
UTILIZING GRAPH STRUCTURE FOR MACHINE
LEARNING

A Dissertation Presented

by

STEFAN E. DERNBACH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2020

College of Information and Computer Sciences

c© Copyright by Stefan E. Dernbach 2020

All Rights Reserved

UTILIZING GRAPH STRUCTURE FOR MACHINE
LEARNING

A Dissertation Presented

by

STEFAN E. DERNBACH

Approved as to style and content by:

Don Towsley, Chair

Ben Marlin, Member

Andrew McCallum, Member

Weibo Gong, Member

James Allan, Chair
College of Information and Computer Sciences

ACKNOWLEDGMENTS

I would like to thank my advisor, Don Towsley, who took me on when I was

an orphaned graduate student. Don gave me the freedom to set my own research

direction while being there with advice and support throughout.

Thank you to my mentors who guided me before I joined Don’s lab: Sridhar

Mahadevan and Jim Kurose.

Thanks to my family. I would not be here without them. They shared in every

high and every low of my journey.

Thank you to my wonderful labmates in both the Networks Lab and the Au-

tonomous Learning Lab who provided both a partner to bounce ideas off of and to

solve problems with as well as friendship: CJ Carey, Thomas Bucher, Phil Thomas,

Will Dabney, Bruno Castro da Silva, Stephen Giguere, Francisco Garcia, Clemens

Rosenbaum, Bo Liu, Arman Mohseni Kabir, Kun Tu, and Gayane Vardoyan. Extra

thanks to Archan Ray and Blossom Metevier who were great friends in and out of the

lab and whom I bonded deeply with through our shared suffering of watching Game

of Thrones.

Thank you to the friends who always had my back: John and Sara Talbot and

Alvin Le, who will probably continue to point out every missing comma in my future.

Thank you to the coauthors and collaborators I worked with along the way: Nina

Taft, Udi Weinsberg, Siddharth Pal, and Bruno Ribeiro.

Thank you to my committee: Weibo Gong, Ben Marlin, and Andrew McCallum

for the time they devoted to this thesis.

iv

And thank you to the wonderful people at UMASS CICS who got me from A to

B and made sure I didn’t accidentally drop out of the college along the way: Leeanne

Leclerc, Susan Overstreet, and Laurie Connors.

v

ABSTRACT

UTILIZING GRAPH STRUCTURE FOR MACHINE
LEARNING

SEPTEMBER 2020

STEFAN E. DERNBACH

B.Sc., WHITWORTH UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

The information age has led to an explosion in the size and availability of data.

This data often exhibits graph-structure that is either explicitly defined, as in the

web of a social network, or is implicitly defined and can be determined by measuring

similarity between objects. Utilizing this graph-structure allows for the design of

machine learning algorithms that reflect not only the attributes of individual objects

but their relationships to every other object in the domain as well.

This thesis investigates three machine learning problems and proposes novel meth-

ods that leverage the graph-structure inherent in the tasks. Quantum walk neural

networks are classical neural nets that use quantum random walks for classifying and

regressing on graphs. Asymmetric directed node embeddings are another neural net-

work architecture designed to embed the nodes of a directed graph into a vector space.

Filtered manifold alignment is a novel two-step approach to domain adaptation.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Contributions . 2

2. BACKGROUND AND RELATED WORK . 5

2.1 Matrix and Tensor Notation . 5
2.2 Graph Terminology . 6
2.3 Graph Signal Processing . 8
2.4 Graph Convolutional Neural Networks . 8

