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Abstract—Due to an increased popularity of assistive healthcare 

technologies activity recognition has become one of the most 

widely studied problems in technology-driven assistive healthcare 

domain. Current approaches for smart-phone based activity 

recognition focus only on simple activities such as locomotion. In 

this paper, in addition to recognizing simple activities, we 

investigate the ability to recognize complex activities, such as 

cooking, cleaning, etc. through a smart phone. Features extracted 

from the raw inertial sensor data of the smart phone 

corresponding to the user’s activities, are used to train and test 

supervised machine learning algorithms. The results from the 

experiments conducted on ten participants indicate that, in 

isolation, while simple activities can be easily recognized, the 

performance of the prediction models on complex activities is 

poor. However, the prediction model is robust enough to 

recognize simple activities even in the presence of complex 

activities. 

Keywords-activity recognition; accelerometer; smart 

environments; smart phone 

I. INTRODUCTION 

Human activity recognition is an important area of machine 
learning research because of its real-world applications.  
Automated activity recognition reduces the necessity for 
humans to oversee difficulties individuals (especially older 
adults) might have performing activities, such as falling, when 
they try to get out of bed.  Activity recognition can also be used 
in conjunction with pattern recognition to determine changes in 
a subject’s routine.  For these reasons the technology has many 
potential uses in healthcare and eldercare. 

Two methods of collecting data for performing activity 
recognition have been extensively researched.  The first 
method relies upon environmental sensors to track features 
such as motion, location, and object interaction.  Alternatively, 
the second method uses a network of sensors attached to the 
human body to track the acceleration of specific limbs as well 
as the body as a whole.  Both of these methods have 
demonstrated impressive results in constrained laboratory 
settings.   

A major hurdle in implementing these systems outside of 
trials is how unnatural the sensors are.  Environmental sensors 

are generally bulky and costly.  They also must be wired or 
have their batteries maintained.  Both cases involve a large 
investment into setting up and maintaining the system.  Body 
sensors require daily effort from the user to wear and maintain 
them or else they are useless for collecting data.  Additionally 
they are bulky and require batteries, two factors that reduce the 
likelihood of constant use by the user. 

This paper describes the effectiveness of using the 
accelerometer and gyroscope of a smart phone as a more 
natural alternative to a combination of body sensors.  While 
many older adults are currently not likely to carry smart 
phones, younger people are increasingly likely to carry a 
mobile phone on them. These people represent the next 
generations of elders.  So while a phone may still be an 
unnatural accessory for older people it is becoming 
increasingly less so.  Using a phone as the primary device for 
data collection increases the likelihood of data coverage and 
represents a minimal cost and maintenance commitment to the 
user. 

Current generation smart phones are equipped with a 
variety of sensors such as GPS sensors, microphones, image 
sensors (camera), light sensors, proximity sensors, inertial 
sensors (accelerometers and gyroscopes), and direction sensors 
(compass). The small form factor of the smart phones coupled 
with its ubiquity and the substantial computing power makes 
them an effective tool for understanding the current state of the 
smart phone user. In this paper, we explore the use of inertial 
sensors (accelerometers and gyroscopes) in the smart phone to 
identify the activity that a user is performing by mining the 
sensor data. 

We have chosen an Android smart phone as the platform 
for the project for multiple reasons – the Android operating 
system is open-source and easily programmable and more 
importantly, its dominance in the smart phone market. A 
Samsung Captivate™ smart phone is used as the device 
running Android 2.1.   

Activity recognition from inertial sensor data is not a new 
problem. There have been many approaches proposed in the 
literature as discussed in Section II. Our approach is unique 
from the existing methods in many ways. First and foremost, 
no additional body sensor is used on the subject. Secondly, the 



subject’s body location where the phone should be placed and 
the orientation of the phone are not predetermined. In addition, 
we perform activity recognition on complex activities such as, 
cooking, cleaning, etc. Unlike other works, where 
environmental sensors are used to recognize complex activities, 
we make an endeavor to use accelerometer and gyroscope data 
to achieve the same goal. To our knowledge, there has been no 
previous work in this direction.  

We approach the activity recognition task as a supervised 
machine learning problem. The data collection process, the 
chosen set of activities and other details of the design of the 
experiment are presented in Section III. The experiments and 
the results obtained are discussed in Section IV. Section V 
concludes the paper and a discussion on future directions is 
presented in Section VI. 

II. RELATED WORK 

Advances in ubiquitous and pervasive computing have 
resulted in the development of a number of sensing 
technologies for capturing information related to human 
physical activities. The different approaches to activity 
recognition can be categorized based on the underlying sensing 
mechanism – network of environmental sensors of body area 
networks.  

