
Dernbach et al.

RESEARCH

Quantum Walk Neural Networks with Feature
Dependent Coins
Stefan Dernbach1*, Arman Mohseni-Kabir1, Siddharth Pal2, Miles Gepner1 and Don Towsley1

*Correspondence:

dernbach@cs.umass.edu
1University of Massachusetts,

College of Information and

Computer Sciences, Amherst, MA,

01003 USA

Full list of author information is

available at the end of the article

Abstract

Recent neural networks designed to operate on graph-structured data have
proven effective in many domains. These graph neural networks often diffuse
information using the spatial structure of the graph. We propose a quantum walk
neural network that learns a diffusion operation that is not only dependent on the
geometry of the graph but also on the features of the nodes and the learning
task. A quantum walk neural network is based on learning the coin operators that
determine the behavior of quantum random walks, the quantum parallel to
classical random walks. We demonstrate the effectiveness of our method on
multiple classification and regression tasks at both node and graph levels.

Keywords: graph neural networks; random walks; quantum random walks

1 Introduction
While classical neural network approaches for structured data have been well inves-

tigated, there is growing interest in extending neural network architectures beyond

grid structured data in the form of images or ordered sequences [1] to the domain of

graph-structured data [2, 3, 4, 5, 6, 7]. Following the success of quantum kernels on

graph-structured data [8, 9, 10], a primary motivation of this work is to explore the

application of quantum techniques and the potential advantages they might offer

over classical algorithms. In this work, we propose a novel quantum walk based neu-

ral network structure that can be applied to graph data. Quantum random walks

differ from classical random walks through additional operators (called coins) that

can be tuned to affect the outcome of the walk.

In [11] we introduced a quantum walk neural network (QWNN) for the purpose

of learning a task-specific random walk on a graph. When dealing with learning

problems involving multiple graphs, the original QWNN formulation suffered from

a requirement that all nodes across all graphs share the same coin matrix. This

paper improves upon our original network architecture by replacing the single coin

matrix with a bank that learns a function to produce different coin matrices at

each node in every graph. This function allows the behavior of the quantum walk

to vary spatially across the graph even when dealing with multi-graph problems.

Additionally, this function produces the coins based on neighboring node features so

that even for structurally identical graphs, a different walk is produced if the node

features change. We also improve the neural network architecture in this work.

In the new architecture, each step of the quantum walk produces its own set of

diffused features. The aggregated set of features, spanning the length of the walk,

are passed to successive layers in the neural network. Finally, the previous work

mailto:dernbach@cs.umass.edu

Dernbach et al. Page 2 of 16

produced results that were dependent upon the ordering of the nodes. This work

provides a QWNN architecture that is invariant to node ordering.

The rest of this paper is organized as follows. Section 2 describes the background

literature on graph neural network techniques in further detail. The setting of quan-

tum walks on graphs is described in Section 3, followed by a formal description of

the proposed quantum walk based neural network implementation in Section 4. Ex-

perimental results on node and graph regression, and graph classification tasks are

presented in Section 5, followed by a discussion of the techniques’ limitations in

Section 6 and concluding remarks in Section 7.

2 Related Work
Gupta and Zia [12] and Altaivsky [13] among other researchers proposed quantum

versions of artificial neural networks; See Biamonte et al. and Dunjko et al. [14, 15]

for an overview of the emerging field of quantum machine learning. While not much

work exists on quantum machine learning techniques for graph-structured data,

in recent years, new neural network techniques that operate on graph-structured

data have become prominent. Gori et al. [4] followed by Scarselli et al. [6] proposed

recursive neural network architectures to deal with graph-structured data, instead

of the then prevalent approach of transforming the graph data into a domain that

could be handled by conventional machine learning algorithms. Bruna et al. [3]

studied the generalization of convolutional neural networks (CNNs) to graph signals

through two approaches, one based upon hierarchical clustering of the domain, and

another based on the spectrum of the graph Laplacian. Subsequently, Defferrard et

al. [16] proposed to approximate the convolutional filters on graphs through their

fast localized versions.

Along with the spectral approaches described above, a number of spatial ap-

proaches have been proposed that relied on random walks to extract and learn

information from the graph. For comparison, we detail several modern approaches.

Atwood and Towsley [2] propose a spatial convolutional method that performs ran-

dom walks on the graph and combines information from spatially close neighbors.

Given a graph G = {V,E} and a feature matrix X, their approach, Diffusion Convo-

lutional Neural Networks (DCNN) use powers of the transition matrix P = D−1A

to diffuse information across the graph, where A is the adjacency matrix and D is

the diagonal degree matrix such that Dii =
∑

j Aij . The kth power of the transi-

tion matrix, Pk, diffuses information from each node to every node exactly k hops

away from it. The output Y of the DCNN is a weighted combination of the diffused

features from across the graph, given by

Y = h (W �P∗X) ,

where P∗ is the stacked tensor of powers of transition matrices, the operator �
represents element-wise multiplication, W are the learned weights of the diffusion-

convolutional layer, and h is an activation function (e.g. rectified linear unit).

The second approach of interest due to Kipf and Welling [5], was proposed to

tackle semi-supervised learning on graph-structured data through a CNN architec-

ture that uses localized approximation of spectral graph convolutions. The proposed

Dernbach et al. Page 3 of 16

technique, the Graph Convolutional Neural Network (GCN) simplified the original

spectral-based frameworks of Bruna et al. [3] and Defferrard et al. [16] for improved

scalability. The method uses the augmented adjacency matrix Ã = A+I and degree

matrix D̃ii =
∑

j Ãij to diffuse the input with respect to the local neighborhood

according to:

Y = h
(
D̃−

1
2 ÃD̃−

1
2XW

)
,

where, again, W are learning weights and h is an activation function.

