4.
Since we assume that data from each modality is continuously
transmitted from a separate device to the cloud, we randomly select
two traces for the microphone node and the camera node. The
network bandwidth fluctuates from 100 Kbps to 1 Mbps with a
state-transition granularity of one second.

Figure 7 shows the comparison between our system and the
four baselines on real-world network traces, and Table 1 shows
the latency breakdown across different modules. The results are
similar to those attained with synthetic traces. ABS, frame sam-
pling, retrained model achieve the minimum end-to-end latency
(roughly 60ms lower than our method) but at significant accuracy
loss (up to 12% accuracy loss). Also, the training overhead of the
retrained model method (100–250 hours) is about ten times higher
than our system (8–20 hours), as our system only imputes inter-
mediate features rather than the raw sensor data and it does not
modify the existing inference model. We show accuracy comparable
to one-time and periodic profiling but offer 7.5–10x, and 7–8x la-
tency speedup. We have 1% lower accuracy than naïve blocking but
24–120x latency speedup. Since our system does not optimize data-
transmission configurations before the latency is detected on the
cloud, it is also possible to integrate profiling and frame sampling
methods into our system to further improve inference efficiency.

Generalizability Across Modalities While most of our results
show performance on audiovisual (LRW [17] andAVE [68]) datasets,
we briefly demonstrate that our technique generalizes to other
sensor modalities. In this experiment, we evaluate our system on a
multi-modal model for activity recognition with accelerometer and
gyroscope data [62].

Figure 8 compares our approach against naiv̈e blocking. (Results
against other baselines are similar to the above observations.) We
introduce various delays (0–1.25s) to one of the sensor streams
corresponding to duty-cycled radio transfer delays. Similar to previ-
ous results, our system achieves 7–24× latency speedup over naiv̈e
blocking, with accuracy drops of only 1.4%, even when a 1.25s delay
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Figure 8: End-to-end improvement for activity recognition.

Methods Speech recognition Event detection
Accuracy (%) Latency (ms) Accuracy (%) Latency (ms)

BicycleGAN [89] 96.01 121.66 69.95 133.47
Pix2PixHD [77] 96.13 108.54 70.38 119.89

Ours 97.02 89.31 71.19 115.49
Table 2: The comparison of different GAN architectures.

to one modality is introduced. Therefore, our system is quite robust
and can be generalized to various sensing modalities.

5.3 Impact of Data Imputation
Next, we microbenchmark the impact of individual components in
our system. We start with our data imputation module and investi-
gate the impact of different GAN networks. Our system applies an
image-to-image translation framework Pix2Pix [38] to impute inter-
mediate features. We also implement our system on two commonly
used generative networks: BicycleGAN [89] and Pix2PixHD [77].
BicycleGAN is a popular image-to-image multimodal translation
architecture that combines Conditional Variational Autoencoder
(CVAE) and Conditional Latent Regressor (CLR) models to enforce
the connection between latent encoding and output in both direc-
tions jointly and achieve improved performance [89]. Pix2PixHD
also synthesizes images from semantic labels, and it addresses two
main issues of the existing work, namely, the difficulty of generat-
ing high-resolution images with GANs and the lack of details and
realistic textures in previous high-resolution results [77]. Table 2
shows the performance comparison of different GAN networks.
Among the GAN candidates, we did not find an advantage in using
a variational method. This implies that the random samples from
a learned distribution may counteract the benefits of uncertainty
modeling, which introduces higher noise to the output [51]. Our
method outperforms Pix2PixHD in both application scenarios with
0.8% improvement in accuracy and 4–22𝑚𝑠 less inference latency.

5.4 Impact of Rollback
A key component of our system is the rollback module. Figure 9
summarizes the impact of the rollback module for different values
of the user-defined parameter 𝑥 , which controls howmuch accuracy
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Figure 9: Impact of rollback module. 𝑥 is a user-defined parameter to control the granularity of rollback. We plot error bars covering the 90% confidence interval.
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Figure 11: The impact of training overhead.

loss can be tolerated. The trend is as expected, i.e., accuracy de-
grades as 𝑥 increases, but we see an inflection point around 𝑥 > 1%
in speech recognition and 𝑥 > 2% in event detection at which point
the accuracy degrades more rapidly. Therefore, we select 𝑥 = 1% as
the best trade-off between accuracy and latency for these datasets.
We note that 𝑥 does not need to be pre-determined and can be set
adaptively depending on network conditions. For example, if the
bandwidth is low (e.g., < 200 Kbps), we can set a high 𝑥 to further
reduce the latency, whereas if the bandwidth is high (e.g., > 800
Kbps), we can set a low 𝑥 to improve the accuracy.

5.5 Impact of Data Alignment
We now investigate the impact of our data alignment method on
accuracy and latency. Figure 10 shows the data alignment deviation
between our method and ground truth. Overall, the mean deviation
is 45 𝑚𝑠 and 42 𝑚𝑠 for speech recognition and event detection,
respectively. Since we search for the minimal L1 distance between
feature maps to align data streams, the granularity is one frame
(e.g., 33 ms for 30 FPS or 40 ms for 25 FPS). Thus, our data alignment
module achieves an average deviation of 1 to 1.5 frames. We observe
that the data alignment deviation for speech recognition is higher
than that for event detection. Due to the nature of lipreading images,
the difference between adjacent images is smaller than that for
events like car racing, which makes it hard for the data alignment
module to search for the minimum L1 loss. We also investigate the
accuracy and the latency differences between our system and one
with perfect data alignment. We observe that the differences are
marginal, and the latency added by data alignment is less than 10
ms, and the accuracy difference is nearly zero.