3. QUANTUM WALK NEURAL NETWORKS . 12

3.1 Introduction . 12
3.2 Related Work . 12
3.3 Preliminaries . 15
3.4 Graph Quantum Walks . 16

3.4.1 Physical Implementation of Discrete Quantum Walks 19

3.5 Quantum Walk Neural Networks . 20

3.5.1 Bank . 21
3.5.2 Walk . 23
3.5.3 Diffusion . 24

vii

3.5.4 Node and Neighborhood Ordering . 25
3.5.5 Relation to Attention Based Graph Neural Networks 25

3.6 Experiments . 27

3.6.1 Node Regression . 28
3.6.2 Graph Classification . 30
3.6.3 Graph Regression . 33

3.7 Alternative Formulations of QWNN . 34
3.8 Limitations . 36
3.9 Conclusion . 37

4. ASYMMETRIC NODE SIMILARITY EMBEDDING FOR
DIRECTED GRAPHS . 38

4.1 Introduction . 38
4.2 Problem Definition . 40
4.3 Background and Related Work . 41
4.4 Method . 43

4.4.1 Sampling Random Walks . 44
4.4.2 Hypersphere Embedding . 46
4.4.3 Comparison to Other Embedding Spaces . 47

4.5 Experiments . 49

4.5.1 Lattice Example . 50
4.5.2 Link Prediction . 51

4.6 Conclusion . 54

5. FILTERED MANIFOLD ALIGNMENT . 55

5.1 Introduction . 55
5.2 Manifold Alignment . 56
5.3 Filtered Manifold Alignment . 58

5.3.1 Feature-Level Alignment . 63
5.3.2 Complexity Analysis and Extensions . 64

5.4 Experiments . 65

5.4.1 Datasets . 65
5.4.2 Experimental Setup . 68
5.4.3 Evaluation . 69
5.4.4 Inductive Performance . 73

viii

5.4.5 Hyper-Parameter Evaluation . 74

5.5 Related Work . 76
5.6 Conclusion . 77

6. CONCLUSION . 78

6.1 Future Work . 80

BIBLIOGRAPHY . 82

ix

LIST OF TABLES

Table Page

3.1 Temperature Prediction Results (RMSE ± STD) . 30

3.2 Graph Classification Datasets Summary . 32

3.3 Graph Classification Accuracy (Mean ± STD) . 32

3.4 Atomization Energy Prediction Results . 34

3.5 Comparison of QWNN Formulations . 36

4.1 Link Prediction Area Under Curve (AUC) . 53

5.1 Office + Caltech 10 Classification Accuracy using SURF Features 70

5.2 Office + Caltech 10 Classification Accuracy using DeCaf6 Features 71

5.3 Office 10 Classification Accuracy SURF to DeCaf6 Features 71

5.4 MNIST-USPS and Caltech-ImageNet-VOC Classification
Accuracy . 72

6.1 Caltech-ImageNet-VOC Multi-Source Classification Accuracy 81

x

LIST OF FIGURES

Figure Page

3.1 Classical and quantum walk distributions. The probability
distribution of a classical random walk (Top) and a quantum
random walk (Bottom) across the nodes of a lattice graph over
four steps from left to right. 19

3.2 Quantum walk neural network diagram. The feature matrix X
is used by the banks to produce the coin matrices C used in each
step layer as well in the final diffusion process. The superposition
ΦΦΦ evolves after each step of the walk. The diffusion layer diffuses
X using each superposition {ΦΦΦ(0),ΦΦΦ(1), ...ΦΦΦ(T)} and concatenates
the results to produce the output Y. 21

3.3 Comparison of a classical walk and a learned quantum walk.
The classical and quantum random walks evolve from left to right
over 4 steps. Both walks originate at the highlighted node. At
each step, the brighter colored nodes correspond to a higher
probability of the random walker at that node. A classical walk,
as used in GCN and DCNN, diffuses uniformly to neighboring
nodes. The learned quantum walk can direct the diffusion process
to control the direction information travels. The third and fourth
steps of the quantum walk show the information primarily
directed southeast. 29

4.1 Example embedding of a directed lattice. The original lattice
(a) and vector embeddings (b). The direction and magnitude of
the vector field illustrates the bias of the similarity measure across
the space. 51

4.2 AUC as a function of walk length. The AUC for varying the
walk length of ANSE and ANSE-H when embedding the nodes of
the Cora dataset. Both ANSE and ANSE have an optimal walk
length of 3. 53

xi

5.1 Comparison of graph filtering methods. The original Laplacian
(a) is composed of two 20 node Erdős–Rényi graphs with several
random connecting edges. The standard filter (b) shows the
matrix recomposed from half of its eigenvectors. The subgraph
filter (c) performs the same eigen-filter on each subgraph before
combining them via the linking edges resulting in smoother
off-diagonal blocks. 60

5.2 Example FMA process. (a) A random sample of 400 points are
collected from a noisy 3D swiss roll manifold and a noisy 3D
S-curve manifold. (b) The datapoints from the two manifold are
embedded independently onto a two dimensional manifold via
spectral embedding. (c) The two embeddings are aligned onto the
same 1D manifold. 62

5.3 Example Images from the Office+Caltech Datasets. Each set
of images contains a random image with each of the labels:
backpack, bike, laptop, and mug. 67

5.4 Example from the MNIST and USPS datasets. Each set of
digits contains a random sample of 48 images. MNIST (a) images
are 48x48 pixels. USPS (b) images are 16x16 pixels. 67

5.5 Runtime comparison of alignment methods. The time to align
each pair of domains in the Caltech-ImageNet-VOC dataset is
given for each of the 7 domain alignment methods tested. 72

5.6 Inductive classification accuracy of FMA-F on MNIST-USPS
Classification accuracy on the training samples and the withheld
test samples are given for USPS as the target domain (a) and for
MNIST as the target (b). As the training size expands, the
classification accuracy approaches the training accuracy. 74

5.7 Classification accuracy as a function of embedding
dimension. The effect on the overall classification accuracy for
the office-Caltech dataset due to varying the final embedding
dimension. 75

5.8 Classification accuracy as a function of α. The effect on the
overall classification accuracy for the office-Caltech dataset due to
varying the edge weights of the nearest neighbor graphs. 75

xii

CHAPTER 1

INTRODUCTION

Networks and graphs are ubiquitous in the modern information age. Graphs form

the basis for modeling everything from physical systems, such as transportation net-

works, to relational systems, such as social networks. The representational power of

graphs makes them an essential tool in many data processing tasks. While unstruc-

tured machine learning methods are unable to distinguish two samples with identical

features, graph-based algorithms can classify such objects independently based on

their relationships to other data points. This is a core distinguishing advantage to

machine learning methods that utilize graph-structure in the data. This thesis studies

a variety of problems in machine learning in which graphs are either defined within

the scope of the problem or are constructed as part of the solution.