Many graph convolution layers are inspired by classical CNNs used in image

recognition problems. However, other deep learning models have also inspired graph-

based variants. One such example, Graph Attention Networks (GATs) [7], is inspired

by the attention mechanisms commonly applied in natural language processing for

sequence-based tasks. The neural network architecture uses a graph attention layer

that combines information from neighboring nodes through an attention mechanism.

Unlike the prior approaches, this allows a nonuniform weighting of the features of

each node’s neighbors. The method uses attention coefficients

eij = a (WXi,WXj)

where, W is a learned weight matrix that linearly transforms feature vectors of

nodes vi and vj , Xi and Xj respectively, and a is an attention function (e.g. inner

product). The attention coefficients eij are normalized through the softmax function

to obtain normalized coefficients αij . The output from node i is given as

Yi = h

 ∑
vj∈N (vi)

αijWXj

where N (vi) is the neighbor set of node vi.

Our proposed quantum walk neural network is graph neural network architec-

ture based on discrete quantum walks. Various researchers have worked on quan-

tum walks on graphs – Ambainis et al. [17] studied quantum variants of random

walks on one-dimensional lattices; Farhi and Gutmann [18] reformulated interesting

computational problems in terms of decision trees, and devised quantum walk algo-

rithms that could solve problem instances in polynomial time compared to classical

random walk algorithms that require exponential time. Aharonov et al. [19] general-

ized quantum walks to arbitrary graphs. Subsequently, Rohde et al. [20] studied the

generalization of discrete time quantum walks to the case of an arbitrary number

of walkers acting on arbitrary graph structures, and their physical implementation

in the context of linear optics. Quantum walks have recently become the focus of

many graph-analytics studies because of their non-classical interference properties.

Bai et al. [8, 9, 10] introduced novel graph kernels based on the evolution of quan-

tum walks on graphs. They defined the similarity between two graphs in terms of

the similarities between the evolution of quantum walks on the two graphs. Quan-

tum kernel based techniques were shown to outperform classical kernel techniques

Dernbach et al. Page 4 of 16

in effectiveness and accuracy. In [21, 22], Rossi et al. studied the evolution of quan-

tum walks on the union of two graphs to define the kernel between two graphs.

These closely related works on quantum walks and the success of quantum ker-

nel techniques motivated our approach in developing a quantum neural network

architecture.

3 Graph Quantum Walks
Motivated by classical random walks, quantum walks were introduced by Aharonov

et al. in 1993 [23]. Unlike the stochastic evolution of a classical random walk, a

quantum walk evolves according to unitary process. The behavior of a quantum

walk is fundamentally different from a classical walk since in a quantum walk there

is interference between different trajectories of the walk. Two kinds of quantum

walks have been introduced in the literature; namely, continuous time quantum

walks [18, 24] and discrete time quantum walks [25]. Quantum walks have recently

received much attention because they have been shown to be a universal model

for quantum computation [26]. In addition, they have numerous applications in

quantum information science such as database search [27], graph isomorphism [28],

network analysis and navigation, and quantum simulation.

Discrete time quantum walks were initially introduced on simple regular lattices

[29] and then extended to general graphs [30]. In this paper, we use the formulation

of discrete time quantum walks as outlined in [31, 30]. Given an undirected graph

G = (V,E), we introduce a position Hilbert space HP that captures the superposi-

tion over various positions, i.e., nodes, in the graph. We define HP to be the span of

the position basis vectors
{
ê
(p)
v , v ∈ V

}
. The position vector of a quantum walker

can now be written as a linear combination of position state basis vectors,

ψψψp =
∑
v∈V

αvê
(p)
v

where {αv, v ∈ V } are coefficients satisfying the unit L2-norm condition∑
v ‖αv‖2 = 1, with the understanding that ‖αv‖2 is the probability of finding

the walker at vertex v.

Similarly, we introduce a coin Hilbert space HC that captures the superposition

over various spin directions of the walker on each node of the graph. We define HC

to be the span of the coin basis vectors
{
ê
(c)
i , i ∈ 1, . . . , dmax

}
, where i enumerates

the edges incident on a vertex v and dmax is the maximum degree of the graph.

We will use d instead of dmax for conciseness. The coin (spin) state of a quantum

walker can now be written as a linear combination of coin state basis vectors,

ψψψc =
∑

i∈1,...,d

βv,iê
(c)
i

where {βv,i, i ∈ 1, . . . , d} are coefficients satisfying the unit L2-norm condition∑
i |βv,i|

2
= 1. If a measurement is done on the coin state of the walker at vertex

v, |βv,i|2 denotes the probability of finding the walker in coin state i. The Hilbert

space of the quantum walk can be written as HW = HP ⊗HC , which is the tensor

product of the two aforementioned Hilbert spaces.

Dernbach et al. Page 5 of 16

Figure 1 Classical and Quantum Walk Distributions The probability distribution of a classical
random walk (Top) and a quantum random walk (Bottom) across the nodes of a lattice graph
over four steps from left to right.

Time-evolution of discrete time quantum walk over graph G is governed by two

unitary operators, namely, coin and shift operator. Let ΦΦΦ(t) = ψψψ
(t)
p ⊗ ψψψ(t)

c in HW

denote the state of the walker at time t. At each time-step we first apply a unitary

coin operator CCC which transforms the coin state of the walker at each vertex,

ψψψ(t)
p ⊗ψψψ(t+1)

c = (III ⊗CCC)(ψψψ(t)
p ⊗ψψψ(t)

c).

