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ABSTRACT
Recent advances in fabric-based sensors have made it possible to
densely instrument textile surfaces on smart toys without changing
their look and feel. While such surfaces can be instrumented with
traditional sensors, rigid elements change the nature of interaction
and diminish the appeal of plush toys.

In this work, we propose FabToy, a plush toy instrumented with
a 24-sensor array of fabric-based pressure sensors located beneath
the surface of the toy to have dense spatial sensing coverage while
maintaining the natural feel of fabric and softness of the toy. We
optimize both the hardware and software pipeline to reduce overall
power consumption while achieving high accuracy in detecting a
wide range of interactions at different regions of the toy. Our con-
tributions include a) sensor array fabrication to maximize coverage
and dynamic range, b) data acquisition and triggering methods to
minimize the cost of sampling a large number of channels, and c)
neural network models with early exit to optimize power consumed
for computation when processing locally and autoencoder-based
channel aggregation to optimize power consumed for communi-
cation when processing remotely. We demonstrate that we can
achieve high accuracy of more than 83% for robustly detecting and
localizing complex human interactions such as swiping, patting,
holding, and tickling in different regions of the toy.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Gestural input.
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interaction detection, ubiquitous sensing and computing, smart
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1 INTRODUCTION
Stuffed toys are often a child’s first friend and play an important role
in a child’s cognitive, physical and emotional development. Stuffed
toys are also very important for building social skills through pre-
tend play and role playing. For example, when a child grooms or
feeds a stuffed toy, they mimic everyday interactions which then
transition into a social world. Through the process of caring for a
stuffed toy, they also build empathy and kindness. Such interactions
also play an important role in language skills since children act out
stories and scenarios with their toy.

While highly instrumented stuffed toys can be useful for parents
and experts to observe and understand how children are developing
in their natural environment, a challenge is how to incorporate
sensing elements in smart toys without changing their feel and
texture. Despite significant development in high-tech toys that
incorporate a variety of sensors and actuators, they lose the soft
feel and touch due to the need for rigid sensor elements to be placed
near the surface of the toy. As a result, they are not as attractive
to children who are drawn to the softer and more squishy plush
toys [8]. To compromise, smart toy manufacturers usually only
place a small number of sensors on the surface of the toy, typically
only one or two. This in turn diminishes the ability to measure
fine-grained interaction with different regions of the toy.

Recent works on fabric-based sensors [10, 11, 13, 18, 42–44]
present a promising alternative to overcome traditional limitations
in designing instrumented soft toys. These sensing techniques use
familiar garments made of cotton and silk thread, and imperceptibly
adapt them to enable sensing of pressure and touch signals to
yield natural fabric-based sensors. In addition, fabric-based sensors
have improved in their sensitivity which now make it possible to
instrument soft toys with such sensors beneath the surface of the
felt on the toy, thereby making them even less obtrusive.

These advances present a new possibility to create highly instru-
mented toys that integrate a large number of sensors to measure
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fine-grained and spatio-temporally complex interactions. In con-
trast to interaction with most rigid toys, interaction with soft toys
is much more complex often involving both hands and body con-
tact. These interactions can range from holding, patting, or tickling
the toy while simultaneously squeezing or holding it. The high-
dimensional nature of the interaction possibilities and methods,
dynamic pressure intensity based on the type of interaction and
the location it is applied to, and varying sensing region surface
area require an equivalently high degree of instrumentation of the
toy in order to accurately determine the type of interaction and
makes single-threshold based pressure sensing methods obsolete.
As a result, conventional binary buttons fail to track such complex
interactions, while rigid pressure sensors change the feel of the toy
and can interrupt natural behavior with the toy.

In this paper, we describe an end-to-end hardware and soft-
ware design of such a highly instrumented soft toy, FabToy (Fabric-
enhanced Toy), and how we tackle the myriad challenges at the
different system design layers. In designing FabToy, we tackle engi-
neering and design challenges across the stack from optimization
of form-factor, sensor data acquisition, low-power analytics and
low-power communication.

From a sensor design perspective, FabToy is designed to compre-
hensively capture a range of complex interactions that are expected
with smart toys by equipping it with a dense array of two dozen
fabric-based pressure sensors to enable fine-grained sensing while
covering the majority of the interaction surface of the toy. The
sensor array is embedded under the felt surface of the toy such that
it is fully invisible and imperceptible to the user. To ensure high
sensitivity despite the fact that the sensors are placed beneath the
felt surface, the sensors are optimized by reducing impedance using
an ionized solution to ensure that it can capture key interactions.
In addition, sensor conditioning circuits are designed to have high
dynamic range by exposing both amplified and unamplified chan-
nels thereby providing high signal to noise ratio while capturing
both gentle and rough interactions with the toy.

From a hardware design and data acquisition perspective, we
design an ultra-low power and small-factor hardware that is placed
deep within the toy to amplify, filter, and acquire signals from
48 sensor channels (two channels per sensor). We optimize the
amplification and data acquisition circuits using low-power analog
multiplexers and optimized sampling to acquire data from 48 analog
channels simultaneously with very low power consumption while
rejecting common noise sources like powerline interference.

In terms of data analytics, we consider both local and remote
processing — local processing would be suitable when the smart toy
is intended to execute autonomously without requiring connection
to an external device or the Internet, and remote processing allows
it to stream data to a phone or computer to enable a broader range
of web-based interactive storytelling applications. By efficiently
supporting both modes, we provide maximal flexibility in terms of
use-cases of the smart toy.