Graph signal processing [66] is a field that studies how to apply standard signal

processing techniques to signals that lie on graphs as well as develops unique meth-

ods that do not have parallels in standard signal processing. Tasks in graph signal

processing deal with classifying entire graphs or individual nodes within the graphs.

In these problems, the structure of the graph and the signal are intertwined and both

contribute to the classifications. Alternatively, regression can replace classification as

the goal such that a graph and signal map to a continuous quantity rather than a

discrete label.

Node embedding is the process of mapping the individual nodes of a graph to a

vector space while preserving some aspects of the relationships encoded in the original

graph. These vectors are mathematical representations of the objects in the original

1

graph that are easily manipulated by downstream tasks. Stochastic deep learning

approaches based upon random walks on the graph [41, 68] have become popular

methods of node embedding due to their scalability to large web-scale graphs. These

approaches have strong parallels to word embedding methods in natural language

processing [62].

Domain adaptation is a subset of transfer learning concerned with applying knowl-

edge from one source domain to another related target domain. Transferring knowl-

edge from the source domain to the target domain often requires learning a transfor-

mation due to differing feature distributions or entirely different feature sets between

the domains. Manifold based alignment procedures [43, 96] project the two domains

onto a shared manifold using graphs as discrete approximations for the continuous

manifolds.

This work presents several novel techniques that span both a variety of machine

learning tasks as well as multiple learning paradigms. These tasks range from graph

and node classification and regression to node embedding to domain adaptation. Two

techniques presented are deep learning methods which sample data from a training

set and iteratively improve performance on the designated task. A third technique

offers a more classical machine learning method in which a closed form solution for

processing the entire dataset in one go is presented.

1.1 Contributions

This dissertation makes several contributions to the study of machine learning by

utilizing graph-structure and dynamics. Graphs provide powerful tools for modeling

the interactions between objects in a form that can aid in processing both the indi-

vidual objects as well as collections of objects. We propose three machine learning

algorithms and multiple variations that cover a range of tasks and disciplines spanning

supervised, semi-supervised, and unsupervised learning.

2

The first contribution of the dissertation is quantum walk neural net-

works , QWNN (Chapter 3), a neural network model based on using quantum ran-

dom walks to propagate information throughout a graph. QWNNs take a graph and

a signal across the nodes in the graph as input and outputs a new diffused signal

that is the result of a quantum random walk on the graph. This diffused signal is

usable across a span of different types of tasks such as regression or classification on

the graph. Quantum walk neural networks are formulated as a fully differentiable

sequence of layers allowing backpropagation and the use of training data to tune the

parameters of the quantum walk to improve the performance of the diffused features

for the downstream learning task. Additionally, the output of QWNN is equivariant

to node ordering.

The second contribution of the dissertation is asymmetric node simi-

larity embeddings, ANSE (Chapter 4), a neural network that embeds the nodes of

a directed graph into a vector space using an asymmetric similarity function. Unlike

embedding methods designed for undirected graphs, ANSE preserves both unidirec-

tional relationships as well as bidirectional relationships in the embedding space.

ANSE learns both the vector representations of the nodes and the parameters of the

similarity function simultaneously in a stochastic setting by taking random walks on

the directed graph. This allows the technique to scale to web-sized graphs.

The third contribution of the dissertation is semi-supervised filtered

manifold alignment , FMA (Chapter 5), a machine learning method that can effi-

ciently embed multiple datasets into a vector space in which samples from different

datasets can be directly compared. FMA takes a two-step approach to domain adap-

tation, first projecting each domain to a low dimensional space and then aligning

these spaces. This approach leads to a reduced computational complexity of FMA

compared to similar domain adaptation algorithms and provides improved alignment

benefits from filtering noise in each domain. We propose both nonlinear (instance-

3

based) and linear (feature-based) variations of the algorithm. Additionally, FMA can

embed samples not in the initial alignment set and can align any number of domains

simultaneously.

The rest of the dissertation is organized as follows. Chapter 2 provides the back-

ground and related work for the research. Chapters 3, 4, and 5 present the major

contributions of this work in the order listed above. Each of these chapters outlines

their respective method and provides supporting experiments. Finally, Chapter 6

provides concluding remarks.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an outline of the terminology necessary for developing and

understanding graph based machine learningtechniques and provides a review of re-

lated work in graph signal processing and the machine learning problems addressed

in this work.

2.1 Matrix and Tensor Notation

Throughout this work, lower case letters (x) are used to represent scalar variables

and capital variables (X) are used to represent scalar constants. Bolded lowercase

letters (φφφ) represent vectors and bolded uppercase letters (ΦΦΦ) represent matrices and

higher dimensional tensors. The i, j element of a tensor is given by subscripts Xij,

the i row of a tensor is given by a single subscript Xi, and the i section of a higher

dimension of a tensor uses dots to indicate the number of preceding dimensions: e.g

the i slice along the third dimension is X··i.

