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Abstract

We describe PRESTO, a predictive storage architecture
for emerging large-scale, hierarchical sensor networks.
In contrast to existing techniques, PRESTO is a proxy-
centric architecture, where tethered proxies balance the
need for interactive querying from users with the energy
optimization needs of the remote sensors. The main
novelty in this work lies in extensive use of predictive
techniques that are a natural fit to the correlated behav-
ior of the physical world. PRESTO exploits technology
trends in storage to build an architecture that empha-
sizes archival at remote sensors and intelligent caching
at proxies. The system also addresses user needs for
querying such sensor networks by exposing a unified,
easy to use data abstraction across numerous proxies and
remote sensors.

1 Introduction
Many different kinds of networked data-centric sensor
systems have emerged in recent years. Sensors generate
data that must be processed, filtered, interpreted, cached,
and archived in order to provide a useful infrastructure
for users. Sensors are often untethered, and their energy
resources need to be optimized to ensure long lifetime
[2, 13]. Thus, energy-efficient data management is a key
problem in sensor applications.

There are two commonly used models for processing
data in sensor networks. The first model involves view-
ing the sensor network as a database [1, 2, 3], where
queries are pushed all the way to the remote sensors.
Such direct querying of the remote sensor nodes is gen-
erally more efficient energy-wise, since query-specific
data processing can be performed at the data source to
reduce communication requirements. However, such
querying renders the system unusable for interactive use
due to the high latency, low availability, and low reliabil-
ity [4] inherent in duty-cycled, energy-limited wireless
sensor networks. The second model has been one of data
streams, where potentially useful sensor data is pushed
from the sensors, and stored at a high-end server running
a database. The database engine can perform statisti-
cal modeling and cleaning on the data [5], and provide
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lower latency, better availability, and better interactivity
to user queries. However, this model is less energy effi-
cient since it does not exploit the fact that only a subset
of sensor data may be actually queried.

While both these models are important for current and
future sensor networks, they have certain drawbacks. In
this paper, we present PRESTO, a predictive store for
sensor networks that attempts to provide the interactiv-
ity of the data streaming approach with the energy ef-
ficiency of the direct sensor querying. PRESTO differs
from past work on data-centric sensor networks in sev-
eral key respects (see Table 1).

Hierarchical Systems: Rather than designing our
system for a single flat sensor network architecture,
PRESTO reflects our philosophy that scalable sensor
networks of the future will have multiple tiers, with a
several tens of untethered sensors per tethered sensor
proxy and several tens of sensor proxies per application.
Being tethered, sensor proxies can be expected to be less
resource constrained than the remote sensors, an aspect
that PRESTO exploits in two different ways. Proxies
cache current and past data from remote sensors and use
predictive techniques on cached data to answer queries,
thereby providing response times that are close to the
data streaming approach. Proxies also use their supe-
rior processing capabilities to model, predict, and match
query parameters to data dissemination at remote sen-
sors, thereby providing the energy efficiency of the di-
rect querying method.

Archival Queries: Unlike many systems that only
support queries on the current sensor data [5], PRESTO
supports archival queries on data that may be deemed
to be interestingpost-facto. The ability to query histori-
cal data is important in many sensor applications such as
surveillance, where the ability to retroactively “go back”
is necessary to determine, for instance, how an intruder
broke into a building. Similarly, archival sensor data
is often useful to conduct postmortems of unexpected
and unusual events to better understand them for the fu-
ture. PRESTO enables such PAST queries by employing
a distributed archival store at remote sensors that records
past sensor data; thereby resulting in a significantly dif-
ferent architecture from stream-based systems.

Single Logical View of Data:A key goal of PRESTO
is to provide a unified data abstraction of a single logical
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Table 1: Comparison of PRESTO to related efforts.
NOW Queries PAST Queries Prediction Data Abstraction Energy-

Aware
Hierarchical
design

Diffusion[2] Direct sensor querying No archival No Single remote sensor Yes No
Cougar[1] Direct sensor querying No archival No Single remote sensor Yes No
TinyDB[6]/BBQ[5] Proxy querying Archival at proxy Yes Single proxy Yes No
Aurora/Medusa[7] Proxy querying Archival at server No Distributed stream No P2P
PRESTO Proxy querying + sensor

querying on cache miss
Caching at proxy +
archival at sensor

Yes Single logical view of
distributed store

Yes Yes

store across tens to hundreds of proxies and thousands of
remote sensors that comprise a sensor application. Part
of this abstraction is enabled by the sensor proxy that
abstracts the user from the vagaries of the remote sensor
tier including lossy and unreliable sensor nodes and spa-
tial and temporal consistency issues in the sensor data.
The second enabling system component is a distributed
index structure that constructs a unified view of caches
across geographically distributed sensor proxies.