To optimize local processing, we utilize machine learning to
fuse the sensor data from the large number of sensor channels to
classify simple and spatio-temporally complex interactions with the
smart toy, as well as localize these interactions. We optimize this
model to deal with several issues such as cross-talk between sensor
elements as well as other confounders, while also ensuring that it

is lightweight enough to fit within the resource constraints of a
low-power microcontroller. To achieve this, we design a resource-
aware Convolutional Neural Network model with early exit at
intermediate layers such that overall computational overhead can
be minimized.

To optimize the remote processing pipeline, we compress the
multi-channel data by leveraging correlations between the differ-
ent streams and transmit this over a BLE radio. The aggregation
technique is an auto-encoder that aggregates streams that have sim-
ilar data to reduce transmission overhead. The remote model can
be more resource-intensive than the local model since the remote
device has more resources.

Our end-to-end implementation and evaluation shows that
• FabToy can classify single interactions with accuracy of 86%
and complex interactions with accuracy of 83%, and this
is better than several alternative resource-constrained ML
models. We show that this accuracy can further increase to
92-94% for medium-grained and coarser-grained classifica-
tion.

• In case of local processing, the use of early exit reduces pro-
cessing power consumption by 45% while losing only 4% ac-
curacy, enabling embedded signal processing on a low-power
microcontroller for real-time classification and interaction.

• In case of remote processing, we show that dynamic channel
dimension reduction using an auto-encoder reduces trans-
mission power consumption over a BLE radio by 43%, while
sacrificing only 2% accuracy.

• We implement the full FabToy system from sensor to proces-
sor to radio. Our hardware power and latency benchmarks
on the nRF52840 low-power microcontroller with BLE radio
show that our implementation is lightweight and can be
executed with low delay and low power consumption and is
practical for real-world deployment.

2 FABTOY HARDWARE DESIGN
The hardware architecture of FabToy designed to achieve threemain
goals. First, the final prototype needs to look and feel identical to a
typical plush toy. Second, we wish to achieve complete coverage
across the toy to be able to capture a wealth of complex interactions
across different locations of the toy. Third, we wish to ensure that
we obtain high signal quality across a range of pressures applied
during interaction, from very gentle pressure during tickling to
moderate pressure during rubbing to orders of magnitude higher
pressure while squeezing the toy.

We now describe the fabric-based sensors that we use and the
design of the sensor array in FabToy.

2.1 Fabric-based Sensors on the FabToy
FabToy is designed to look and feel identical to a typical plush toy
to ensure that children do not alter their behavior towards using
the toy. To achieve this, we need sensors to be placed beneath the
felt surface of the smart toys and need to be imperceptible in terms
of look and feel of the toy. This means that the sensors need to be
extra-sensitive to capture to a range of interactions from gentle
tickling to squeezing despite being under the felt surface.
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Figure 1: Fabric-based pressure sensor used in FabToy The
sensor responds to changes in pressure by changing its re-
sistance which can be measured using a voltage divider.

Towards this end, we designed FabToy by leveraging recent
developments in textile-based sensors. The fabric pressure sensors
are implemented using a design presented in [14, 18]. The sensors’
structure, electrical equivalent, and measurement method is shown
in Fig. 1. The sensors detect pressure applied on two electrodes by
changing the resistance of the layer within.

Since typical fabrics present very high resistance, we lowered
the resistance of the middle layer by coating the fabric with an
ion-conductive polymer that provides ion-conductivity to its fibers.
As a result, the resistance of the fabric can be lowered by multiple
orders of magnitude and increases the sensitivity by introducing
more conductive paths between electrodes.

The use of fabric as the sensing substrate enables the sensors
to conform to the shape of the toy to maximize sensing efficiency
in the region of interest. In contrast, traditional force sensors are
usually point sensors due to their rigid nature; even if flexible
force sensors are used, they are not capable of bending in multiple
directions, thus changing the feel of the toy. In addition, flexible
and push-button sensors are more susceptible to mechanical aging
and wearing out. Additionally, fabric sensors provide the flexibility
to fit to odd 3D shapes such as noses and ears; this is an advantage
we utilized in designing FabToy

2.2 Array of Fabric-based Sensors
To achieve fine-grained sensing of interaction, the toy needs to
be covered with a large number of sensors so that we can detect
which part of the toy is being interacted with and the specific type
of interaction. High spatial fidelity is particularly necessary given
that interactions with soft toys tend to involve both hands and
sometimes also the torso (e.g. while hugging the toy). A single large
sensor that covers a large surface of the toy would only capture the
overall pressure on the toy, so wewould lose both information about
the location of interaction (e.g. stomach vs leg) and information
about more nuanced interactions such as tickling a toy with one
hand while holding the toy with the other.

To achieve high spatial fidelity, FabToy has 24 sensors placed at
strategic locations such as hands, arms, feet, ears, stomach, nose,
and some other locations that might typically undergo various
interactions from children. Figure 2 shows a high-level view of the
multi-sensor array used in FabToy.
Amplified and unamplified sensor streams: while designing
FabToy, we consider dealing with the wide variation in pressures
across which we need to obtain a good signal. Soft toys can be

handled in a variety of ways from very gentle pressure to tight
squeeze and this results in a few orders of magnitude change in the
signal strength.