Environmental sensor-based activity recognition has 
received significant focus in the recent years. This is a 
promising approach for recognizing activities that are not 
easily distinguishable by body movement alone. Motion 
sensors, door contact sensors, object sensors RFID tags and 
video cameras are some of the most commonly used 
environmental sensors for gathering activity related 
information [1]. 

Wearable accelerometers have proved to be effective 
sensors for human activity recognition. Some of the earliest 
work on wearable sensor based activity recognition used 
multiple accelerometers placed on different parts of the body. 
Bao and Intille [4] used a series of five biaxial accelerometers 
placed on the left bicep, right wrist, left quadriceps, right ankle, 
and right hip for recognizing twenty different activities ranging 
from walking to folding laundry to strength training. Ravi et. 
al. [5] use a single accelerometer mounted onto the pelvic 
region of subjects to collect data on eight activities: Standing, 
walking, running, climbing up stairs, climbing down stairs, sit-
ups, vacuuming, and brushing teeth. The peak accuracy was 
achieved using plurality voting which selects the most common 
prediction from five classifiers: decision tables, decision trees, 
k-nearest neighbors, SVM, and naïve Bayes. Tapia et. al. [7] 
collected data from five accelerometers placed on various body 
locations for implementing a real-time system to recognize 
thirty gymnasium activities. Krishnan et. al. [8] collected data 
using two accelerometers for recognizing locomotion activities 
in real-time using adaptive boosting on decision stumps.  

Other research has explored the use of multiple kinds of on-
body sensors for activity recognition. Maurer et. al. [10] use 
accelerometers, temperature sensors and microphones for 
recognizing human locomotion. Their research also analyzed 
multiple time domain feature sets for activity recognition.  Lee 
and Mase [11] proposed a system for recognizing activities 

using information about the user’s location and inertial sensors 
such as accelerometers and gyroscopes. Subramanya et. al. [12] 
also proposed a similar approach involving accelerometers, 
microphones, light sensors, thermometers, barometric pressure 
sensors and GPS sensors. 

There have been a few studies similar to the one proposed 
in the paper that use commercially available mobile devices to 
collect data for activity recognition. Kwapisz et. al. [13] use an 
Android-based smart phone for recognizing very simple 
activities such as walk, jog, climb up and down the stairs, sit 
and stand. Yang [14] developed an activity recognition system 
using the Nokia N95 cell phone for distinguishing between 
different locomotion. Brezmes et. al. [15] proposes a subject 
dependent real time activity recognition system again using the 
Nokia N95 smart phone. Hache et. al. [16] use an 
accelerometer integrated with a blackberry Bold 9000 platform 
for detecting changes in the state of the subject caused by 
starting/stopping and postural changes in activities.  Khan et. 
al. [17] use kernel discriminant analysis for recognizing very 
simple activities such as walking, up and down the stairs, 
running and resting on data collected from Samsung Omnia. 
Zhang et. al. [18] use an HTC smart phone for recognizing 
again simple activities using a support vector machines.  

Mobile devices offer a number of advantages including 
unobtrusiveness of the system and not requiring any additional 
equipment for data collection or computing that make them an 
attractive platform for activity recognition. We build on these 
approaches and extend them to test the ability of mobile 
sensing and computing platforms for recognizing simple and 
complex activities such as watering plants and sweeping. 

Simple activities, such as walking, can be represented as a 
single repeated action: taking a step forward; whereas complex 
activities, such as taking medication, involve multiple actions: 
opening a cupboard, taking out pills, swallowing, and returning 
the remaining pills.  Other complex activities may involve 
simultaneous or overlapping actions.  These traits decrease the 
ability to reduce these actions down to discrete features. 

III. DESIGN 

In this section we describe the design of our experiments 
for performing activity recognition from smart phone. We 
begin this with a description of the data collection process and 
the set of activities considered for this work. We then describe 
the features that were extracted from the sensor data and finally 
discuss the machine learning algorithms that were used for 
performing the recognition task.  

A. Data Collection 

 The data collection was done by performing experiments 
on ten undergraduate students who participated in National 
Science Foundation’s REU program at Washington State 
University. Subjects wore an Android 2.1 operating system-
based Samsung Captivate™ smart phone that contained a tri-
axial accelerometer and gyroscope. The location and 
orientation of the phone was not standardized and was left to 
the convenience of the subject. However, orientation 
information was taken into consideration while making 
comparative study in Section IV. Each subject carried the 



phone while performing the different activities. We created an 
application that stored the sensor data while the subject 
performed the activities. The application permitted us to 
control the sensor type from which the data was collected along 
with the sampling rate of the sensor. 