III denotes the identity operator. After transforming the coin (spin) states, we apply

a unitary shift operator SSS which swaps the states of two vertices connected by an

edge. i.e., for an edge (u, v) if u is the ith neighbor of v and v is the jth neighbor of

u, then we swap the coefficient corresponding to the basis state ê
(p)
v ⊗ ê

(c)
i with that

of the basis state ê
(p)
u ⊗ ê

(c)
j . SSS operates on both coin and position Hilbert spaces,

ΦΦΦ(t+1) = ψψψ(t+1)
p ⊗ψψψ(t+1)

c = SSS(ψψψ(t)
p ⊗ψψψ(t+1)

c).

In shorthand notation, the unitary evolution of the walk is governed by the operator

UUU = SSS (III ⊗CCC). Applying UUU successively evolves the state of the quantum walk

through time.

The choice of coin operators as well as the initial superposition of the walker

control how this non-classical diffusion process evolves over the graph and therefore

provides the deep learning technique additional degrees of freedom for controlling

the flow of information over the graph. Figure 1 shows how the diffusion behavior

of a classical random walk differs from a discrete time quantum walk with a single

coin. Ahmad et al. [32] recently showed that for a discrete quantum walk on a

line, having a position-dependent coin can lead to quantitatively different diffusion

behaviors with different choices of coin operators. Our work uses the setting of

multiple non-interacting quantum walks acting on arbitrary graphs, as introduced

in Rhode et al. [20], to learn patterns in graph data. Calculating a separate quantum

walk originating from each node in the graph allows us to construct a diffusion

Dernbach et al. Page 6 of 16

Figure 2 Quantum walk neural network diagram. The feature matrix X is used by the banks to
produce the coin matrices C used in each step layer as well in the final diffusion process. The
superposition ΦΦΦ evolves after each step of the walk. The diffusion layer diffuses X using each
superposition {ΦΦΦ(0),ΦΦΦ(1), ...ΦΦΦ(T)} and concatenates the results to produce the output Y.

matrix where each entry gives the relationship between the starting and ending

nodes of a walk. This matrix works like its classical counterpart, a random walk

matrix, used in DCNN [2].

3.1 Physical implementation of discrete quantum walks

Over the past few years, there have been several proposals for the physical imple-

mentation of quantum walks. Quantum walks are unitary process that are naturally

implementable in a quantum system by manipulating their internal structure. The

internal structure of the quantum system should be engineered to be able to man-

ifest the position and coin Hilbert spaces of the quantum walk. These quantum

simulation based methods have been proposed using classical and quantum optics

[33], nuclear magnetic resonance [34], ion traps [35], cavity QED [36], optical lattices

[37], and Bose Einstein condensate [38] as well as quantum dots [39] to implement

the quantum walk.

Circuit implementation of quantum walks has also been proposed. While most of

these implementations focus on graphs that have a very high degree of symmetry [40]

or very sparse graphs [41, 42], there is some recent work on circuit implementations

on non-degree regular graphs [43].

A central question in implementing quantum walks on graphs is how to scale

the physical system to achieve the complexity required for simulating large graphs.

Rohde et al. [44] showed that exponentially larger graphs can be constructed using

quantum entanglement as a resource for creating very large Hilbert spaces. They

use multiple entangled walkers to simulate a quantum walk on a virtual graph of

chosen dimensions. However, this approach has its own limitations and arbitrary

graphs can not be built with this method.

4 Quantum Walk Neural Networks
Many graph neural networks pass information between two nodes based on the

distance between the nodes in the graph. This is true for both graph convolution

networks and diffusion convolution networks. However, quantum walk neural net-

works are similar to graph attention networks in that the amount of information

Dernbach et al. Page 7 of 16

passed between two nodes also depends on the features of the nodes. In graph at-

tention networks this is achieved by calculating an attention coefficient for each of

a node’s neighors. In quantum walk neural networks, the coin operator alters the

spin states of the quantum walk to prioritize specific neighbors.

A QWNN, as shown in Figure 2, learns a quantum walk on a graph by means

of backpropagating gradient updates to the coin operators used in the walk. The

learned walk is then used to diffuse a signal over the graph.

In [11], the quantum walk neural network evolves a walk using a single coin matrix,

C, to modify the spin state of the walker ΦΦΦ according to ΦΦΦ(t+1) = ΦΦΦ(t)C(t) and then

swaps states along the edges of the graph. Features are then diffused across the

graph by converting the states of the walker into a probability matrix, P, and using

it to diffuse the feature matrix: Y = PX. The coin matrix is learned through

backpropagating the gradient of a loss function. In this paper we replace the coin

matrix by a node and time dependent function we call a bank. The bank forms

the first of the three primary parts of a QWNN. It is followed by the walk and the

diffusion. The bank produces the coin matrices used to direct the quantum walk,

the walk layers determine the evolution of the quantum walk at each step, and the

diffusion layer uses these states to spread information throughout the graph.

4.1 Bank

The Coin operators modify the spin state of the walk and are thus the primary

levers by which a quantum walk is controlled. The coin operator can vary spatially

across nodes in the graph, temporally along steps of the walk, or remain constant

in either or both dimensions. In the QWNN, the bank produces these coins for the

quantum walk layers.

When the learning environment is restricted to a single static graph, the bank

stores the coin operators as individual coin matrices distributed across each node

in the graph. However, for dynamic or multi-graph situations, the bank operates by

learning a function that produces coin operators from node features f : X → Cd×d

where d is the maximum degree of the graph. In general, f is any arbitrary function

that produces a matrix followed by a unitary projection to produce a coin C. This

projection step is expensive as it requires a singular value decomposition of a d× d
matrix.