The inner or dot product of two vectors is given by: aTb or 〈a,b〉 and is equal

to
∑

i aibi. The outer product is a ⊗ b where (a ⊗ b)ij = aibj. Several forms of

matrix and tensor multiplication are used. The inner product of A and B is given

by AB =
∑

i A··i ⊗Bi··. We use a tensor double inner product, A · ·B to perform a

contraction over the last two dimensions of A and the first two dimensions of B:

A · ·B =
∑
i

∑
j

A...ij ⊗Bji.... (2.1)

5

The generalization of an outer product to tensors is expressed as A ⊗ B where:

(A⊗B)m1m2m3...n1n2n3...
= Am1m2m3...Bn1n2n3.... Finally, the elementwise product of

two vectors, matrices, or higher dimensional tensors is given by a ∗b or A ∗B where

(A ∗B)ijk... = Aijk...Bijk....

2.2 Graph Terminology

A simple graph, G = (V,E) is a set of vertices (nodes) V = {v0, v1, ..., vN−1}

and a set of edges E = {(vi, vj) : vi, vj ∈ V } ⊆ {V × V }. In general, nodes in the

graph represent objects and edges represent correspondences or relationships between

objects. The degree of a node d(vi) is equal to the number of edges incident to that

node, thus
∑

i d(vi) = 2|E|.

Graphs can be weighted, directed, both, or neither. A weighted graph defines

a function w that maps each edge to a real value w : E → R. A directed graph

(digraph) induces an ordering on each edge (vi, vj), so that it points from the source

vertex vi to the target vertex vj. In this work, graphs that are weighted or directed

will be explicitly stated as so and can otherwise be assumed to be unweighted and

undirected.

Several categories of graphs have particular importance for the work in this thesis.

A graph is connected if there is a path (a continuous sequence of edges

(v0, v1), (v1, v2), ..., (vn−1, vn) : (vi, vi+1) ∈ E) between all pairs of vertices (v0, vn) ∈

V × V . A graph is called k-regular if each vertex has the same degree, i.e. ∀ v ∈ V :

d(v) = k. Finally, a graph is bipartite if the nodes of the graph can be partitioned

into two distinct non-overlapping sets such that all edges in the graph cross from one

set to the other, i.e. given the partition V=V1 ∪ V2 with V1 ∩ V2 = ∅, for each edge

(vi, vj) ∈ E, either vi ∈ V1 and vj ∈ V2 or vi ∈ V2 and vj ∈ V1.

Graphs are commonly represented by several different matrices. Their definitions

below are given for the case of a simple graph, but most have intuitive extensions to

6

the weighted and directed graph cases as well. The adjacency matrix:

Aij


1, if (vi, vj) ∈ E

0 otherwise

(2.2)

encodes the relationships between vertices and edges in the graph. Each vertex in

the graph corresponds to a row and a column in the adjacency matrix and edges

in the graph are represented by the value one (or alternatively the weight of the

edge) in the corresponding row-column indices. The adjacency matrix is symmetric

for an undirected graph: A = AT . The degree matrix D is a diagonal matrix

with diagonal elements Dii =
∑

j Aij = d(vi). The graph Laplacian, L, combines

the degree and adjacency matrices: L = D − A. The Laplacian is a diagonally

dominant matrix with rows and columns both summing to 0. The eigenvalues of

the Laplacian, λi : 0 ≤ i ≤ min(2dmax, |V |), where dmax is the maximum degree of

the graph, are real and nonnegative. The smallest eigenvalue of the graph Laplacian

is 0 and has multiplicity equal to the number of disconnected components of the

graph. The normalized Laplacian L̃ = D−1/2LD−1/2 is often used in place of the

regular Laplacian. The eigenvalues of the normalized Laplacian matrix are bounded:

0 = λ0 ≤ λi ≤ 2.

A discrete time random walk on a graph is a sequence of nodes produced by a

walker that begins on node v of the graph and with uniform probability selects a

random edge incident to v to traverse to node v′ at each step in the walk. The k-

neighborhood of a node in the graph is the set of all nodes reachable within a walk of

length k. The probability distribution of the walker’s location after t steps is given

by pt = (AD−1)tp0, where p0 is the initial distribution. All graphs have a stationary

distribution p∗ = AD−1p∗, where p∗(v) = d(v)
2|E| . For any connected, non-bipartite

graph, any initial random walk distribution p0 will converge to p∗ as t→∞. In the

bipartite graph case, the walker distribution alternates between the two sets of nodes

7

in the graph. The graph can be amended to include a self loop (an edge from a node

back to itself) on each vertex to remove the oscillatory effect that impedes the walker

from reaching the stationary distribution.

2.3 Graph Signal Processing

Graph signal processing [83, 66] is a topic that focuses on computations using

signals that lie on a graph. A signal over a graph is defined as a function that maps

each vertex to a real value f : V → R. The signal is often expressed as a vector

f ∈ RN where fi = f(vi).