The novelty of PRESTO lies in its predictive storage
capabilities and active interactions between proxies and
sensors. Unlike traditional storage systems that are pas-
sive, the PRESTO proxy employs an active cache that
predicts data values that are yet to be fetched from re-
mote sensors (and thus, yet to be written to the local
cache). While predictive techniques are also used in
BBQ [5], we differ in that PRESTO uses active inter-
actions to handle the occasional rare events that are in-
herently unpredictable. The PRESTO proxy provides
feedback to remote sensors that limits the communica-
tion overhead of the sensor to data that is deemed “un-
predictable” at the proxy. Such a predictive push-based
approach ensures that rare, unexpected events are never
missed, which is important in many event-driven appli-
cations such as intruder detection. When cache misses
occur at the proxy, PRESTO reverts to direct querying
of data archives at remote sensors.

Several technology trends make such a predictive stor-
age architecture both feasible and appealing. First, ra-
dio communication is generally considered to be quickly
reaching fundamental energy barriers [8]. Hence, the
commonly held view is that communication should be
reduced and compensated by increased use of either
computation (up to four orders of magnitude less ex-
pensive [8]) or storage (two orders of magnitude less
expensive). Second, capacities of flash memories con-
tinue to rise as per Moore’s Law, and their costs con-
tinue to plummet. Thus, it will soon be feasible to build
cost-effective sensor nodes with more than a gigabyte
of flash memory. PRESTO exploits the presence of a
large local store to reduce communication by archiving
data locally at remote sensors whenever possible. Fi-
nally, processing speeds continue to increase, with new
energy-efficient technologies delivering more CPU cy-
cles per watt. This enables us to put more capable pro-
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Figure 1: PRESTO architecture

cessors on remote sensors as well as intermediate prox-
ies and leverage the additional processing capacity for
extrapolation, batching, and compression, all of which
can reduce communication.

The rest of this paper is structured as follows. Sec-
tion 2 describes our system architecture. Sections 3, 4,
and 5 describe the PRESTO proxy, sensor and the data
abstraction, respectively. We conclude in Section 6.

2 System Architecture
Our view of the emerging sensor network architecture
comprises three tiers as shown in Figure 1—a bottom
tier of untethered remote sensor nodes, a middle tier of
tethered sensor proxies, and an upper tier of user termi-
nals.

The lowest tier is assumed to form a dense deploy-
ment of low-power sensors. A canonical sensor node at
this tier is equipped with low-power sensors, a micro-
controller, and a radio as well as a significant amount of
flash memory (1GB). This tier may be heterogeneous,
and might comprise different kinds of devices, sensors
and platforms. In the future, some limited form of en-
ergy harvesting might assist these sensors in achieving
even greater lifetimes than is currently achievable. The



common constraint for the lowest tier is energy, and the
need for a long lifetime in-spite of it. The use of radio,
processor, RAM, and the flash memory all consume en-
ergy, which needs to be limited.

The middle tier consists of power-rich sensor prox-
ies that have significant computation, memory and stor-
age resources and can use these resources continuously.
Many different instances of this middle tier can be
seen in different application settings. In urban environ-
ments, this tier would comprise a tethered base-station
class node (e.g., Intel Stargate) with multiple radios—
an 802.11 radio that connects it to a wireless mesh net-
work and a low-power radio (e.g. 802.15.4) that con-
nects it to the sensor nodes. Since Internet connectivity
is widely available in many urban settings, these prox-
ies may plug in to existing mesh networks or the wired
infrastructure. In remote sensing applications [9], this
tier could comprise a similar Stargate node with a solar
power cell. Each proxy is assumed to manage several
tens of lower-tier sensors in its vicinity. A typical sensor
network deployment is will contain multiple geograph-
ically distributed proxies. For instance, if a building is
being monitored, one sensor proxy might be placed per
floor or hallway. At the highest tier of our infrastructure
are users, who can query the sensor network through a
query interface, perhaps using declarative queries as pro-
posed in TinyDB [6].