While increasing the sensitivity of the fabric-based sensor achieves
some of this goal, it is not sufficient by itself. Therefore, we also split
each textile sensor into two sensor streams — an unamplified stream
to deal with medium to tight handling and an amplified stream for
very gentle handling. The amplified data stream uses a band-pass
filter to increase the signal to noise ratio (SNR) and helps us acquire
very weak signals such as during tickling, whereas the unamplified
streams helps us acquire large signals such as squeezing hard or
strong swiping actions.
Analogmultiplexing the sensor channels: The large number
of channels (48 in total across amplified and unamplified streams)
introduces a number of downstream challenges in sampling and
processing the signal. At the hardware level, we need to deal with
the fact that typical microcontrollers used on low-power devices
have only a few Analog to Digital Converters (ADCs). However,
we can take advantage of the fact that we do not need very high
sampling rates for the individual sensors.

The data acquisition pipeline is shown in Figure 2. We start
with a voltage divider that senses the resistance of the pressure
sensors. The output voltage represents the pressure applied on the
fabric surface. Then, we use analog multiplexers in our design to
uniformly sample all the channels using control signals issued by
the microcontroller.

While low sampling rates can suffice to capture the interactions
of interest, we are limited by the need to filter powerline noise.
While power line noise is typically not large for rigid electronics
force sensors that have a very small surface area, the large surface
area and relative large sensor impedance of textile sensors in FabToy
make them very good receptors for electromagnetic noise. We use
a sufficiently high sampling rate (160 Hz per channel) to be able to
filter out powerline noise. We then apply a simple moving average
filter inside the microcontroller with a cut-off frequency of ≈ 12𝐻𝑧
to remove powerline interference. Since the frequency of even the
faster interactions like tickling is well below 12Hz, this allows us
to retain the signal of interest while removing noise.
Hardware power consumption: To keep the electronics’ power
consumption as low as possible, we carefully chose ultra-low power
Op-Amps, regulators, and analog multiplexers that, in combination,
consume two orders of magnitude lower power than a low-power
microcontroller.

2.3 Computational Challenges
The choices made in our FabToy hardware impacts the design of
the downstream modules in several ways.
Large number of channels The overarching problem is that
the large number of sensor channels increases computation and
communication overhead. Even though each channel is sampled at
a low rate, the fact that we have 48 channels makes the cumulative
sampling rate quite high, which increases overhead for downstream
both analytics on the low-power microcontroller and communica-
tion via a low-power radio.
Cross-talk between sensors In contrast to electronic rigid force
sensors, the fabric pressure sensor we use are double-sided, i.e. they
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Figure 2: High level hardware design in FabToy

Figure 3: The data streams from stomach and chest sensors
during four repetitive swiping interaction on each of these
sensors. As can be seen in the figure, the stomach sensors
captures pressure changes during swiping the chest.

sense pressure applied from both sides of the sensor. As a result,
they are also affected by internal movements of the toy stuffings,
which might be caused by interactions with other sensors. Cross-
talk also occurs when interaction with one sensor leads to pressure
being applied on other sensors. For instance, the close proximity
of nose and mouth sensors will lead to interactions with the toy’s
nose to cause changes in the mouth sensor as well.

Cross-talk also occurs during complex interactions that involve
holding the toy with one hand while interacting with the other
hand. Since the sensors are interconnected through the toy, there
are cross-talk between the two sensors involved in the interaction
i.e. anchor sensor that is being held and the interaction sensor. As a
result, while the child is performing an interaction, a reverse force
is applied to the anchor sensor as well. For instance, holding the
hand while swiping the forehead can lead to the swiping signal
being visible at the hand sensor as well.

An example of cross-talk is presented in Fig. 3. We see that the
chest and stomach sensors clearly pick up their corresponding

interaction signals, however, the stomach sensor is also affected by
swiping the chest.

Effect of Humidity A second challenge is that fabric-based pres-
sure sensors are affected by humidity as well as pressure i.e. these
sensors will have reduced resistance in a humid environment, sim-
ilar to being under pressure. As a result, the output baseline will
depend on base pressure as well as humidity.

3 DATA ANALYTIC PIPELINE
In this section, we present building blocks constructing the data
analytic pipeline in FabToy. The aim of data analytic pipeline is
to overcome the data volume and cross-talk challenges presented
in Section 2.3 to achieve high accuracy while optimizing power
consumption.

3.1 Signal processing pipeline overview
The overall computational pipeline with the local and remote pro-
cessing branches is shown in Figure 4. The initial stage is a trigger-
ing stage wherein the sampled data from 48 analog channels are
fed into a trigger block to ignore idle states when no interaction is
happening with the toy.

Once interaction is detected, we have two possible downstream
pipelines depending on whether the data is locally or remotely
processed.

Local processing pipeline: The first scenario is locally process-
ing on a low-power microcontroller to facilitate the design of a
fully self-contained smart toy that does not need to interact with
an external device in-order to operate. (While feedback is not the
focus of this work, we envisage that tactile or auditory feedback
can be incorporated into FabToy to enable such a smart toy).

Sincewe use TensorFlowLite [37] to build ourmodel formicrocontroller-
class platforms, we focus on convolutional neural network models
that are supported by this framework. For example, bidirectional
LSTM layers are not supported by TensorFlowLite, so we do not
use models that leverage temporal dependencies.
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Figure 4: Structure of our implemented machine learning model in FabToy.

To reduce computational overhead of our model, the main key
idea in this pipeline is to introduce early exit blocks between layers
of our neural network to reduce computation time and power.
Remote processing pipeline: The second is remote process-
ing, where raw data is transmitted to a smartphone-class device to
offload computation and enable interaction that involves an exter-
nal device. This can enable a range of digital applications where
the smart toy may be part of a larger story-telling or educational
platform.

Here, the key idea is to insert a dynamic channel aggregation
block reduces the size of the data to be transmitted to reduce radio
power consumption.