Two common approaches to graph signal processing are spectral methods and

spatial methods. Spectral methods take their name from performing a graph spectral

transform, or graph Fourier transform, of the signal before processing. The graph

Fourier transform is defined as the expansion of f onto the eigenvectors of the graph

Laplacian. Given a matrix U whose columns are composed of the eigenvectors of

L such that the eigenvalues of the associated eigenvectors are in nondecreasing or-

der, the graph Fourier transform of f can be expressed as f̂ = UT f . This transform

converts the graph signal from the vertex domain into the graph frequency domain.

Afterwards, standard signal processing techniques for frequency signals can be ap-

plied.

The spatial approach to graph signal processing forgoes the spectral transform.

Spatial methods use the adjacency and Laplacian matrices directly to perform com-

putations based on node neighborhoods and diffusion processes (e.g. random walks)

across the graph.

2.4 Graph Convolutional Neural Networks

Graph convolutional neural networks are a type of neural network architecture

inspired by image convolutional neural networks. The translation of a convolutional

8

neural net from the image domain to the general graph domain is imprecise. Image

convolutions are designed to exploit the rigid grid structure of pixels in an image,

a structure that is not guaranteed for the nodes of an arbitrary graph. Several ap-

proaches to graph convolutions have thus been proposed which focus on translating

specific aspects of image convolutional networks to the graph domain.

A convolution can be viewed as a function with local support over the graph.

Alternatively, via the convolutional theorem, it can be viewed as a product of two

functions in the frequency domain of the graph. Bruna et al. [23] propose a pair

of graph convolutional neural networks that each tackled the problem of adapting a

convolutional neural network from one of these two perspectives. The first approach

connects inputs according to the structure of the graph. The N nodes of the graph

are divided into M << N (potentially overlapping) subgraphs. Input to the neural

network is partitioned according to these subgraphs and the partitions are each pro-

cessed separately by fully connected layers. A subsequent layer in the neural network

then concatenates the outputs from these layers. This approach is computationally

inexpensive and builds on previous work on locally connected neural networks. How-

ever, this approach lacks several features of classical image CNNs, including reusing

a compact set of weights across the image or graph to simplify and increase learning

speed.

The second proposed approach from [23] performs a convolution in the spectral

domain. The eigenvectors of the graph Laplacian are used to perform a graph Fourier

transform. Given a graph signal X ∈ RN×F and the eigenvectors of the Laplacian

U ∈ RN×N , the pointwise product between the transformed signal and a filter Θ is

computed and then transformed back to the spatial domain and passed through a

nonlinear function h (e.g. a sigmoid function):

Y = h
(
U(Θ�UTX)

)
. (2.3)

9

Because the eigenvectors of the Laplacian are orthonormal, the inverse Fourier

transform can be performed using the transpose of the eigenvector matrix. A subset

of the eigenvectors corresponding to the smallest eigenvalues can be used to perform

a band limited transform to filter out the high-frequency components of the original

signal. The spectral convolution layer is complementary to the spatial convolution

layer. The spectral convolution is a global transform with respect to the graph, can

be implemented using a weight matrix whose size is independent of the graph, and is

applicable to graphs of different shapes and sizes. The spatial convolution is local to

neighborhoods around each node in the graph; it uses weight matrices proportional

to the size of these neighborhoods; and it can only be implemented for a single graph

at a time.

A downside of spectral convolution is the computational cost of calculating the

eigenvectors of the graph Laplacian. Several papers have provided means of alleviating

some of this cost and have formed links between the spectral and spatial approaches.

Deferrard et al. [30] uses Chebychev polynomials to approximate the eigenvectors

used for the spectral transform. These polynomials are less computationally expen-

sive to compute than exact eigenvectors and have the additional benefit of enforcing

local support similar to the locally connected convolutional layer. For a kth order

polynomial approximation, support for the Chebyshev convolution is restricted to a

k-neighborhood around each vertex. Kipf and Welling [49] further provide a first

order approximation to the localized spectral filters. Their network, coined a graph

convolution network (GCN), has layers of the form:

Y = h
(
D̃−

1
2 ÃD̃−

1
2 XΘ

)
. (2.4)

Their convolution uses an augmented adjacency matrix Ã = A + I equivalent to

adding a self-loop to every node in the graph. The degree matrix is similarly aug-

mented: D̃ = D + I.

10

An alternative spatial construction of a graph convolution network, termed a

diffusion convolution neural network (DCNN), was proposed in [9]. The architecture

uses a diffusion convolution layer that has compact spatial support, but also maintains

shareable weights for different graphs. The diffusion convolution layer computes the

product of the input signal and successive powers of the graph random walk matrix.

The output of the layer is the tensor of stacked matrices [Y0 Y1 ... YK], where each

matrix Yi is calculated as:

Yi = h(Θi � (AD−1)iX). (2.5)

The weight matrix Θ ∈ RK×F is applied individually to each node in the graph.

