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INTRODUCTION

In recent years, neural network approaches have performed
extremely well in diverse fields ranging from image recogni-
tion and classification [1] to natural language processing [2].
A key reason for the recent successes of neural network
methods in the aforementioned domains is due to the statistical
properties of the data in these domains, namely stationarity
and constitutionality [3]. However, when the data in question
is graph-structured, neural network techniques need to be
adapted because the aforementioned properties might not hold.
Despite the technical difficulties, new neural networks that
operate on graph structured data have sprung into promi-
nence [3], [4], [5]. These approaches use the graph Laplacian,
random walk matrix, or their corresponding spectra as an
operator to diffuse information across the graph and then learn
a task-specific weighting on the diffused information.

In this work, we propose quantum walk neural networks
(QWNN), a new graph neural network architecture based on
quantum random walks. A quantum random walk differs from
a classical random walk in that the walker’s state is expressed
as a superposition rather than a probability distribution. Addi-
tionally, a coin operator acts on the walker at each step in the
walk. Unlike previous graph neural networks, our approach
uses this coin to directly learn a diffusion operator. We show
that our quantum walk based neural network approach obtains
competitive results when compared to other graph neural net-
work approaches, suggesting that quantum techniques should
be investigated further in the domain of graph-structured data.

QUANTUM WALKS ON ARBITRARY GRAPHS

Quantum random walks are the quantum parallel to classical
random walks on a graph. While a classical walker is modeled
by a probability distribution over positions in a graph, a
quantum walker is described by a superposition over position
states. We utilize the form of a discrete time quantum walk
on a general graph as outlined in [6]. Given a graph G =
(V,E), we define a Hilbert space spanned by state |v

〉
where

v ∈ V . Also, we define Hc, the coin space, as an auxiliary
Hilbert space of dimension dmax spanned by the basis states{
|i
〉
|i ∈ 1, ..., dmax

}
, where dmax is the maximum degree of

the graph. We make the graph d-regular by adding self-loops
to the vertices that have degree less than dmax. These states
form the spin directions of a walker at vertex v. A single step
in the quantum random walk consists of first applying a coin
operator that transforms the coin state of a vertex, C|v, e

〉
.

This coin operator is unitary and must treat all edges adjacent
to a vertex equally. The Grover diffusion operator is the only
nontrivial, real valued operator fitting these conditions

After applying the coin operator, a shift operator swaps the
states of two vertices connected by an edge using the following
shift operation:

S|u, v,Auv

〉
=
{
|u, v,Auv

〉
Auv = 0

|v, u,Auv

〉
Auv = 1

Where A is the adjacency matrix of the graph. We define
one step of the discrete quantum walk on graph G as: U =
S(C⊗I). If |Ψ

〉
0

is the initial state of the quantum walker on
G then after t time steps the state of the walker is described
by: |Ψ

〉
t
=U t|Ψ

〉
0
.

QUANTUM WALK NEURAL NETWORKS

Our new neural network architecture learns a quantum
random walk on a graph by means of learning the coin
operator. Our network then uses this learned quantum random
walk to form a diffusion operator to act on the input data.
Given a tensor Φ representing each walkers superposition, a
coin matrix C and a shift operator S, a quantum walk neural
network takes in features X and outputs diffused features Y .
For the first QWNN layer in a network, we initialize Φ with a
unique walker at each node in the graph and equal spin along
each edge. For subsequent layers, the tensor Φ can additionally
be passed forward with the feature matrix Y to continue the
walk. The method is given in Algorithm 1. The notation a · b
denotes the inner product between tensors a and b, the operator
a : b is the inner product over two dimensions, and a ∗ b is an
elementwise product.

Algorithm 1 QWNN Forward Pass
given Superpositions Φ, Coin C, Shift S
input Features X
for t = 1 to T do

for All nodes j do
Φ

(t)
·j· ← Φ

(t−1)
·j· · Cj··

end for
Φ(t) ← Φ(t) : S

end for
P ←

∑
k Φ

(T )
··k ∗ Φ

(T )
··k

Y ← P ·X
return Y,Φ



Fig. 1. An example day’s temperature readings. The depicted graph is
constructed from the 8 nearest geographical neighbors of each node.

The work in [6] uses Grover’s diffusion operator for the
coin operator because it is the only nontrivial, real-valued
transform that is unitary and treats all edges connected to
a vertex identically. The first requirement guarantees that
location probabilities of the walker always sum to 1. The
second restriction is added in order to avoid edge ordering
affecting the walk. In the QWNN we relax these conditions
to allow for learning biased coin operators. We initialize each
coin to Grover’s diffusion operator. Then, during training the
coin operators are adjusted by backpropagating the error signal
through each layer without the above restrictions.

EXPERIMENTS

We demonstrate the use of our network in learning to predict
daily temperatures. Our data consists of a years worth of daily
high temperatures from 409 locations across the United Sates
in 2009 [7].

We form a nearest neighbors graph from the stations’
longitudes and latitudes using 8 neighbors as this was em-
pirically found to produce a fully connected graph (Fig.1).
The temperature from each station on a single day is used to
predict the following day’s temperatures. We form our neural
network from a single quantum walk layer and vary the walk
length. We also compare against a diffusion convolution neural
network (DCNN) [5] while varying the number of hops in the
network. The data is divided into thirds for training, validation,
and testing. The mean absolute error (MAE) of the validation
set over time is shown in Fig. 2. Fig. 3 gives the test results
for the trained networks as well as a baseline predictor that
predicts no change in the temperature. A QWNN with a walk
length of 3 shows the best error out of all the methods.

CONCLUSIONS

The quantum random walk network demonstrates the power
of quantum techniques for deep learning. With very few pa-
rameters to train, they demonstrate a large amount of predictive
power as shown in the temperature forecasting experiment.
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Fig. 2. Validation Error of the neural network over time. The legend gives
the number of days in the future to predict the next temperatures. Each neural
network also used a quantum walk of length equal to that gap.

MAE
Baseline 5.929± 0.068

DCNN(1) 5.503± 0.139
DCNN(2) 5.502± 0.138
DCNN(3) 5.504± 0.139

QWNN(1) 4.422± 0.061
QWNN(2) 4.383± 0.084
QWNN(3) 4.159± 0.085
QWNN(4) 4.298± 0.063

Fig. 3. Test results over 5 trials. The neural network was trained to predict the
next day temperatures from the current day. DCNN(k) and QWNN(k) indicate
a DCNN layer with k hops and a QWNN layer with k steps respectively.
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