We explain these building blocks in more detail.

3.2 Wake-up trigger
Since interactions tend to be bursty, the first stage of our signal
processing pipeline is a wakeup trigger to detect when the Fabtoy is
in idle state where there is no interaction versus active state when
there is interaction.

The triggeringmodule is based on the intuition that any activities
happening on the toy will cause signal distortions, especially, on the
amplified signals. As a result, standard deviation of the amplified
channels is a simple indicator of activity. Please note that some
interactions cause very weak vibrations on the surface of the toy,
which will be naturally filtered as the vibrations penetrate through
the toy’s stuffing, which is why an IMU-based triggering cannot
detect such interactions and will cause false negatives.

To adapt this block to dynamic changes such as changes in am-
bient powerline noise, and the fabric resistance due to temperature
and humidity (which affects the standard deviation of analog chan-
nels), we use a dynamic threshold based on summation of the stan-
dard deviations of all amplified channels, as shown in Equation 1.

𝑆𝑡ℎ = 𝛼 ×min
𝑡>0

(
∑

∀𝑐ℎ∈𝐶ℎ𝑎𝑚𝑝

𝑠𝑡𝑑 (𝑣𝑐ℎ)) (1)

Here 𝐶ℎ𝑎𝑚𝑝 is the set of 24 amplified channels and 𝛼 represents
the tuning coefficient. For each time window, the sum of standard
deviation of voltage traces in amplified channels is compared with
this threshold to decide whether to trigger a wakeup.

We note that this module would normally be implemented in
analog to avoid theMCUhaving towakeup and sample the channels.
In our current implementation, we implement the module on the
MCU for ease of prototyping.

3.3 Local Processing
The local processing model in FabToy consists of 5 layers of neural
networks with batch norms and ReLu layers. To optimize compu-
tation power consumption, we introduce early exits in between
neural network layers.

Convolutional layers: In our design, we apply and stack con-
volutional layers[19] to help learn the cross-talk between sensors.
A single convolutional layer can only capture the patterns within a
limited range which we call the Receptive Field. For example, a con-
volutional kernel of size three maps sensor data from three adjacent
sensors into one data point of the feature map. However, cross-talk
can extend to farther away sensors, particularly for complex inter-
actions where it is difficult to precisely determine which sensors
are being impacted by the pressure at the anchor and interaction
locations.

Since the physically adjacent sensors cannot always be adjacent
in the input matrix to the neural network, we stack convolutional
layers in a multi-scale manner in our design so that the early lay-
ers with smaller receptive field can capture near-field patterns of
the sensors that are adjacent in the data plane; the latter layers
with larger receptive field could perceive the potential cross-talk
relationship between the sensors that are far away in the data plane.

Batch norm: In order to overcome the humidity-related artifacts,
we embed Batch Norm [16] layers in the feature extractor stage to
standardize the internal features after each convolutional layers.
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The Batch Norm layer not only contributes to the steadying of
our training process by whitening the features and mitigates the
biased distribution but also help rectify the biased input due to the
humidity during the model inference time.
Local early exit: To reduce the computation time and energy
cost, our computational pipeline endows the network with early ex-
its, thereby allowing us to obtain predictions at intermediate stages
in the pipeline. Early exit is a well-known strategy to optimize the
computational efficiency of a neural network [20, 33]. The intuition
is that the majority of data cases can be classified with only a few
layers, and only a few more complex data cases require the entire
deep learning pipeline.

Table 1 shows the structure of our model — the Feature Ex-
tractor consists of five blocks of 1-dimensional convolutional lay-
ers Conv1-5 following by Batch Norm (BN) layer as well as a
Rectified Linear Unit[22] (ReLU6), and a fully connected layer
(Dense1).

We make the prediction based on 48× raw sensor data at the
granularity of a second. The classification result will only be gen-
erated once within the given time window, which indicates the
categories of the interaction and position for the given time period.
In our experiments, we use a time window of 3 seconds with 2
seconds of overlap between windows.

3.4 Remote Classification Model
The remote model is similar to the local model except for two dif-
ferences. First, we introduce a data reduction module to minimize
communication overhead. Second, we remove the early exit mod-
ules since we do not have as stringent resource limitations at the
remote device.
Dynamic channel aggregation: To reduce communication cost,
we reduce the input dimension by down-sampling the time series
data for all channels. We aggregate channels by using an auto-
encoder that aggregates the streams to reduce the number of data
streams to the desired value. The auto-encoder structure consists
of a pair of encoder and decoder. In our setting, the encoder will be
on the IoT devices to efficiently aggregate and encode the original
streams into smaller size. While the the auto-encoder can work in
an unsupervised manner, we jointly train the encoder and decoder
together with our prediction pipeline for better performance. We
manually assign the number of the streams that the auto-encoder
should learn to aggregate during each training.

The number of output streams directly affects the size of required
data to be transmitted through the radio, and as a result, directly
reduces communication power consumption. The trade-off between
reducing data streams and the drop in system’s accuracy is studied
in Section 5.3.
Remote computationalmodel: The remote classificationmodel
that we use is similar to the local one (it has the same convolutional
and batch norm layers), however, it does not have the early exit
modules since compute resources are not as limited in the remote
device.

We note that one of the major advantages of remote processing is
the ability to leverage more complex models. For example, the local
model does not maintain state over time but the remote model can
take advantage of temporal context to place the current interaction

within a larger interaction session. Our datasets focus currently
on individual interactions (both simple and complex ones), hence
we do not leverage such models, but these present a rich area for
further exploration.

