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Abstract— A comparison of different graph kernels used for
diffusing features in a graph neural network.

I. INTRODUCTION

Graphs are a datastructure used to represents objects and
relationships. Mathematically, we define a simple graph G =
(V,E) to be a set of vertices (nodes) V = {v0, v1, ..., vN−1}
and a set of edges E = {(vi, vj) : vi, vj ∈ V } ⊂ {V ×
V } representing the objects and relationships respectively.
Several matrices are commonly used to represent aspects of
the graph. The adjacency matrix:

Aij

{
1, if (vi, vj) ∈ E
0 otherwise

(1)

encodes the geometry of the graph in matrix form. Each
vertex in the graph corresponds to a row and column in
the adjacency matrix and edges in the graph are represented
by a 1 in the corresponding row-column index. The degree
matrix D is a diagonal matrix with elements Dii =

∑
i Ai =

d(vi). The combinatorial Laplacian matrix, L, combines the
degree and adjacency matrices: L = D−A. The symmetric
normalized Laplacian is given as L̃ = D−1/2LD−1/2.

Graph convolution layers are a fairly recent development
in deep learning. They allow data on graphs to be processed
in a way that utilizes the graph structure. Graph convolutional
layers come in two forms. The first, spectral graph layers [2],
use the graph Fourier transform defined by the eigenvectors
of the graph Laplacian to process data in the graph frequency
domain. We don’t deal further with these methods in this
paper.

The second type of layer, spatial graph convolution layers
uses the adjacency and Laplacian matrices to diffuse infor-
mation across the graph as its processed. Many spatial graph
convolutional neural network layers can be generalized to
the form Y = K(G)XΘ where the output of the layer,
Y ∈ RN×kout , is a product of a kernel on the nodes of
the graph, the input signal X ∈ RN×kin , and the learnable
weights Θ. The shape of the weights Θ also vary to match
the shape of f(A)X and transform it into the desired output
shape.

The kernel matrix K(G) determines the type of graph
layer. Graph Convolution Neural Networks [4] use K(G) =
(D+I)−

1
2 (A+I)(D+I)−

1
2 . This can be equivalently viewed

as defining a new graph G̃ identical to the old graph but with
a self-loop on every node and then using the kernel I+LG̃.

Diffusion Convolution Neural Networks [1] vary the pat-
tern slightly by using a stacked tensor of kernels such that
K(G) = [(AD−1)0, (AD−1)1, ..., (AD−1)k]. Additionally,
the original paper for this layer uses an element wise product
between the features and the layer weights rather than a dot
product.

II. NODE KERNELS

There exists a wide breadth of spatial graph kernels that
can be drawn on to develop new graph neural network layers.
This section defines a selection of these kernels [3].

A. Exponential Diffusion Kernels

The standard exponential diffusion kernel [5] is defined
as:

KED(G) =

∞∑
k=0

αkAk

k!
= exp(αA). (2)

B. Laplacian Exponential Diffusion Kernel

As will be seen to be common in these kernels, the Lapla-
cian is often substituted for the adjacency matrix. Beginning
with the exponential diffusion kernel and replacing A with
−L produces the Laplcian exponential diffusion [5], [8]
kernel:

KLED(G) =

∞∑
k=0

−αkLk

k!
= exp(−αL). (3)

C. Von Neumann Diffusion Kernel

Removing the discounting scheme from the exponential
diffusion kernel leads to the von Neumann kernel [7]:

KV N (G) =

∞∑
k=0

(αA)k = (I− αA)−1 (4)

D. Regularized Laplacian Kernel

Again the replacement of A with −L gives rise to a new
kernel. The regularized Laplacian kernel [8]is defined as:

KRL(G) =

∞∑
k=0

(−αL)k = (I + αL)−1 (5)

E. Commute Time Kernel

The commute time kernel [6] is given by:

KCT (G) = L+. (6)

L+ denotes the Moore-Penrose pseudo-inverse of the Lapla-
cian matrix.



TABLE I
EXPERIMENTAL RESULTS

Kernel Cora CiteSeer
GCN 83.41± 2.69 73.43± 2.42

DCNN 84.12± 1.86 78.00± 2.48
Exponential Diffusion (α = 10−6) 71.06± 0.91 70.67± 2.70
Laplacian Exponential (α = 10−2) 70.74± 1.48 72.57± 1.32

Laplacian Exponential 15.07± 3.15 69.67± 1.87
Von Neumann 78.49± 3.64 71.03± 4.0

Regularized Laplacian 77.66± 1.59 69.57± 1.61
Commute Time 81.00± 2.85 70.73± 2.29

Augmented Commute Time 88.51± 01.15 79.01± 0.67
Truncated Commute Time (2) 87.39± 2.06 76.75± 3.26
Truncated Commute Time (3) 89.86± 1.23 79.42± 2.11
Truncated Commute Time (4) 88.29± 2.47 76.41± 1.60

III. EXPERIMENTAL EVALUATION

We compare graph layers using the various given kernels
as well as GCN and DCNNs on the Cora citation dataset.
The dataset consists of 2708 papers linked by 5429 edges
denoting a citation from one paper to another. Each paper has
a binary vector describing it which represents the presence or
absence of 1433 unique words. The goal of the experiment
is to classify each paper into one of 7 categories. The neural
networks are given the labels for 80% for training, 10%
are reserved for model validation, and models are evaluated
based on their accuracy predicting the remaining 10%. Each
model is trained for 400 iterations.

Each kernel forms the diffusion matrix for a single layer
neural network. If the kernel has an α parameter, it is
included as an additional learnable weight in the network.
Kernels that use the graph Laplacian are evaluated using both
the combinatorial Laplacian, and the symmetric normalized
Laplacian. Additionally, an augmented form of the Laplacian
with self loops on the nodes (as in GCNs [4]) is tested. The
results are given in Table I.

The results for DCNN are given for 2 hops, which could
be reformulated as a multilayer DCNN. This effectively
gives it an advantage over the other models which are
single layer networks. It is unknown at the moment why
the exponential kernels only match the baseline of randomly
selecting a class label. This will require further work to
determine what is happening within the neural network. One
planned approach is to select a constant α parameter to
determine if that improves the model. The commute time
kernel does exceedingly well, especially the augmented form.
The normalized form however, does not work out at all,
normalizing it likely has an effect on the inverse. Overall the
results give a good reason to look further into the commute
time kernel.
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