Subjects controlled the data that was being collected 
through the application (Figure 1) we created that executed on 
the phone. The application allows the subjects to input the 
activity that they are about to perform along with the ability to 
start and stop recording the sensor data. The application also 
allows the subjects to input the location they were wearing the 
phone. Though, we collected this information, we did not use it 
the current study. 

B. Activities 

Activities were divided into two categories: simple and 
complex.  Simple activities consist of a single repeated action 
whereas complex activities are the compilation of a series of 
multiple actions.  Subjects performed simple activities in 
variable amounts and in various environments; the action, 
location, and length of performance was not controlled.  The 
simple activities included biking, climbing stairs, driving, 
lying, running, sitting, standing and walking. In addition, we 
also wanted to test the possibility of detecting the smart phone 
not being worn by the subject. We call this activity as phone 
not on person. While some of the simple activities also feature 
on the list of activities of other researchers, our list contains 
additional activities such as driving, that not has been studied 
before. 

Every subject also performed a set of complex activities 
wearing the smart phone. The subjects repeated execution of 
these complex activities four times.  The complex activities had 
definite starting and finishing points and lasted until the subject 
completed them.  The complex activities consisted of: 

 Cleaning: Subject wiped down the kitchen counter top 
and sink. 

 Cooking: Subject simulated cooking by heating a bowl 
of water in the microwave and pouring a glass of water 
from a pitcher in the fridge. 

 Medication: Subject retrieved pills from the cupboard 
and sorted out a week’s worth of doses. 

 Sweeping: Subject swept the kitchen area. 

 Washing Hands: Subject washed hands using the soap 
at the kitchen sink. 

 Watering Plants: Subject filled a watering can and 
watered three plants in two rooms. 

C. Feature Extraction 

Raw data is collected as a series of instances containing a 
timestamp, three values corresponding to acceleration along the 
x-axis, y-axis, and z-axis, and a second set of three orientation 
values representing azimuth, pitch, and roll.  Rather than a set 
sampling rate, the accelerometer in this Android phone triggers 
an event whenever the accelerometer values change.  The rate 
of events can be set to one of four thresholds: fastest, game, 
normal, and UI, with fastest being the fastest sampling rate and 
UI being the slowest.  The phone used for this experiment was 
set to fastest.  The sampling rate varies because of this but can 
reach a maximum of 80 Hz.  The three axes of acceleration are 
dependent upon the orientation of the phone.  The x-axis runs 
parallel to the width of the phone, the y-axis runs the length of 
the phone, and the z-axis runs perpendicular to the face of the 
phone, as shown in Figure 2. 

Raw data is processed to normalize the acceleration axes so 
that the x-axis, y-axis, and z-axis run north and south, east and 
west, and up and down respectively. Samples of raw tri-axial 
accelerometer data for simple and complex activities can be 
found in Pages 7 and 8 respectively. The orientation data is left 
as is. From the raw accelerometer data for simple activities, it 
could be clearly seen that every simple activity has a distinct 
pattern of acceleration on three different axes. However, 
intuitively such distinctive pattern is difficult to be extracted 
from the raw data of the complex activities. This poses a 

 
 

Figure 1: Application used for activity data collection 

 
Figure 2: Axes of acceleration relative to the phone 

 



difficulty in complex activity recognition which would be 
explained in Section IV. 

Standard classifiers do not work well on the raw sensor 
data. It is essential to transform the raw data into a 
representation that captures the salient characteristics of the 
raw data. This is typically performed by breaking the 
continuous data into windows of certain duration. In this work 
we experimented with one, two, four, eight, twelve and sixteen 
seconds time windows. Windows always overlapped by one 
half of the window length, e.g., a four second window slides 
over two seconds at a time.  Thus, each window is a single 
instance, but any given data point contributes to two instances.  
This method has been shown to be effective in earlier work 
using accelerometer data [4]. We then extracted a number of 
features (as listed in Table I) to encode each window. Thus 
each window was represented as a feature vector of length 30. 

These features were then used to train the classifiers. 