4 IMPLEMENTATION
In this section, we describe the implementation of our FabToy pro-
totype.

We used a plush teddy bear to implement FabToy, shown in
Fig. 5a. The figure also highlights the placement of 24 fabric sensors
on the toy. We note that the fabric sensors are placed underneath
the felt, therefore there is no change to the feel and texture of the
exterior of the toy.
Fabric sensor design andplacement: The textile pressure patches
are made from 3 layers. The two outer layers are silverized nylon
fabric acting as electrodes that cover the middle layer, which is
the functionalized cotton gauze. The size of these patches varies
from 2 × 2 𝑐𝑚2 to 3 × 3 𝑐𝑚2 depending on their placement. The
cotton gauze is sonicated in deionized water for 15 minutes, rinsed
with isopropanol, then heated at 100◦𝐶 for 2 hours. The treated
cotton gauze patches are rinsed once more in isopropanol and dried
overnight. Finally, this layer is coated with perfluorosilane using
vapor deposition to add wash-stability to the sensor.

To measure the resistance of the sensors, they are connected to a
voltage divider circuit where one of the electrodes is grounded (as
shown in Figure 1). For shielding purposes, we place the grounded
electrode outward and closer to human skin during interaction. This
is due to the fact that human body carries electrical charge, which
can be coupled into the sensors and confound the interaction signal.
By grounding the outer plane, we make sure this extra charge is
routed to ground and that it will not show up in the output signal.
Electronics board: The sensors are internally routed to a PCB
(Fig. 5c). The board uses off the shelf components listed in Fig. 5d.
It receives signals from 24 sensors, filters them, and then creates
two sub-channels, one amplified and one unamplified. Then the
resulting 48 channels are multiplexed into 8 ADC channels of the
MCU using 4 analog multiplexer ICs. Each multiplexer outputs two
out of its 12 inputs according to the address bits provided by the
microcontroller. Finally, the microcontroller digitizes and transmit
the data to a laptop using Bluetooth Low Energy (Fig. 2).

The microcontroller runs an application that provides address
control signals for the multiplexers, reads the analog channels
from 8 analog input pins, creates packets from the samples and an
index for packet loss detection. A moving average filter over seven
samples and duty cycling is used to reduce power consumption.
Implementation of classification model: For the classifica-
tion task, we have both single interactions (interaction at one loca-
tion) and complex interactions (two concurrent interactions). For
the given time window, we use the tuple (interaction@position)
that is most frequently shown as the ground truth for the single
interaction; and similarly for complex interactions, we use the most
frequently seen two single interactions as the ground truth.

We use leave one out as cross validation for the model training.
Due to the fact that many of the ground truth labels are "no inter-
action" in the collected data and the labels are unbalanced, we use
a data sampling technique to balance the labels in the dataset for
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Table 1: Structure of Feature Extractor

Layers Specifications Input Output
Conv1(+BN+ReLU6) kernel: 3, stride=1 (1, 48) (12, 48)
Conv2(+BN+ReLU6) kernel: 3, stride=1 (12, 48) (24, 48)
Conv3(+BN+ReLU6) kernel: 3, stride=1 (24, 48) (48, 48)
Conv4(+BN+ReLU6) kernel: 3, stride=1 (48, 48) (24, 48)
Conv5(+BN+ReLU6) kernel: 3, stride=2 (24, 48) (24, 24)
Dense output: (37,) or (103, ) (576,) (37,) or (103,)

(a) (b) (c) (d)

Figure 5: a) The locations where sensors are placed on the toy. b) The fabric sensor placed underneath the toy felt. c) The
main electronics components used in FabToy, d) approximate supply current (current for MCU is measured while ADCs and
filtering were running).

the model training. We use cross entropy loss to train the FabToy
model and the loss function is:

𝐿𝑜𝑠𝑠 = − 1
𝑁
(
𝑁∑
𝑖=1

yi · log(ŷi)) + | |𝑊 | |2 (2)

where yi and ŷi are the ground truth label and prediction label,
| |𝑊 | |2 is the 𝑙2−regularization of the model parameters and 𝑁 is
the size of the dataset.

We implemented the local and remote execution pipelines of
FabToy on the nRF52840 platform [36]. nRF52840 is a low-power
ARM-based embedded device with Bluetooth Low Energy (BLE)
protocol support, which allows us to implement both the local and
remote processing pipelines. The local model requires 18.5KB of
RAM and 153.7 KB of flash memory, corresponding to 7% and 15.3%
of available space in the MCU, respectively.

5 EVALUATION
In order to validate the performance of FabToy, we performed a
series of experiments that highlights the benefits of our hardware
platform and machine learning pipeline, and provides a breakdown
of the contribution of various building blocks in FabToy.

5.1 User Study
We asked 18 participants to perform several interactions with a toy
as part of an IRB-approved study. The interactions include holding,
patting, tickling, and swiping the toy. We chose this combination as
an example of meaningful interactions that can be performed with
a toy (e.g. holding a hand while patting the head). This separation of
single and complex interactions gives us the opportunity to monitor

the impact of complex interactions and compare the performance of
FabToy with other models. We chose 37 single interactions from the
pool of possible interaction/locations pairs to prove the possibility
of detecting the interaction and its location. In addition, we chose 65
complex interactions that include holding one of the toy’s hands and
performing the other interactions with users’ free hand. Including
the idle state, we have 103 different combinations of single and
complex interaction/location as labels.