System Operation:Although the PRESTO architec-
ture does not preclude continual queries, in this paper,
we focus on the mechanisms needed to support one-time
queries on current and past sensor data. Each proxy is
assumed to cache data summaries or a subset of the data
from the lower tiers sensors. When a new query arrives,
the proxy examines its cache to see if the data necessary
to answer the query is available. In the event of a hit, the
query can be processed locally. Cache misses are han-
dled in one of two ways. The proxy first examines other
cached data to see if the requested data can be extrap-
olated from it. Cached data from other nearby sensors
or temporally adjacent data from the sensor can be used
for such extrapolation, and the extrapolated data can be
used to process the query locally. If the spatio-temporal
extrapolation does not yields sufficiently accurate data
to meet the query error tolerances, then the cache miss
is handled by fetching data from other sensor caches or
the archive at remote sensors. This is enabled by a com-
plete local archive of past data at each remote sensor. On
storage-constrained sensors, older archived data is aged
gracefully to ensure that lower resolution representations
are available [10].

To ensure that all “interesting” data is cached at a
proxy with high probability, PRESTO employs a model-
driven push approach. The prediction engine at the
proxy builds models of correlations in the data and pe-

riodically transmits parameters of this model to the re-
mote sensors. The remote sensors check their sensed
data against this model and push data solely when the
model fails, thereby saving energy-intensive commu-
nication at the expense of some cheaper computation.
Such a model-driven push ensures that the proxy is no-
tified of all significant drifts in sensor values as well as
unusual changes caused by unexpected events. Observe
that a pure pull-based approach can handle the former
case but will likely fail to capture the latter scenario. In
addition to an energy-efficient model-driven push, the
PRESTO prediction engine also utilizes query character-
istics such as query type, arrival rate, latency, and preci-
sion requirements to extract additional energy savings.
For instance, sensors can be adaptively duty cycled and
can employ batching to reduce their energy needs.

In the following sections, we describe the components
of PRESTO in greater detail.

3 PRESTO Proxy
The PRESTO proxy comprises two components: a cache
of summary information about the data observed at the
remote sensors and a prediction engine that is respon-
sible for data extrapolation, model-driven push, and
query-sensor matching.

Sensor Data Cache:A central component of the sen-
sor proxy is a summary cache of the data from remote
sensors. This cache differs significantly from both mem-
ory caches as well as web caches in that the cached data
is either a lossy view or a higher-level semantic event-
based view of the sensor data. For instance, rather than
sending the full data, sensors may transmit summaries of
their observations to the proxy cache. Similarly, rather
than sending raw data, a sensor may send processed
events to the proxy. To illustrate, a camera sensor in a
surveillance application may send notification that a new
object has been detected and its type, rather than sending
a raw image of the object. Such lossy or semantic repre-
sentations of the data not only incur a smaller communi-
cation cost, they may be more appropriate from an appli-
cation perspective. Further, the summary data cache at
the proxy can be progressively refined as more accurate
data is obtained from the remote sensors or as queries on
past data results in missing portions of the cache being
filled up.

Prediction Engine: The prediction engine at the
proxy uses its prediction capabilities for three purposes:
model-driven push, data extrapolation and query-sensor
matching.

Model-Driven Push:PRESTO uses predictive mod-
eling to enable model-driven push from the remote sen-
sors. To do so, the proxy constructs a model that cap-
tures expected variations in the data and transmits pa-
rameters of this model to each remote sensor. For in-



stance, a model of temperature variations will capture
time-of-day effects (such as [5]) as well as the impact
of seasons. Each remote sensor checks their sensed data
against this model and transmits solely when the model
fails, thereby saving energy-intensive communication at
the expense of some cheaper computation. For instance,
only deviations from the normal temperature for each
hour of the day are reported. We seek a few important
characteristics from these models. First, we require that
models beasymmetric—they can be hard to build at the
proxy, but they must require little resources to verify at
the sensor. Thus, sensors must expend as little process-
ing as possible to check if the sensed data conforms to
the model. Second, the models should effectively cap-
ture the statistics of the underlying physical process cor-
responding to the sensor data. For instance, simple re-
gression techniques and time-series analysis techniques
may be used to model many temporal phenomena. Sim-
ilarly, like in the acquisitional query processor work [5]
a combination of multivariate models for the spatial axis
and Markov model for the temporal axis can also be used
for model weather data.