In recurrent neural networks (RNN), unitary matrices are employed to deal with

exploding or vanishing gradients because backpropagating through a unitary matrix

does not change the norm of the gradient. To avoid expensive unitary projections,

several recursive neural network architectures use functions f whose ranges are

subsets of unitary matrices. A common practice is to use combinations of low di-

mensional rotation matrices [45, 46]. This was the model used for the coin operators

in previous QWNNs [11].

In our work, we focus on elementary unitary matrices. These matrices are of the

form U = I − 2wwT /(wTw) where I denotes the identity matrix and w is any

vector. These matrices can be computed efficiently in the forward pass of the neural

network and their gradients can similarly be computed efficiently during backprop-

agation. While this work focuses on using a single elementary matrix for each coin

Dernbach et al. Page 8 of 16

operator, any unitary matrix can be composed as the product of elementary uni-

tary matrices. The QWNN bank produces the coin matrix for node vi according

the following:

Ci = I− 2f(vi)f(vi)
T /(f(vi)

T f(vi)).

We propose two different functions f(vi).

The first function:

f1(vi) = WT vec
(
XN (vi)

)
+ b,

where vec
(
XN (vi)

)
denotes the column vector of concatenated features of the

neighbors of vi, is a standard linear function parameterized by a weight matrix

W ∈ R(Fd)×d, with F the number of features, and a bias vector b ∈ Rd. This

method has individual weights for each node but is not equivariant to the ordering

of the nodes in the graph. This means that permuting the neighbors of vi changes

the result of the function. We mitigate this effect by using a heuristic node ordering

based on node centrality that we outline in Section 4.4.

The second function:

f2(vi) = XN (i)WXT
i ,

with W ∈ RF×F , computes a similarity measure between the node vi and each of

its neighbors. This method is equivariant with respect to the node ordering of the

graph (i.e. permuting the neighborhood of vi equally permutes the values of fk(vi)).

This in turn allows the entire neural network to be invariant to node ordering.

4.2 Walk

For a graph with N vertices, the QWNN processes N separate, non-interacting

walks in parallel – one walk originating from each node in the graph. The walks

share the same bank functions. A T -step walk produces a sequence of superpositions

{ΦΦΦ(0),ΦΦΦ(1), ...,ΦΦΦ(T)}. For a graph with degree d, the initial superposition tensor

ΦΦΦ(0) ∈ CN×N×d is initialized with equal spin along all incident edges to the node it

begins at such that (ΦΦΦ
(0)
ii·)

HΦΦΦ
(0)
ii· = 1 and ∀i 6=j : ΦΦΦ

(0)
ijk = 0. The value of ΦΦΦ

(t)
ijk denotes

the amplitude of the i-th walker at node vj with spin k after t steps of the walk.

A complete walk can be broken down into individual step layers. Each quantum

step layer takes as input the current superposition tensor ΦΦΦ(t), the set of coins

operators C(t) produced by the bank, as well as a shift tensor S ∈ ZN×d×N×d
2 that

encodes the graph structure: Sujvi = 1 iff u is the the ith neighbor of v and v is the

jth neighbor of u. The superposition evolves according to:

ΦΦΦ(t+1) = ΦΦΦ(t)C(t)··S

Dernbach et al. Page 9 of 16

whereA··B denotes the tensor double inner product of A and B. Equivalently, for

an edge (u, v), with u being the ith neighbor of v and v being the jth neighbor of u:

ΦΦΦ
(t+1)
wuj =

(
ΦΦΦ(t)

v C(t)
v

)
wi

ΦΦΦ
(t+1)
wvi =

(
ΦΦΦ(t)

u C(t)
u

)
wj

The output ΦΦΦ(t+1) is fed into the next quantum step layer (if there is one) and

the diffusion layer.

4.3 Diffusion

The superpositions at each step of the walk are used to diffuse the signal X across

the graph. Given a superposition ΦΦΦ, the diffusion matrix is constructed by summing

the squares of the spin states:PPP =
∑

k ΦΦΦ··k�ΦΦΦ··k. The valuePPP ij gives the probability

of the walker beginning at vi and ending at vj similar to a classical random walk

matrix. Diffused features can then be computed as a function of P and X by Y =

h(PX+b) where h is an optional nonlinearity (e.g. reLU). The complete calculation

for a forward pass for the QWNN is given in Algorithm 1.

Algorithm 1: QWNN Forward Pass

given : Initial Superpositions ΦΦΦ(0), Shift S
input : Features X
output: Diffused Features Y

1 for t = 1 to T do
2 for All nodes vi do

3 v
(t)
i = WT vec

(
XN (vi)

)
+ b or v

(t)
i = XN (i)WXT

i

4 C
(t)
i = I− 2v

(t)
i (v

(t)
i)T /((v

(t)
i)Tv

(t)
i)

5 ΦΦΦ
(t)
·i· ← ΦΦΦ

(t−1)
·i· ·C(t)

i··
6 ΦΦΦ(t) ← ΦΦΦ(t)··S

(
i.e., ΦΦΦ

(t)
wuj =

∑
v

∑
i ΦΦΦ

(t)
wviSviuj

)
7 P(t) ←

∑
k ΦΦΦ

(t)
··k �ΦΦΦ

(t)
··k

8 Y(t) ← h(P(t)X + b(t))

return : {Y(0),Y(1), ...,Y(T)}

4.4 Node and Neighborhood Ordering

Node ordering and by extension neighborhood ordering of each node can have an

effect on a quantum walk if the coin is not equivariant to the ordering. Given a

non-equivariant set of coins, if the order of nodes in the graph is permuted, the

result of the walk may change.