The users varied in age (25 - 35) and gender (6 females). They
were free to choose their own method of performing each specific
interaction which includes the speed and the intensity of the action.
We used adults rather than children since it is difficult to collect
good quality longitudinal datasets with small children, particularly
when it involves data collection involving several repetitions of each
interaction. In addition, it has been significantly more challenging
to involve small children in studies due to IRB restrictions. We feel
that our current dataset is sufficient to demonstrate feasibility of
FabToy and our algorithms, and these can be further tuned in future
work for more real-world use with children.

The feel and look of the toy conveys no clue regarding the where-
abouts of sensors underneath the felt and the users were not in-
formed about it either so as not to alter users’ behaviours.We placed
a video camera zoomed in on the toy to be used as ground truth
for labeling the data. Each user went through slightly more than
16 minutes of study where they were asked to perform a series of
interactions covering all the 103 labels, each during a ten second
window with 3-4 seconds rest, counted toward idle case. Overall,
we gathered around 5 hours of data from our participants while
they were interacting with FabToy.
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We start by presenting the overall classification results and then
provide benchmarks about the individual processing blocks.

5.2 Overall Classification Performance
We start by looking at the overall performance of FabToy. Since
cross-talk is present between adjacent sensors, we look at the clas-
sification performance for three spatial granularities:

• Fine-grained, where we want to precisely determine which
of the twenty four sensor locations is being interacted with.

• Medium-grained, where we merged some adjacent sensors
into one location including: hand and arm on each side,
foot and thigh on each side, nose and mouth, forehead and
top of the head, and chest and stomach. Other sensors are
considered individually. This results in 24 sensor locations
being merged into eight regions of interaction.

• Coarse-grained, where we merged the following sensors and
counted them as one: both arms i.e. hand and arm on each
side; both feet i.e. foot and thigh on each side, head including
nose, mouth, cheeks, ears and forehead and top of the head,
body including chest, stomach, waist and back. Thus, we
transform 24 sensor locations into 4 coarser regions.

Figure 6a shows the results. We see that for precise fine-grained
classification, we achieve 86% accuracy for single interactions and
83% for complex interactions.

While classifying single interactions, the mis-classifications can
be broken down as follows:

• 10.3% of mis-classifications are instances where an interac-
tion is missed or an idle state is detected as an interaction,

• 33.1% of mis-classifications are instances where the location
is correctly determined, but the interaction is mis-classified,

• 28.7% of mis-classifications are instances where the interac-
tion is correctly determined, but the location is mis-classified,
and

• 27.9% of mis-classifications are instances where the occur-
rence of an interaction is detected but the detected location
and the interactions are false.

As we progressively coarsen the prediction granularity, classifica-
tion performance increases from 86% to 94% for single interactions
and from 83% to 93% for complex interactions. Thus, we see that
FabToy can be very effective at both fine-grained and coarse-grained
classification with increasing performance as the spatial fidelity
reduces.

5.3 Comparison against alternate models
We now demonstrate the superiority of the FabToy model to some
otherwell-establishedmachine learningmodels.We compare against
models that are relatively lightweight and can be executed on a
microcontroller-class platform. The Multi-Layer Perception (MLP)
model [29] uses features extracted from lightweight convolutional
layers which are fed into multiple fully connected layers in the MLP
model to compute the predictions. For the other models (Random
Forest, xgBoost, and Nearest Neighbors), we pre-process the raw
sensor data to help them better capture the time-series contextual
information. We then use histogram density features to map the
time-series data from each sensor into a 10-bin histogram. The

histogram features (10 × 48 = 480) are fed into the the three ma-
chine learning pipelines to train the models. The Random Forest
model [26] constructs a collections of decision trees and performs
an ensemble classification; the xgBoost model [6] boosts decision
trees via applying gradients to correct the previous mistakes and
minimize the losses; the 𝑘-Nearest Neighbors model [5] determin-
istically finds 𝑘 instances in the dataset which are most close to the
input data and use the most commonly seen label of the 𝑘 instance
as the label of the input.

Figure 6b compares FabToy versus other models for fine-grained
classification. As can be seen, the FabToy model outperforms all
others both for single and complex interactions. The FabToy model
can achieve more than 5% higher accuracy compared with the MLP
model and more than 10% higher accuracy compared with the other
three machine learning methods.
Importance ofAmplified andNon-amplifiedChannels: Sec-
ond, we look at the advantage of using both amplified and unam-
plified streams in terms of overall performance. To evaluate, we
separately choose amplified and non-amplified signals to train our
model and check the performance against the combined version that
uses both data streams. For the amplified-only and non-amplified
only cases, we modified the FabToy model so that it could accept
input signals that are half the size.

The result is shown in Figure 7. We see that the combination
of amplified and non-amplified signals provide more information
for the machine learning model compared with either of them
separately. For single interactions, using both streams gives us 3
- 4% improvement in accuracy over using one of the streams. For
complex interactions, we get 1 - 5% improvement over just using
one of the streams. This plot shows the importance of generating
amplified versions of the 24 base channels.
Benefit of early exit: While the Feature Extractor Layers are
common to the local and remote models, the use of early exit blocks
is specific to the local model. This allows us to bypass a portion of
neural network by leveraging intermediate exit points.

The effect of early exit is studied on model accuracy (Figure 8a ),
model power consumption (Figure 8b), and latency on the nRF52840
(Figure 8c). These plots are calculated based on nRF52840 datasheet [23]
using active CPU power and runtime for each early exit route.