11

CHAPTER 3

QUANTUM WALK NEURAL NETWORKS

3.1 Introduction

While classical neural network approaches for structured data have been well in-

vestigated, there is growing interest in extending neural network architectures beyond

grid structured data in the form of images or ordered sequences [51] to the domain

of graph-structured data [9, 23, 39, 49, 79, 92]. Following the success of quantum

kernels on graph-structured data [11, 12, 13], a primary motivation of this work is

to explore the application of quantum techniques and the potential advantages they

might offer over classical algorithms. In this work, we propose a novel quantum walk

based neural network architecture that can be applied to graph data.

3.2 Related Work

Gupta and Zia [42] and Altaivsky [5] among others proposed quantum versions

of artificial neural networks. Our proposed quantum walk neural network is graph

neural network architecture based on discrete quantum walks (see Biamonte et al. [16]

and Dunjko et al. [33] for an overview of the larger emerging field of quantum machine

learning). Various researchers have worked on quantum walks on graphs. Ambainis

et al. [7] studied quantum variants of random walks on one-dimensional lattices.

Farhi and Gutmann [36] reformulated interesting computational problems in terms

of decision trees and devised quantum walk algorithms that could solve problem

instances in polynomial time compared to classical random walk algorithms that

require exponential time. Aharonov et al. [2] generalized quantum walks to arbitrary

12

graphs. Subsequently, Rohde et al. [71] studied the generalization of discrete time

quantum walks to the case of an arbitrary number of walkers acting on arbitrary graph

structures and their physical implementation in the context of linear optics. Quantum

walks have recently become the focus of many graph-analytics studies because of

their non-classical interference properties. Bai et al. [11, 12, 13] introduced novel

graph kernels based on the evolution of quantum walks on graphs. They defined an

overall similarity of two graphs in terms of the similarities between the evolution of

quantum walks on the two graphs. Quantum kernel based techniques were shown

to outperform classical kernel techniques in effectiveness and accuracy. In [72, 73],

Rossi et al. studied the evolution of quantum walks on the union of two graphs to

define the kernel between two graphs. These closely related works on quantum walks

and the success of quantum kernel techniques motivated our approach in developing

a quantum neural network architecture.

In recent years, new neural network techniques that operate on graph-structured

data have become prominent. Gori et al. [39], followed by Scarselli et al. [79], propose

recursive neural network architectures to deal with graph-structured data. Bruna et

al. [23] studied the generalization of convolutional neural networks (CNNs) to graph

signals through two approaches, one based on hierarchical clustering of the graph, and

the second based on using the spectrum of the graph Laplacian as a Fourier transform.

Defferrard et al. [30] proposed polynomial filters to reduce the learning complexity

of spectral graph convolutional networks as well as to restrict their support from the

entire graph to local neighborhoods.

Along with the spectral approaches described above, a number of spatial ap-

proaches have been proposed that utilize random walks to extract and learn informa-

tion from the graph. For comparison, we detail several modern approaches. Atwood

and Towsley [9] propose a spatial convolutional method, Diffusion Convolutional Neu-

ral Networks (DCNN), that performs random walks on the graph and combines in-

13

formation from spatially close neighbors. Given a graph G = {V,E} and a feature

matrix X, DCNN uses powers of the random walk probability matrix P = D−1A

to diffuse information across the graph. A is the adjacency matrix and D is the

diagonal degree matrix such that Dii =
∑

j Aij. The random walk matrix raised to

the kth power, Pk, diffuses information from each node to every node exactly k hops

away from it. The output Y of the DCNN is a weighted combination of the diffused

features from across the graph, given by

Y = h (W �P∗X) , (3.1)

where P∗ is the stacked tensor of powers of transition matrices from P0 to Pk, the

operator � represents element-wise multiplication, W are the learned weights of the

diffusion-convolutional layer, and h is an activation function (e.g. rectified linear

unit).

A second neural network architecture by Kipf and Welling [49], Graph Convo-

lutional Neural Networks (GCN), was proposed to tackle semi-supervised learning

on graph-structured data through a CNN architecture that uses localized approxi-

mation of spectral graph convolutions. GCN simplified the original spectral-based

frameworks of Bruna et al. [23] and Defferrard et al. [30] for improved scalability.

The method uses the augmented adjacency matrix Ã = A + I and degree matrix

D̃ii =
∑

j Ãij to diffuse the input with respect to the local neighborhood according

to:

Y = h
(
D̃−

1
2 ÃD̃−

1
2 XW

)
. (3.2)

As in DCNN, W are learning weights and h is an activation function.

Many graph convolution layers are inspired by classical CNNs used in image recog-

nition problems. However, other deep learning models have also inspired graph-

based variants. Graph Attention Networks (GAT) [92] are inspired by the attention

14

mechanisms commonly applied in natural language processing for sequence-based

tasks [10, 91]. GAT uses a graph attention layer that combines information from

neighboring nodes through an attention mechanism. Unlike the prior approaches,

this allows a nonuniform weighting of the features of each node’s neighbors. The

method uses attention coefficients

eij = att (WXi,WXj) , (3.3)

where W is a learned weight matrix that linearly transforms feature vectors, Xi

and Xj, of nodes vi and vj, and att is an attention function (e.g. inner product).