This is the case for the first of the two bank functions. We address this issue using

a centrality score. The betweenness centrality [47] of node vi is calculated as:

g(vi) =
∑

j 6=i 6=k

σjk(vi)

σjk

where σjk is the number of shortest paths from vj to vk and σjk(vi) is the number of

shortest paths from vj to vk that pass through vi. A larger betweenness centrality

score implies a node is more central within the graph. Conversely, a leaf node

Dernbach et al. Page 10 of 16

connected to the rest of the graph by a single edge has a score of 0. Nodes in

the graph are then ranked by their betweenness centrality and each neighborhood

follows this ranking so that when ordering a node’s neighbors, the most central nodes

in the graph come first. In this setting, a walker moving along a higher ranked edge

is moving towards a more central part of the graph compared to a walker moving

along a lower ranked edge.

5 Experiments
We demonstrate the effectiveness of QWNNs across three different types of tasks:

node level regression, graph classification and graph regression. Our experiments

focus on comparisons with three other graph neural network architectures: diffusion

convolution neural networks (DCNN) [2], graph convolution networks (GCN) [5],

and graph attention networks (GAT) [7].

For graph level experiments, we employ a set2vec layer [48] as an intermediary

between the graph layers and standard neural network feed forward layers. Set2vec

has proved effective in other graph neural networks [49] as it is a permutation

invariant function that converts a set of node features into a fixed length vector.

5.1 Node Regression

In the node regression task, daily temperatures are recorded across 409 locations

in the United States during the year 2009[50]. The goal of the task is to use a day’s

temperature reading to predict the next day’s temperatures. A nearest neighbors

graph (Figure 3a) is constructed using longitudes and latitudes of the recording

locations by connecting each station to its closest neighbors. Adding edges to each

station’s eight closest neighbors produces a connected graph. The QWNN is formed

from a series of quantum step layers (indicated by walk length) followed by a dif-

fusion layer. Since the neural network in this experiment only uses quantum walk

layers, we relax the unitary constraint on the coin operators. While this can no

longer be considered a quantum walk in the strictest sense, the relaxation is nec-

essary to allow the temperature vector to grow or shrink to match increases or

decreases in temperatures from day to day. For this experiment, we also compare

the results with multiple DCNN walk lengths. For GCN and GAT an effective walk

length is constructed by stacking layers. Data is divided into thirds for training,

validation, and testing. Learning is limited to 32 epochs.

Table 1 gives the test results for the trained networks. The root-mean-square error

(RMSE) and standard deviation (STD) are reported from five trials. We observe

that quantum walk techniques yield lower errors compared to other graph neural

network techniques. The two networks which control the amount of information

flow between nodes, QWNN and GAT, appear to be able to take advantage of more

distant relationships in the graph for learning while DCNN and GCN perform best

with more restrictive neighborhood sizes.

We use this experiment to provide a visualization for the learned quantum walk.

Figure 3b and 3c shows the evolution of a classical random walk and the learned

quantum random walk originating from the highlighted node respectively. At each

step, warmer color nodes correspond to nodes with higher superposition amplitudes.

Initially, the quantum walk appears to diffuse outward in a symmetrical manner

Dernbach et al. Page 11 of 16

(a) Graph of Temperature Recording Locations

(b) Diffusion of a 4-step Classical Random Walk

(c) Diffusion of a 4-step Quantum Walk After Training

Figure 3 Comparison of a classical walk and a learned quantum walk. The classical and
quantum random walks evolve from left to right over 4 steps. Both walks originate at the
highlighted node. At each step, the brighter colored nodes correspond to a higher probability of
the random walker at that node. A classical walk, as used in GCN and DCNN, diffuses uniformly
to neighboring nodes. The learned quantum walk can direct the diffusion process to control the
direction information travels. The third and fourth steps of the quantum walk show the
information primarily directed southeast.

similar to a classical random walk, but in the third and fourth steps of the walk,

the learned quantum walk focuses information flow towards the southeast direction.

The ability to direct the walk in this way proves beneficial in the prediction task.

5.2 Graph Classification

The second type of graph problem we focus on is graph classification. We apply

the graph neural networks to several common graph classification datasets: En-

zymes [51], Mutag [52], and NCI1 [53]. Enzymes is a set of 600 molecules extracted

from the Brenda database [54]. In the dataset, each graph represents a protein and

each node represents a secondary structure element (SSE) within the protein struc-

ture, e.g. helices, sheets and turns. Nodes are connected if certain conditions are

satisfied, with each node bearing a type label, and its physical and chemical infor-

mation. The task is to classify each enzyme into one of six classes. Mutag is a dataset

Dernbach et al. Page 12 of 16

Table 1 Temperature Prediction Results

RMSE ± STD
Walk Length

1 2 3 4 5
GCN 8.56± 0.02 8.14± 0.41 7.82± 0.13 8.55± 0.52 8.88± 0.73

DCNN 8.07± 0.21 7.40± 0.13 7.46± 0.06 7.44± 0.10 10.19± 0.18
GAT 7.84± 0.16 8.43± 0.42 8.47± 1.02 8.23± 0.69 7.93± 0.15

QWNN 6.11± 0.14 5.54± 0.16 5.38± 0.07 5.28± 0.08 5.65± 0.02

of 188 mutagenic aromatic and heteroaromatic nitro compounds that are classified

into one of two categories based on whether they exhibit a mutagenic effect. NCI1

consists of 4110 graphs representing two balanced subsets of chemical compounds

screened for activity against non-small cell lung cancer. For both the Mutag and

NCI1 datasets, each graph represents a molecule, with nodes representing atoms

and edges representing bonds between atoms. Each node has an associated label

that corresponds to its atomic number. Summary statistics for each dataset are

given in Table 2. The experiments are run using 10-fold cross validation.