Extrapolation: The PRESTO prediction engine can
also extrapolate missing data that are needed by a query.
As explained earlier, extrapolated data can mask cache
misses and answer queries so long as the query precision
is met. Observe that the above predictive data models
can serve the dual purpose of enabling data extrapola-
tion at the proxy, while dictating which data needs to be
pushed by the remote sensors. For instance, in the ab-
sence of failures and even when sensors do not report
any observations, it is safe to assume that the tempera-
ture at a certain hour or the day conforms to the histor-
ical trends captured by the model. These values can be
substituted for the actual observations and used to an-
swer queries. Thus, data extrapolation enables the proxy
to provide quick and accurate responses to queries even
if the data corresponding to the query is missing from
the cache. Our work builds on existing techniques such
as multivariate data modeling proposed in TinyDB and
BBQ [5].

Query-Sensor Matching:Finally, the PRESTO pre-
diction engine is responsible for query-sensor match-
ing to match the needs of queries to the operations of
remote sensors. To maximize savings, sensors can be
adaptively duty cycled and asked to batch and com-
press a set of data values prior to transmission. The
proxy takes into account the characteristics of queries
for such matching-based optimizations. The query type,
frequency, latency and precision requirements are trans-
lated into the appropriate parameters for the remote sen-
sors, such that they can minimize energy while achiev-
ing query requirements. For instance, if it is known that
the worst case notification latency for typical queries is

16.5 33 66 132 264 529 1058 2116
0

500

1000

1500

2000

2500

3000

Batching Interval (Minute)

T
ot

al
 E

ne
rg

y 
C

os
t (

J)

Batched Push w/ Wavelet Denoising
Batched Push w/o Compression
Value−Driven Push (Delta=1)
Value−Driven Push (Delta=2)

Figure 2: Exploiting batching to conserve energy

10 minutes, the proxy can instruct remote sensors to set
its radio duty-cycling parameters accordingly in order to
conserve energy. The duty cycling parameters can be
adaptively varied as new queries with different needs ar-
rive into the system. Similarly, if the queries only require
75% precision in their response, lossy compression and
aggregation techniques can be used to reduce the amount
of transmitted data. The type of query can be exploited
as well. For instance, scientists studying building health
monitoring are typically interested in the mode of vibra-
tion of a building. The operation can be transmitted as
a parameter to the sensor node, which uses the specified
mode function on its local data before transmitting the
final result.

Figure 2 shows one instance of such query-sensor
matching in the case of temperature data [11], where the
impact of batching on overall energy savings is demon-
strated. Greater batching translates into two energy
gains: (a) fewer packets imply a lower per-packet over-
head including ACKs, packet headers and MAC-layer
preambles, and (b) more batching results in better com-
pression and data cleaning at the source of data, in this
case, using wavelet denoising [12].

4 PRESTO Sensor
PRESTO is a proxy-centric architecture where much of
the intelligence resides at the proxy, and the remote sen-
sor is kept simple to enable efficient operation under re-
source constraints. Our contribution lies in the design
of sensors that are simple, yet highly tunable and can
be completely controlled by the proxy. The PRESTO
sensor has two components. The first is an archival
file-system that we are developing that provides energy-
efficient archival of useful sensor data at each sensor as
well as a simple time-based index structure to efficiently
service read requests. Data archival at the remote sen-
sors is needed to deal with queries on past data that may
not be cached at the proxy. Such a data archive would
not store all raw data, rather, it would only store sensor
data that is potentially useful for querying. For instance,



in a traffic monitoring application, signatures of de-
tected vehicles would constitute useful sensor data that is
archived locally, whereas the sensor might use a classi-
fier to process the sensor data and report the most likely
vehicle type to the proxy. If storage is constrained on
each sensor, graceful aging of archived data can be en-
abled using wavelet-based multi-resolution techniques
[10]. The second component is a simple adaptive sys-
tem that can use the information provided by the proxy
to tune data transmission, data processing, aggregation,
as well as duty-cycling parameters. For instance, in the
case of a data collection query, lossy compression pa-
rameters (eg: using wavelets [10]) can be tuned by the
proxy based on accuracy requirements of the queries.