The attention coefficients eij are normalized through the softmax function to obtain

normalized coefficients

αij =
eij∑

vk∈N (vi)
eik
, (3.4)

where N (vi) is the neighbor set of node vi. The output of node i is given as

Yi = h

 ∑
vj∈N (vi)

αijWXj

 , (3.5)

where h is an activation function, such as tanh or reLU .

3.3 Preliminaries

This section provieds a review of the notation and operations used to describe

a quantum walk. A Hilbert space H is a generalization of euclidean space to any

number of dimensions, finite or infinite. Hilbert spaces are vector spaces with defined

inner products: 〈·, ·〉H. Except where otherwise noted, 〈x,y〉H = xHx where XH is

the conjugate transpose of X. An N -dimensional Hilbert space is spanned by N basis

15

vectors: {ên, i ∈ 1, ..., N} where ei is a vector of zeros with a one in the ith position.

Vectors in H are formed from complex combinations of basis vectors:

ψψψ =
∑
i∈N

αiêi (3.6)

such that α ∈ C. A superposition is a vector ψψψ ∈ H with unit length, i.e.
∑

i ‖αi‖2 =

1, that represents a combination of states of the system existing simultaneously. When

we take a measurement of ψψψ, the superposition collapses to one of the basis states.

A unitary operator U is an operator that acts on a Hilbert space preserving the

inner product: U : H → H such that 〈Uψψψ,Uφφφ〉H = 〈ψψψ,φφφ〉H.

In the context of a quantum walk, the space of the system HW is described by

the tensor product of two Hilbert spaces, the position (vertex) space HP and the coin

(spin) space HC such that HW = HP ⊗ HC . The state of the system then is the

product of the superposition of each of these spaces: ΦΦΦ = ψψψp ⊗ ψψψc, where ψψψp ∈ HP

and ψψψc ∈ HC .

3.4 Graph Quantum Walks

Motivated by classical random walks, quantum walks were introduced by Aharonov

et al. in 1993 [3]. Unlike the stochastic evolution of a classical random walk, a quan-

tum walk evolves according to a unitary process. The behavior of a quantum walk

is fundamentally different from a classical walk. In a quantum walk, there is inter-

ference between trajectories of the walk. Two kinds of quantum walks have been

introduced in the literature; namely, continuous time quantum walks [36, 74] and

discrete time quantum walks [58]. As the name implies, a continous time quantum

walk is a continuous process whereas a discrete time quantum walk evolves in discrete

steps. Quantum walks have recently received much attention because they have been

shown to be a universal model for quantum computation [27]. In addition, they have

16

numerous applications in quantum information science such as database search [81],

graph isomorphism [69], network analysis and navigation, and quantum simulation.

Discrete time quantum walks were initially introduced on simple regular lattices

[65] and then extended to general graphs [47]. Quantum walk neural networks

(QWNN) use the formulation of discrete time quantum walks outlined in [6, 47].

Given an undirected graph G = (V,E), we introduce a position Hilbert space HP

that captures the superposition over various positions (nodes), in the graph. We

define HP to be the span of the position basis vectors
{

ê
(p)
v , v ∈ V

}
. The position

vector of a quantum walker is a linear combination of position state basis vectors,

ψψψp =
∑
v∈V

αvê
(p)
v (3.7)

where {αv ∈ C, v ∈ V } are coefficients whose sum has unit L2-norm:
∑

v ‖αv‖2 = 1.

The probability of the walker residing at vertex v is ‖αv‖2.

Similarly, we introduce a coin Hilbert space HC that captures the superposition

over various spin directions of the walker on each node of the graph. We define HC

to be the span of the coin basis vectors
{

ê
(c)
i , i ∈ 1, . . . , dmax

}
, where i enumerates

the edges incident on a vertex v and dmax is the maximum degree of the graph. We

will use d instead of dmax for conciseness. The coin (spin) state of a quantum walker

is a linear combination of coin state basis vectors,

ψψψc =
∑

i∈1,...,d

βv,iê
(c)
i (3.8)

where {βv,i, i ∈ 1, . . . , d} are coefficients whose sum has unit L2-norm:
∑

i |βv,i|
2 = 1.

If a measurement is done on the coin state of the walker at vertex v, |βv,i|2 denotes

the probability of finding the walker in coin state i. The Hilbert space of the quantum

walk is the tensor product of the two aforementioned Hilbert spaces: HW = HP⊗HC .