For the Enzyme and NCI1 experiment, the quantum walk neural networks are

composed of a length 6 walk, followed by a set2vec layer, a hidden layer of size

64, and a final softmax layer. In Mutag, the walk length is reduced to 4 and the

hidden layer to 16. The reduced size helps alleviate some of the overfitting from

such a small training set. We report the best results using the centrality based node

ordering version of the network that uses the linear bank function: QWNN (cen) as

well as the invariant QWNN using the equivariant bank function: QWNN (inv). We

also report results from the three other graph networks. GCN, DCNN, and GAT

are all used as an initial layer to a similar neural network followed by a set2vec

layer, a hidden layer of size 64 (16 for Mutag) and a softmax output layer. DCNN

uses a walk length of 2, while GCN and GAT use feature sizes of 32. Additionally

we compare with two graph kernel methods, Weisfeiler-Lehman (WL) kernels [55]

and shortest path (SP) kernels [56], using the results given in [55].

Classification accuracies are reported in Table 2. The best neural network accu-

racies and the best overall accuracies are bolded. Quantum Walks are competitive

with the other neural network approaches. QWNN demonstrates the best aver-

age accuracy on Mutag and Enzyme but the other neural network approaches are

within the margin of error. On the NCI1 experiment, QWNN shows a measurable

improvement over the other neural networks. The WL kernels outperform all the

neural network approaches on both Enzymes and NCI1.

5.3 Graph Regression

Our graph regression task uses the QM7 dataset [57, 58], a collection of 7165

molecules each containing up to 23 atoms. The geometries of these molecules are

stored in Coulomb matrix format defined as

Cij =

{
0.5Z2.4

i i = j
ZiZj

|Ri−Rj | i 6= j

where Zi, Ri are the charge of and position of the i-th atom in the molecule respec-

tively. The goal of the task is to predict the atomization energy of each molecule.

Atomization energies of the molecules range from -440 to -2200 kcal/mol.

Dernbach et al. Page 13 of 16

Table 2 Graph Classification Datasets Summary and Results

Enzymes Mutag NCI1
Graphs 600 188 4110

Average Nodes 33 18 30
Max Nodes 126 28 111
Max Degree 9 4 4
Node Classes 3 7 37
Graph Classes 6 2 2

Classification Accuracy ± STD
GCN 0.31± 0.06 0.87± 0.10 0.69± 0.02

DCNN 0.27± 0.08 0.89± 0.10 0.69± 0.01
GAT 0.32± 0.04 0.89± 0.06 0.66± 0.03

QWNN (cen) 0.26± 0.03 0.90± 0.09 0.76± 0.01
QWNN (inv) 0.33± 0.04 0.88± 0.04 0.73± 0.02

WL 0.59± 0.01 0.84± 0.01 0.85± 0.00
SP 0.41± 0.02 0.87± 0.01 0.73± 0.00

Table 3 Atomization Energy Prediction Results

RMSE MAE
GCN 16.51± 0.38 12.39± 0.29

DCNN 11.90± 0.59 8.53± 0.42
GAT 18.75± 0.51 14.52± 1.12

QWNN (cen) 9.70± 0.77 6.74± 0.24
QWNN (inv) 10.91± 0.56 8.28± 0.47

For this task, we form an approximation of the molecular graph from the Coulomb

matrix by normalizing out the atomic charges and separating all atom-atom pairs

into two sets based on their physical distances. One set contains the atom pairs

with larger distances between them and the other the smaller distances. We create

an adjacency matrix from all pairs of atoms in the smaller distance set. There is

generally a significant gap between the distances of bonded and unbonded atoms in

a molecule but this approach leaves 19 disconnected graphs. For these molecules,

edges are added between the least distant pairs of atoms until the graph becomes

connected. We use the element of each atom, encoded as a one-hot vector, as the

input features for each node.

The two variants of QWNN are constructed using a 4-step walk, followed by the

set2vec layer, a hidden layer of size 10, and a final output layer. For the other graph

neural networks, a single graph layer is used followed by the same setup of a set2vec

layer, a hidden layer of size 10, and the output layer. A DCNN of length 2 walk and

GCN and GAT using 32 features were found to give the best results. Root-mean-

square error (RMSE) and mean absolute prediction error (MAE) are reported for

each network in Table 3. QWNNs demonstrate a marked improvement over other

methods in this task.

6 Limitations
Storing the superposition of a single walker requires O(Nd) space, with N the

number of nodes in the graph, and d the max degree of the graph. To calculate

a complete diffusion matrix requires that a separate walker begin at every node,

increasing the space requirement to O(N2d) which starts to become intractable

for very large graphs, especially when doing learning on a graphics processing unit

(GPU). Some of this cost can be alleviated using sparse tensors. At time t=0 the

superpositions are localized to single nodes so only O(Nd) space used by nonzero

amplitudes. At time t=1 the first step increases this to O(Nd2) as each neighboring

Dernbach et al. Page 14 of 16

node becomes nonzero. Given a function s(G, t) which determines the number of

nodes in a graph reachable after a t-length random walk, the space complexity for

a t-length walk is O(Nds(G, t)).

The majority of graph neural networks are invariant to the ordering of the nodes

in the graph. This is true for GCN, DCNN, and GAT. We provide one formulation

for a QWNN that is also invariant, however the second formulation is not. Although

we have greatly reduced the effect, node ordering can still affect the walk produced

in QWNN and thus the overall output of the network. This can occur when two

otherwise distinguishable nodes have the same betweenness centrality.