D. Classification 

The WEKA machine learning toolkit [6] was used to test 
classifiers using the features extracted from the raw data set. 
Six different classifiers were tested: Multi-layer Perceptron, 
Naïve Bayes, Bayesian network, Decision Table, Best-First 
Tree, and K-star.  The accuracy of the classifiers was tested 
using ten-fold cross-validation with. Data collected from all the 
subjects was pooled together. The train and test data for each 
fold was randomly drawn from this pool, ensuring no overlap 
between the train and test sets of each fold. We used this 
approach as it is a good estimator for the generalized 
performance of the different classifiers. We used the default 
parameters associated with each of the classifier. 

TABLE I.  DESCRIPTION OF THE FEATURES EXTRACTED FROM THE RAW DATA 

Feature Accelerometer Orientation Description 

Mean X, Y, Z Azimuth, Pitch, Roll 
Average acceleration values along the three axes and average orientation along the 

three directions 

Min X, Y, Z Azimuth, Pitch, Roll 
The minimum acceleration and orientation value within the window along three axis of 

acceleration and directions of orientation 

Max X, Y, Z Azimuth, Pitch, Roll 
The maximum acceleration and orientation value within the window along the three 

axis of acceleration and directions of orientation 

Standard Deviation X, Y, Z Azimuth, Pitch, Roll The standard deviation in the acceleration and orientation values within the window 

Zero-Cross X, Y, Z  The number of zero crossings for the three axis of acceleration. 

Correlation X/Y, X/Z, Y/Z  The pairwise correlation between the three axes of acceleration. 

TABLE II.  CONFUSION MATRIX FOR COMBINED ACTIVITY SET (MULTI-LAYER PERCEPTRON, 1 SECOND WINDOW) 

Classified as a b c d e f g h i j k l m n o 

Biking = a 1056 52 29 12 20 20 9 5 21 30 66 26 169 22 50 

    Climbing = b 28 694 18 18 12 33 21 33 31 11 7 12 28 8 13 

Driving = c 3 25 3228 2 3 5 1 42 11 0 12 1 2 1 5 

Lying = d 27 34 10 1413 9 2 2 1 5 2 4 16 2 2 1 

Not-on-person = e 0 3 1 1 3360 0 1 1 0 0 0 0 1 0 0 

Running = f 1 16 3 4 1 780 0 1 1 4 5 3 16 7 5 

Sitting = g 27 51 29 6 1 6 1107 5 7 8 1 4 4 10 2 

Standing = h 1 6 0 5 3 6 0 748 0 0 1 1 1 0 2 

Walking = i 9 68 10 7 2 8 17 1 1472 8 13 14 40 2 22 

Cleaning Kitchen = j 0 0 1 0 0 1 0 0 8 190 243 108 209 2 11 

Cooking = k 1 1 0 5 0 4 1 0 5 123 774 160 448 18 123 

Medication = l 0 5 0 1 0 3 0 1 19 77 125 1103 381 27 53 

Sweeping = m 0 2 0 2 0 6 0 0 11 116 384 176 1257 21 68 

Washing hands = n 0 1 1 0 1 2 0 0 4 42 96 62 149 56 38 

Watering plants = o 0 0 0 1 1 8 2 0 8 30 125 70 171 24 245 

TABLE III.  DETAILED ACCURACY BY CLASS FOR COMPLEX ACTIVITIES (MULTILAYER PERCEPTRON, 1-SECOND WINDOW) 

Class TP Rate FP Rate Precision Recall F-Measure ROC Area 

Cleaning Kitchen 0.182 0.030 0.418 0.182 0.254 0.737 

Cooking 0.536 0.189 0.453 0.536 0.491 0.766 

Medication 0.673 0.136 0.614 0.673 0.642 0.828 

Sweeping 0.600 0.235 0.489 0.600 0.539 0.761 

Washing Hands 0.153 0.016 0.390 0.153 0.219 0.693 

Watering Plants 0.318 0.036 0.474 0.318 0.381 0.735 

Weighted Average 0.506 0.147 0.496 0.506 0.489 0.769 

 



IV. RESULTS 

We categorized the activities into three groups: simple, 
complex and combined to study the ability of the different 
classifiers to recognize them separately. The classification 
accuracies obtained from the different classifiers are 
summarized in Figure 3. It can be observed that the 
classification accuracies for simple activities remain 
consistently above 90% except for Naïve Bayes. However 
adding complex activities to the set reduced the performance of 
all the classifiers uniformly. The best accuracy noted for 
complex activities was 50% (guessing the class by chance 
stands at 17%).  The best accuracy was obtained with the 
Multi-Layer Perceptron.  