5.6 Training and Resource Overhead
Our system introduces training overhead since we train over several
configurations (data resolution and delays). However, even though
we train several GAN models, we do not need to use the entire
training dataset since we are imputing intermediate features rather
than raw sensor data. Figure 11 shows the impact of training data
size on the performance of our system. By leveraging a fifth or even
a tenth of the original training data, we can significantly reduce

the entire training overhead down to about 8–20 hours while still
retaining high accuracy. The runtime resource overhead for our
system is also small (about 100 MB of memory in the GPU) because
we only need to load two GANs (data imputation and rollback) into
memory at one time.

5.7 Impact of IoT nodes
We now look at end-to-end improvement using real IoT devices and
Wi-Fi radio. So far, we have assumed that the sensor data can be
instantly processed on IoT devices, but in practice, there are many
real-world delays, including encoding and compression on the IoT
device and processing delays in the cloud. In this experiment, IoT
nodes process video in real time. Figures 12(a) and 12(c) illustrate
our system’s performance compared to the naïve blocking method.
Overall, our method still outperforms the blocking baseline under
all bandwidth conditions and achieves up to 9× and 122× latency
speedup on the LRW and the AVE dataset, which is consistent with
our previous results. The mean computation overhead of video
and audio data streaming is 4ms per frame and 3ms per second,
respectively. Figures 12(b) and 12(d) show the speedup ratio for dif-
ferent user-defined parameters. When 𝑥 = 4%, our system achieves
28× and 424× latency speedup on the LRW and AVE datasets. The
results validate our previous evaluation and demonstrate that our
approach offers significant benefits in real-world systems.

6 RELATEDWORK

Minimizing inference lag Existing work to minimize inference
lag in deep learning has focused largely on server-side constraints,
with proposed solutions seeking to optimize the utilization of avail-
able compute resources. General-purpose job schedulers [33, 71]
are not well suited to lag-sensitive applications because they make
scheduling decisions based on available cluster resources, prioritiz-
ing job fairness, rather than on the characteristics of jobs.

Highly specialized schedulers [29, 30, 39, 84] use pipeline profil-
ing to determine how best to allocate resources to video analytics
processes whose accuracy and lag requirements vary and whose
demands may change with time. Adaptive schedulers [2, 11, 19, 25,
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Figure 12: Impact of IoT nodes. 12(a) and 12(c) are under the threshold of 1% amd 2% respectively. 12(b) and 12(d) are under the bandwidth of 200kbps. We plot
error bars covering the 90% confidence interval.

42, 72] are able to make scheduling decisions with some knowl-
edge of the jobs being scheduled and are able to better distribute
jobs both across nodes and temporally within nodes, but are not
specialized enough to develop individual pipeline profiles for each
query type. Splitting computation between cloud resources and
edge nodes in order to minimize server-side computational burden
and conform to bandwidth constraints is another recent approach.
In these cases, lightweight image-detection models operating at
the edge identify frames of interest or coarse candidate results for
object queries [35, 85]. These frames, rather than the entire video
stream, are then forwarded to the cloud for more computationally
expensive high-resolution object recognition.

Although related, these approaches generally address limita-
tions in single-modality scenarios (e.g., object detection in video
streams). Our work specifically addresses inference lag arising from
missing or misaligned sensor data in multi-modal scenarios, rather
than from competitive compute environments with single-modality
streams. Because deep learning applications over real-time multi-
modal IoT sensor data is a relatively new problem, our comparisons
draw from related work in adjacent fields.

Compensating for misaligned sensor streams The need to
align multi-modal sensor data prior to use in machine learning
or deep learning applications is not new, but most existing work
assumes either that 1) the sensor readings are already temporally
aligned, or 2) that the raw signals need to be temporally aligned
before being input to the model.

Commonly, the sensors used to record multi-modal streams are
co-located on the same device (e.g., camera and microphone, or cam-
eras and LIDAR on an autonomous vehicle [12, 15, 47, 48, 82]) and
share a common clock. In other cases the sensor may be recorded
by separate devices but still share a common clock that is either
internal to one or external to both, or the devices will synchronize
via a shared synchronization protocol [49]. In either of these sce-
narios, the first assumption is sound and no further processing to
align the signals is required.

The second assumption applies when sensors are located on
devices that are not tightly synced to a shared clock. Prior to the rise
of deep learning, analytical techniques like dynamic time warping
[1, 41, 86], manifold warping [26, 73] and canonical correlation
analysis [31, 65, 87, 88] were used to align signals with a shared
dimensionality. Deep learning techniques have been developed to
compensate for the inherent dimensionality limitations of these
techniques [4, 34, 69, 70], but in order to work, raw data from all
sensor modalities must be received prior to alignment.

Our technique is robust to completely missing or poorly aligned
data, without requiring explicit alignment of the raw signals prior
to fusion. By imputing the features of delayed signals at multiple
temporal offsets and finding the best imputed alignment, we can
bypass explicit alignment of raw signals and proceed with inference
despite poor temporal alignment between streams.

7 CONCLUSION
We present speculative inference on multi-modal data streams to
adapt to asymmetric bandwidth. The system adaptively and spec-
ulatively generates inference from multi-modal models without
waiting for all data streams to be available and aligned. We imple-
ment the system on three multi-modal scenarios. Experiments on
publically available datasets show that our system achieves 7−128×
latency speedup with the same accuracy as six existing solutions.
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