5 PRESTO Data Abstraction
PRESTO aims to provide a single logical view of data
that integrates archived data stored at numerous dis-
tributed remote sensors as well as caches and prediction
models at numerous proxies. Such a view abstracts the
user from variabilities at many levels—lossy and unre-
liable remote sensor network; spatial and temporal con-
sistency issues in the sensor data; predictive responses
from the proxy versus direct remote sensor querying; as
well as bandwidth and connectivity issues in the case of
wireless proxies.

The PRESTO data abstraction has three goals. The
first is to provide different application-specific views
of the distributed sensor data to enable efficient query-
ing. For instance, a traffic monitoring network requires
a view that preserves the order in which moving vehi-
cles are detected across a spatial region. Such querying
requires a single temporally ordered view of detections
across distributed proxies and sensors. In our current
work, we are exploring the use of order-preserving in-
dex structures such as Skip Graphs [14] for this purpose.
The second goal of the data abstraction is dealing with
temporal consistency issues that arise due to clock drift
and skew across remote sensors as well as spatial consis-
tency issues that arise due to overlapping coverage areas
between proxies. Drift and skew of clocks at the remote
sensors can result in erroneous timestamps, which need
to be corrected to provide an accurate temporal view of
data. In the spatial dimension, multiple proxies might
be responsible for a group of sensor nodes for redun-
dancy, reliability, and fault-tolerance reasons, and hence,
cache consistency issues need to be addressed. Finally,
the index structure will span a mix of wired sensor prox-
ies with high bandwidth links and wireless 802.11-based
proxies with lower bandwidth and availability. Hence,
even if proxies cache data from remote sensors and pro-
vide predictive responses to queries, there might be vari-
ability in response times for queries due to the vagaries
of 802.11 links. To deal with this problem, caches and

prediction models at the wireless proxies may need to
be further replicated at the wired proxies to enable low-
latency query responses.

6 Discussion and Conclusions

We described PRESTO, a predictive storage architecture
for emerging large-scale, hierarchical sensor networks.
In contrast to existing techniques, PRESTO is a proxy-
centric architecture, where tethered proxies balance the
need for interactive querying from users with the energy
optimization needs of the remote sensors. The main
novelty in this work lies in extensive use of predictive
techniques that are a natural fit to the correlated behav-
ior of the physical world. PRESTO exploits technology
trends in storage to build an architecture that empha-
sizes archival at remote sensors and intelligent caching
at proxies. The system also addresses user needs for
querying such sensor networks by exposing a unified,
easy to use data abstraction across numerous proxies and
remote sensors.

PRESTO can be used in different ways in different ap-
plication contexts. Environmental weather patterns and
commuter traffic patterns are examples of data that are
highly predictable in the common case. PRESTO can
enable the system to conserve energy by learning the
predictable aspects of the data, and efficiently extracting
only the unpredictable information from remote sensors.
The unified data abstraction and predictive responses
that PRESTO provides can be used in vehicle traffic
querying as commuters can query the system to obtain
quick responses. Surveillance applications can use the
archival capability of PRESTO to query for event logs
corresponding to past events. Activity monitoring ap-
plications such as elder care often involves a user wear-
ing sensors that collect information about location, gait,
posture as well as other daily activities [15]. PRESTO is
particularly appropriate for such applications since daily
activity patterns tend to be mostly predictable, with oc-
casional unpredictable events or patterns that need to be
explicitly reported to proxies.

While PRESTO has numerous interesting applica-
tions, there are multiple scenarios where this is not
the right storage and querying model. Some applica-
tions might require extremely cheap sensors (eg: RFIDs)
where the cost of augmenting each sensor with large lo-
cal storage capacity may be prohibitive. Also, PRESTO
may not be applicable in mission-critical applications
where predictive responses can be misleading and have
damaging consequences. While such applications will
require different storage and querying architectures, we
believe that PRESTO will have wide applicability across
a range of data-intensive sensor network applications.
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