The confusion matrix for the combined set of activities is 
presented in Table II. The matrix shows how heavily the 
misclassification leans towards complex activities. This is not 
surprising alone but does show the resilience of simple 
activities against being misclassified when more activities are 
added. To gain further insights into the performance on these 
complex activities, we computed additional measures such as 
precision, recall and F score that is summarized in Table III. 
When looking only at complex activities in Table III, cooking, 
medication, and sweeping were all (correctly and incorrectly) 
classified far more often than cleaning, washing hands, or 
watering plants.  The former activities also involved little 
movement in the experiment whiles the latter (with the 
exception of washing hands) contained much more movement 
from one area to another. 

The complex activity set was also tested without using a 
sliding window for feature extraction.  Instead, an entire 
activity acted as a single instance.  This greatly improved 
performance from 52% to 78% accuracy.  It is worth noting 
that the amount of data used to train and test the classifier was 
drastically reduced when the data is treated this way to forty 
instances per activity. 

Our next experiment studied the effect of different window 
lengths on the ability of the classifiers to recognize the 
activities. We used K-star as the classifier as it resulted in the 

best performance in the previous experiment. The results of 
this experiment are summarized Figure 4. It can be noted that 
the overall classification accuracy for simple activities remains 
above 90% for each of the different window lengths. This trend 
did not continue when complex activities were added to the set.  
Shorter window frames performed significantly better than 
longer ones.  This result is surprising as a shorter window is 
less likely to account for more than a single one of the actions 
involved in a complex activity.     

  Figure 5 shows the results of classifying each activity set 
with and without orientation features extracted from gyroscope 
data. Previous studies have generally relied solely on 
acceleration data and did not take the orientation of the sensors 
into account after beginning an activity.  In this study, 
orientation data represented an average of a 10-12% increase in 
accuracy over pure acceleration data.  Given the format of this 
experiment it is likely that this is in part due to the fact that the 
starting position and orientation of the phone was not 
standardized. Features extracted from orientation helped 
overcome this deficiency. 

 
 

Figure 3: Performance of Different Classifiers 

 
Figure 1: Classification accuracies for K-Star with different window lengths. 

Und corresponds to the scenario where train models for recognizing complex 
activities without using the sliding window protocol.  

 

 
 

Figure 5:  Accuracy of K-Star with and without using orientation information 

from gyroscope data 

 



This approach for recognizing activities does have some 
limitations. Clearly, the methodology is feasible for 
recognizing simple activities. However, it fares poorly in the 
context of complex activities.  The process was made possible 
because the subjects input the start and stop times of the 
activities they performed. A fully automated recognition 
system would need some way of determining the start and end 
of an activity rather than relying on the user.  Additionally, 
unlike a sliding window which can do recognition in pseudo-
real-time, this method requires an activity to be completed 
before it can be recognized.  The results do however; represent 
the potential for improving the recognition system. 

V. CONCLUSIONS 

Simple activities can be recognized with very high accuracy 
using only a single smart phone carried naturally.  Performance 
was over 93% using a Multi-layer Perceptron and a two second 
time window.  The length of the window had very little effect 
on results for simple activities which implies that it can be 
reduced for recognizing short activities or extended as needed.  
Activity sets that included complex activities did not perform 
as well but still achieved over 50% accuracy. Simple activities 
retained their high classification accuracy even when paired 
with complex activities. 

The results for simple activities are at par with previous 
work on body sensors [3].  This shows a lot of promise for 
using mobile phones as an alternative to dedicated 
accelerometers.  The recognition of complex activities was also 
similar to that of the less recognizable activities in [2]. While 
50% accuracy is not high enough for many real-world uses of 
activity recognition, it does show that a phone could be 
effective as part of a data collection system for recognizing 
complex activities even if it cannot function as a standalone 
system. 

VI. FUTURE WORK 

An area of further research is to determine the effectiveness 
of classification using a lower sampling rate with the goal of 
reducing the strain on the phone’s power usage. Evaluation 
should also be performed on subjects who did not contribute 
the recognition model as well as determining the effectiveness 
of a model tuned to only a single subject.  

There remains plenty of work to do to improve the accuracy 
of activity recognition.  One approach that merits further 
research is the combination of a mobile phone with 
environmental sensors.  The combination of the two sensor 
types provides for detailed data on the subjects movement, 
location, and interactions.   For example, watering plants could 
be seen as a combination of walking, standing, interacting with 
objects such as the sink and a watering can, and being in a 
particular area. Additionally, recognizing a complex activity as 
a combination of simple activities holds promise.  Constructing 
a vector of a sequence of simple activities using the same 
machine learning techniques described in this paper and then 
using that vector to learn a complex activity may provide a 
higher accuracy of recognition than has previously been 
achieved. 
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