We see that early exit at layer 3 reduces accuracy by about 4%
but has around 8× better computation energy efficiency and latency
compared to executing the full model. Early exits at intermediate
layers between these ends provide progressively better accuracy
but offer less gains in performance. Thus, early exit has significant
advantages in terms of overall performance.
Benefit of adaptive aggregation: Specific to the remote model,
we employ data dimensionality reduction by adaptive aggregation.
We now look at the performance of this module. We produced
this benchmark by using Nordic Online Power Profiler for BLE [2].
These numbers roughly agree with the empirical power breakdown
figure as well, shown in Figure 11.
Comparison of local and remote processing: Having ana-
lyzed the local and remote versions of FabToy, we can compare
the performance of these methods. Figure 9c shows the results.
We see that the local model is generally more efficient than the
remote model. This is unsurprising since the radio consumes more
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(a) (b)

Figure 6: a) Performance of FabToy for fine-grained and coarse-grained localization. Accuracy increases as we reduce the
spatial resolution of the sensors, and coarse-grained classification accuracy is around 94%. b) Comparison between FabToy
model and other ML models. FabToy achieves higher performance for both simple and complex interactions.

Figure 7: Breakdown of the contributions of amplified and
non-amplified channels to the overall accuracy.

power than the MCU. However, the gap narrows in the regime
where higher accuracies are desirable since the remote version is
able to take advantage of more complex models being used on the
remote device. We note that the choice between local and remote
processing may be to enable specific applications rather than power
consumption. From this perspective, the main takeaway is that both
methods are viable at low power.

Figure 9a and 9b illustrate the trade-off between number of
streams transmitted and the model’s accuracy and power consump-
tion, respectively. We see that the accuracy rapidly increases until
about 10 streams, and then plateaus. This allows us to reduce trans-
mission power consumption by about 2× compared to a system
that transmits all the channels with no compression.

5.4 Execution latency of local model
We now provide a breakdown of execution latency of our model on
both the nRF52811 that we use as well as other popular and emerg-
ing low-power embedded devices: GAP8 [34], Raspberry Pi 4B[27]
and Jetson TX2[24]. The compute ability of embedded devices can
vary widely depending on their power needs. For example, the
GAP8 can execute the deep learning models with core frequency of
50MHz and power consumption of 25mW; the power consumption
of a Raspberry Pi 4B is around 1.5W; and the power consumption of
a Jetson TX2 is around 7.5W. We uses the system clock in Linux and
hardware cycle counters in GAP8 to estimate the execution latency
for each layer of the FabToy model. The model is executed multiple
times and the average execution latency per layer is measured.

Figure 10 shows the latency of different layers in FabToy. As
expected, the nRF52811 platform takes longer than other platforms
to perform the operations. The overall average latency for local
processing is 260𝑚𝑠 . This gives the processor enough time to sleep
between each two calculations, which take place every one second.

5.5 Power benchmarks
Figure 11 shows the processing power consumption breakdown
for FabToy across the different blocks. Since power consumed for
the remote model depends on the number of channels transmitted
and power for the local model depends on the early exit point, we
provide numbers for three different channel aggregation values and
three different early exit points.

Overall, FabToy consumes between 2.9mW to 4mW depending
on the number of channels transmitted or the early exit point. This
amount of power consumption corresponds to more than a month
of operation on a small 950𝑚𝐴ℎ rechargeable battery(3 𝑐𝑚 × 5 𝑐𝑚)
before it needs recharging.

We see that a significant fraction of the power is consumed by
the sampling block. This is the case since we are sampling each
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(a) (b) (c)

Figure 8: a) The effect of adjusting early exit layer number on system’s accuracy, processing power consumption, and process-
ing latency shown in a), b), and c), respectively.

(a) (b) (c)

Figure 9: (a) and (b) show the effect of channel aggregation on system’s accuracy and power consumption. (c) compares the
power consumed by FabToy in local versus remote processing modes for the nRF52811

Figure 10: Compute latency across different platforms.

channel at 160Hz (to remove powerline noise), hence the system
is sampling at 7.68kHz. We have not focused on optimizing this
subsystem in this paper but expect that this can be optimized with

Figure 11: The breakdownof processing power consumption
in various scenarios. note that layer numbers in local mode
start from 3 to match the order in remote model.

better hardware design. The triggering block can also improve
efficiency if done in analog before the MCU is turned on.

Finally, we note that since the board and battery can be placed
inside the toy, they are physically isolated using waterproof pack-
aging and as a result, the battery capacity can be increased to allow
for months of operation per full charge.
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6 RELATEDWORK
In this section, we describe relevant state of the art in using toys as
means to extract physical and physiological signals from children,
and the some works regarding the usage of fabric-based sensors in
measuring humans health and activity parameters.

Augmenting toys with sensing capabilities There has not
been much work on exploring the use of array of sensors in de-
tecting user interactions with toys. Vega-barbas et al. implemented
a prototype toy that can measure grip and stretch in a toy using
fabric sensors [39]. Yonezawa et al. [45] incorporate textile pressure
sensors to detect intensity and duration of pressure on toy’s surface
and localize it as head, body, or back. Using the information they
gather from the pressure sensors, they estimate user’s emotional
state. There have also been some works on enabling toys to gather
biomedical information on the toddler playing with the toy [41].
There are several products available on the market that use micro-
phones to listen and provide feedback according to child’s vocal
inputs such as CogniToys Dino [1]. Dolphin Sam [7] is another
example of a design that embeds several sensing techniques, such
as touch sensors and RFID readers, and provides feedback in the
form of light and sound.