7 Concluding Remarks
Quantum walk neural networks provide a unique neural network approach to graph

classification and regression problems. Unlike prior graph neural networks, QWNNs

fully integrate the graph structure and the graph signal into the learning process.

This allows QWNN to learn task dependent walks on complex graphs. The benefit of

using the distributions produced by these walks as diffusion operators is especially

clear in regression problems where QWNN demonstrate considerable improvement

over other graph neural network approaches. This improvement is demonstrated at

both the node and the graph level.

An added benefit of QWNN is that the learned walks provide a human under-

standable glimpse of the neural network determination of where information orig-

inating from each node is most beneficial in the graph. In the current work, each

walker on the graph operates independently. A future research direction is to in-

vestigate learning multi-walker quantum walks on graphs. Reducing the number of

independent walkers and allowing interactions can reduce the space complexity of

the quantum walk layers.

Abbreviations
QWNN: Quantum Walk Neural Networks; CNN: Convolutional Neural Networks; DCNN: Diffusion Convolutional

Neural Network; GCN: Graph Convolutional Neural Network; GAT: Graph Attention Network; RNN: Recursive

Neural Network; RMSE: Root Mean Squared Prediction Error; STD: Standard Deviation; WL: Weisfeiler-Lehman;

SP: Shortest Path; MAE: Mean Absolute Error; GPU: Graphics Processing Unit;

Availability of data and Material
The US Temperature dataset [50] was compiled from recordings prepared by the Carbon Dioxide Information

Analysis Center and is available at http://cdiac.ornl.gov/epubs/ndp/ushcn/usa.html. The Mutag [52],

Enzymes [51], and NCI1 [53] datasets are part of the benchmark datasets for graph kernels available at

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets. The QM7 dataset [57, 58] is

available at http://quantum-machine.org/datasets/.

Competing interests
The authors declare that they have no competing interests.

Funding
Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement

Number W911NF-09-2-0053 (the ARL Network Science CTA). The views and conclusions contained in this

document are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on. This

document does not contain technology or technical data controlled under either the U.S. International Traffic in

Arms Regulations or the U.S. Export Administration Regulations.

Author’s contributions
SD worked on conceptualization, methodology, software writing, experiments, writing, and review and editing of the

paper. AMK worked on conceptualization, writing, and review and editing of the paper. SP worked on

conceptualization, writing, review and editing of the paper, and acquisition of funding for the research. MG helped

with the methodology and worked on software. DT worked on conceptualization, review and editing, supervision of

the research, acquisition of funding, and methodology.

http://cdiac.ornl.gov/epubs/ndp/ushcn/usa.html
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
http://quantum-machine.org/datasets/

Dernbach et al. Page 15 of 16

Acknowledgements

Not applicable.

Author details
1University of Massachusetts, College of Information and Computer Sciences, Amherst, MA, 01003 USA.
2Raytheon BBN Technologies, Cambridge, MA, 02138 USA.

References
1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In:

Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

2. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information

Processing Systems, pp. 1993–2001 (2016)

3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In:

International Conference on Learning Representations (ICLR) (2014)

4. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Neural Networks, 2005.

IJCNN’05. Proceedings. 2005 IEEE International Joint Conference On, vol. 2, pp. 729–734 (2005). IEEE

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint

arXiv:1609.02907 (2016)

6. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE

Transactions on Neural Networks 20(1), 61–80 (2009)

7. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In:

Proceedings of the International Conference on Learning Representations (ICLR) (2017)

8. Bai, L., Hancock, E.R., Torsello, A., Rossi, L.: A quantum jensen-shannon graph kernel using the

continuous-time quantum walk. In: International Workshop on Graph-Based Representations in Pattern

Recognition, pp. 121–131 (2013). Springer

9. Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E.: Quantum kernels for unattributed graphs

using discrete-time quantum walks. Pattern Recognition Letters 87, 96–103 (2017)

10. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen–shannon graph kernel for unattributed

graphs. Pattern Recognition 48(2), 344–355 (2015)

11. Dernbach, S., Mohseni-Kabir, A., Pal, S., Towsley, D.: Quantum walk neural networks. In: Seventh

International Conference on Complex Networks and Their Applications (2018)

12. Gupta, S., Zia, R.: Quantum neural networks. Journal of Computer and System Sciences 63(3), 355–383

(2001)

13. Altaisky, M.: Quantum neural network. arXiv preprint quant-ph/0107012 (2001)

14. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning.

Nature 549(7671), 195 (2017)

15. Dunjko, V., Briegel, H.J.: Machine learning\& artificial intelligence in the quantum domain. arXiv preprint

arXiv:1709.02779 (2017)

16. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized

spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

17. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In:

Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001). ACM

18. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58(2), 915 (1998)

19. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the

Thirty-third Annual ACM Symposium on Theory of Computing, pp. 50–59 (2001). ACM

20. Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Silberhorn, C.: Multi-walker discrete time quantum walks on

arbitrary graphs, their properties and their photonic implementation. New Journal of Physics 13(1), 013001

(2011)

21. Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In:

International Workshop on Graph-Based Representations in Pattern Recognition, pp. 101–110 (2013). Springer

22. Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and

the quantum jensen-shannon divergence. Physical Review E 91(2), 022815 (2015)

23. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Physical Review A 48(2), 1687 (1993)

24. Rossi, M.A., Benedetti, C., Borrelli, M., Maniscalco, S., Paris, M.G.: Continuous-time quantum walks on

spatially correlated noisy lattices. Physical Review A 96(4), 040301 (2017)

25. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the

discrete-time quantum walk. Physical Review A 81(4), 042330 (2010)

26. Childs, A.M.: Universal computation by quantum walk. Physical review letters 102(18), 180501 (2009)

27. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Physical Review A 67(5),

052307 (2003)

28. Qiang, X., Yang, X., Wu, J., Zhu, X.: An enhanced classical approach to graph isomorphism using

continuous-time quantum walk. Journal of Physics A: Mathematical and Theoretical 45(4), 045305 (2012)

29. Nayak, A., Vishwanath, A.: Quantum walk on the line. arXiv preprint quant-ph/0010117 (2000)

30. Kendon, V.: Quantum walks on general graphs. International Journal of Quantum Information 4(05), 791–805

(2006)

31. Ambainis, A.: Quantum walks and their algorithmic applications. International Journal of Quantum Information

1(04), 507–518 (2003)

32. Ahmad, R., Sajjad, U., Sajid, M.: One-dimensional quantum walks with a position-dependent coin. arXiv

preprint arXiv:1902.10988 (2019)

33. Zhang, P., Ren, X.-F., Zou, X.-B., Liu, B.-H., Huang, Y.-F., Guo, G.-C.: Demonstration of one-dimensional

quantum random walks using orbital angular momentum of photons. Physical Review A 75(5), 052310 (2007)

Dernbach et al. Page 16 of 16

34. Ryan, C.A., Laforest, M., Boileau, J.-C., Laflamme, R.: Experimental implementation of a discrete-time

quantum random walk on an nmr quantum-information processor. Physical Review A 72(6), 062317 (2005)

35. Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Physical Review A 65(3), 032310

(2002)

36. Agarwal, G.S., Pathak, P.K.: Quantum random walk of the field in an externally driven cavity. Physical Review

A 72(3), 033815 (2005)

37. Joo, J., Knight, P.L., Pachos, J.K.: Single atom quantum walk with 1d optical superlattices. Journal of Modern

Optics 54(11), 1627–1638 (2007)

38. Manouchehri, K., Wang, J.: Quantum random walks without walking. Physical Review A 80(6), 060304 (2009)

39. Manouchehri, K., Wang, J.: Quantum walks in an array of quantum dots. Journal of Physics A: Mathematical

and Theoretical 41(6), 065304 (2008)

40. Loke, T., Wang, J.: An efficient quantum circuit analyser on qubits and qudits. Computer Physics

Communications 182(10), 2285–2294 (2011)

41. Jordan, S.P., Wocjan, P.: Efficient quantum circuits for arbitrary sparse unitaries. Physical Review A 80(6),

062301 (2009)

42. Chiang, C.-F., Nagaj, D., Wocjan, P.: Efficient circuits for quantum walks. arXiv preprint arXiv:0903.3465

(2009)

43. Loke, T., Wang, J.: Efficient circuit implementation of quantum walks on non-degree-regular graphs. Physical

Review A 86(4), 042338 (2012)

44. Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Gilchrist, A., Silberhorn, C.: Increasing the dimensionality of

quantum walks using multiple walkers. Journal of Computational and Theoretical Nanoscience 10(7),

1644–1652 (2013)

45. Arjovsky, M., Shah, A., Bengio, Y.: Unitary evolution recurrent neural networks. In: International Conference on

Machine Learning, pp. 1120–1128 (2016)

46. Jing, L., Shen, Y., Dubček, T., Peurifoy, J., Skirlo, S., Tegmark, M., Soljačić, M.: Tunable efficient unitary

neural networks (eunn) and their application to rnn. arXiv preprint arXiv:1612.05231 (2016)

47. Brandes, U.: A faster algorithm for betweenness centrality. Journal of mathematical sociology 25(2), 163–177

(2001)

48. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: Sequence to sequence for sets. arXiv preprint

arXiv:1511.06391 (2015)

49. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum

chemistry. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.

1263–1272 (2017). JMLR. org

50. Williams, C., Vose, R., Easterling, D., Menne, M.: United states historical climatology network daily

temperature, precipitation, and snow data. ORNL/CDIAC-118, NDP-070. Available on-line [http://cdiac. ornl.

gov/epubs/ndp/ushcn/usa. html] from the Carbon Dioxide Information Analysis Center, Oak Ridge National

Laboratory, USA (2006)

51. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.-P.: Protein function

prediction via graph kernels. Bioinformatics 21(suppl 1), 47–56 (2005)

52. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity

relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital

energies and hydrophobicity. Journal of medicinal chemistry 34(2), 786–797 (1991)

53. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval and

classification. Knowledge and Information Systems 14(3), 347–375 (2008)

54. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schomburg, D.: Brenda, the enzyme

database: updates and major new developments. Nucleic acids research 32(suppl 1), 431–433 (2004)

55. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph

kernels. Journal of Machine Learning Research 12(Sep), 2539–2561 (2011)

56. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on

Data Mining (ICDM’05), p. 8 (2005). IEEE

57. Blum, L.C., Reymond, J.-L.: 970 million druglike small molecules for virtual screening in the chemical universe

database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009)

58. Rupp, M., Tkatchenko, A., Müller, K.-R., von Lilienfeld, O.A.: Fast and accurate modeling of molecular

atomization energies with machine learning. Physical Review Letters 108, 058301 (2012)

	Abstract
	Introduction
	Related Work
	Graph Quantum Walks
	Physical implementation of discrete quantum walks

	Quantum Walk Neural Networks
	Bank
	Walk
	Diffusion
	Node and Neighborhood Ordering

	Experiments
	Node Regression
	Graph Classification
	Graph Regression

	Limitations
	Concluding Remarks