Using array of fabric sensors to detect physical and physi-
ological signals Recent advances in smart fabrics have led to
sensing, actuation, and energy harvesting fabric elements. Liu et
al. used multiple fabric pressure sensors to measure finger joint
dynamics, physiological signals, and created an input matrix us-
ing an array of those sensors [21]. Kiaghadi et al. designed and
implemented a loosely-worn sleepwear that can track sleeping pos-
ture, heart rate, and respiration rate [18]. This work relies on four
pressure sensors and a triboelectric sensor to capture dynamic and
static pressure signals.

There have been several works that use the textile sensors to
capture user inputs [3, 25]. These methods generally use capacitive
or resistive pressure sensors by implementing multiple sensing cells
or using weaving structures to create arrays of sensing elements.

Fabric based sensors have also been used to detect various human-
related parameters — some examples include using strain sensors
for human motion detection [42], inserting triboelectric sensors
into a loosely-worn shirt to measure joint dynamics and perspira-
tion [17], and using strain sensors in detecting respiration rate [4].

However, none of these efforts enables what we have proposed
i.e. fine-grained interaction detection and localization on plush toys.
Our application and the techniques we use to deal with large-scale
sensor arrays are not addressed in prior work.

Early exit andAutoencoder Themachine learning components
we use, Early exit and Autoencoder, are well known techniques
in edge AI. BranchyNet [33] introduced early exit as a mean to
reduce power consumption and latency [31, 32], and this method
has since become quite popular. Reducing data dimension using
Autoencoders have also been studied thoroughly in literature (e.g.
[12, 40]). Our contribution is that we leverage these techniques in
the context of a unique smart toy system rather than the machine
learning components by themselves.

7 DISCUSSION
In our design of the FabToy, we have encountered several road-
blocks and opportunities for future work. We briefly discuss these
issues.

Application studies involving toddlers and children: Our
dataset is collected from adults to enable repeatable and dense data
collection since we have a large number of {interaction,location}
pairs that we need to be able to distinguish with our machine learn-
ing model. Due to the vaccination status of very small children
who would normally play with plush toys, we have not conducted
a user study with this age group. Once restrictions ease, we plan to
study how small children interact with the FabToy in naturalistic
conditions and validate the algorithms that we have trained using
our current dataset. We are actively pursuing collaboration with
psychologist experts to investigate whether interaction measures
automatically extracted from the FabToy can be used as a screen-
ing procedure for emotion regulation-related psychopathological
disorders.

Multi-Toy Interaction: One of the exciting new opportunities
presented by FabToy is detecting a much richer set of interactions
with soft toys. So far, we have focused on a single FabToy but our
work can potentially be extended to interactions with more than
one toy. This can allow us to explore more complex storytelling
applications that involve interaction with different toys that play
different roles in the story [9]. For example, a group of children
may perform a detailed story using a set of FabToy toys as if they
were real. This story may involve handling, exploring, interacting
and focusing on a toy’s features in an interactive manner [15].
While such multi-toy interaction with smart toys can be enabled
by today’s technology, the key advantage in our approach is the
naturalistic feel for the smart toy making it more engaging for
children.

Platform for introducing computational thinking:
Programmable robots are extensively used for introducing com-
putational thinking in early childhood education, where children
learn about computing via physical interactions with robots (e.g.
KIBO [30], Dash Robot [35], Bee-Bot [38]). Unlike rigid robotic toys,
FabToy is a plush toy that can engage with children more natu-
rally, thereby providing an alternate platform to engage children
physically while teaching computational techniques. For example,
children can map voice responses from the plush toy to interactions
performed in the physical world such as patting or tickling. This
can also be connected to a platform such as Scratch Studio [28] that
enables creation of interactive storytelling applications for a more
compelling learning experience.

Sensing and Actuation in FabToy: While FabToy is focused
on dense sampling of a soft toy, there are many new opportunities
if we can pair it with other modalities like audio to expand the
vocabulary of interaction. This have been significant advances in
natural language understanding and dialog, and we can potentially
pair richer tactile sensing of interactions with the FabToy sensors
with more sophisticated audio-based dialog methods to enhance
how children interact with smart toys.

Dynamics in natural environments: We have designed, im-
plemented, and analyzed an interaction-aware toy and validated
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the performance in semi-stationary scenarios. However, there may
be a broader range of interactions in the natural environment, for
example, a child may interact with a toy during walking. This can
create new signal dynamics as walking causes vibrations all over the
toy, which will be seen by all the channels. Such global actions can
complicate the interaction detection process as the signal caused
by the walking may drown some desired signals such as weaker
tickling. To deal with this issue, we will need to add active motion
artifact canceling methods where an algorithm detects walking by
distinguishing the vibrations in most of the sensors with similar
rhythm, and recreates the motion signal and subtracts it from the
original. This is one of the solutions we plan to explore as a future
work.

8 CONCLUSION
In this paper, we presented FabToy, an end-to-end platform for
detecting and localizing users’ interactions with soft toys in a fine-
grained real-time manner. Our design addresses a number of chal-
lenges including ensuring unobtrusiveness and natural look and
feel while still achieving high signal quality, high spatio-temporal
fidelity, as well as low power operation. To enable this, we have op-
timizations across the hardware-software stack including a highly
optimized array of fabric sensors, low-power signal conditioning
and acquisition, as well as low-power embedded machine learning
and data compression. Our evaluation shows that the device can
enable accurate detection across a range of simple and complex
interactions across the entire surface of the toy. Overall, FabToy
offers a very promising path forward for smart plush toys and has
significant potential to enable a new class of interactive toys for
kids.
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