17

Two unitary operators, the coin and shift operators, govern the time-evolution of

discrete time quantum walk over graph G. Let ΦΦΦ(t) = ψψψ
(t)
p ⊗ ψψψ(t)

c in HW denote the

state of the walker at time t. At each time-step, the coin operator CCC transforms the

coin state of the walker at each vertex,

ψψψ(t)
p ⊗ψψψ(t+1)

c = (III ⊗CCC)(ψψψ(t)
p ⊗ψψψ(t)

c). (3.9)

III denotes the identity operator. After transforming the coin (spin) states, the shift

operator SSS swaps the states of two vertices connected by an edge (i.e. for an edge

(u, v), if u is the ith neighbor of v and v is the jth neighbor of u, then the coefficient

corresponding to the basis state ê
(p)
v ⊗ ê

(c)
i is swapped with the coefficient of the basis

state ê
(p)
u ⊗ê

(c)
j). The shift operator operates on both coin and position Hilbert spaces,

ΦΦΦ(t+1) = ψψψ(t+1)
p ⊗ψψψ(t+1)

c = SSS(ψψψ(t)
p ⊗ψψψ(t+1)

c). (3.10)

In short, the unitary evolution of the quantum walk is governed by the operator UUU =

SSS (III ⊗CCC). The state of the quantum walk evolves through successive applications of

UUU over time.

The choice of coin operator and the initial superposition of the walker control how

the diffusion process evolves over the graph and over time. Altering these operators

provides QWNN additional degrees of freedom for controlling the flow of information

over the graph that do not exist in classical random walks. Figure 3.1 demonstrates

how the diffusion behavior of a classical random walk differs from a discrete time

quantum walk. Ahmad et al. [4] showed that a discrete quantum walk on a line,

using position-dependent coin operators can lead to quantitatively different diffusion

behaviors with different choices of coins. Our work uses multiple non-interacting

quantum walks acting on arbitrary graphs, as introduced in Rhode et al. [71], to

learn patterns in graph data. Calculating separate quantum walks originating from

18

Figure 3.1: Classical and quantum walk distributions. The probability distri-
bution of a classical random walk (Top) and a quantum random walk (Bottom) across
the nodes of a lattice graph over four steps from left to right.

each node in the graph allows us to construct a diffusion matrix where each entry

gives the relationship between the starting and ending nodes of a walk. This diffusion

matrix can be used to determine the spread of node features across the graph.

3.4.1 Physical Implementation of Discrete Quantum Walks

Over the past few years, there have been several proposals for the physical im-

plementation of a quantum walk. Quantum walks are unitary processes that are

naturally implementable in a quantum system by manipulating their internal struc-

ture. The internal structure of the quantum system should be engineered to be able

to encode the position and coin Hilbert spaces of the quantum walk. Quantum sim-

ulation based methods have been proposed using classical and quantum optics [105],

nuclear magnetic resonance [76], ion traps [89], cavity QED [1], optical lattices [45],

Bose Einstein condensate [60], and quantum dots [59] to implement the quantum

walk.

19

Circuit implementations of quantum walks have also been proposed. While most

of these implementations focus on graphs that have a high degree of symmetry [55] or

are sparse [46, 26], there is some recent work on circuit implementations on non-degree

regular dense graphs [56].

3.5 Quantum Walk Neural Networks

Many graph neural networks pass information between two nodes based on the

distance between the nodes in the graph. This is true for both graph convolution net-

works and diffusion convolution networks. However, quantum walk neural networks

are similar to graph attention networks in that the amount of information passed

between two nodes also depends on the features of the nodes. In graph attention

networks, this is achieved by calculating an attention coefficient for each of a node’s

neighbors. In quantum walk neural networks, the coin operator alters the spin states

of the quantum walk to prioritize specific neighbors.

A QWNN, as shown in Figure 3.2, learns a quantum walk on a graph by means

of backpropagating gradient updates to the coin operators used in the walk. QWNN

use the walker distribution induced by the quantum random walk to form a diffusion

operator which acts on the input feature matrix.

QWNN evolves a walk using a unitary coin matrix, C produced by a bank, to

modify the spin state of the walker ΦΦΦ according to ΦΦΦ(t+1) = ΦΦΦ(t)C(t) and then swaps

states along the edges of the graph. Features X are then diffused across the graph by

converting the states of the walker into a probability matrix, P, and using it to diffuse

the feature matrix: Y = PX. Learning is done by backpropagating the gradient of a

loss function to the parameters that define the coin matrix.

QWNN produces the coin matrix by a node and time dependent function we call a

bank. The bank forms the first of the three primary parts of a QWNN. It is followed

by the walk and the diffusion. The bank produces the coin matrices used to direct

20

Figure 3.2: Quantum walk neural network diagram. The feature matrix X is
used by the banks to produce the coin matrices C used in each step layer as well
in the final diffusion process. The superposition ΦΦΦ evolves after each step of the
walk. The diffusion layer diffuses X using each superposition {ΦΦΦ(0),ΦΦΦ(1), ...ΦΦΦ(T)} and
concatenates the results to produce the output Y.

the quantum walk, the walk layers determine the evolution of the quantum walk at

each step, and the diffusion layer uses these states to spread information throughout

the graph.

3.5.1 Bank

The coin operator modifies the spin state of the walk and is thus the primary lever

by which a quantum walk is controlled. The coin operator can vary spatially across

nodes in the graph, temporally along steps of the walk, or remain constant in either

or both dimensions. In QWNN, the bank produces these coins for the quantum walk

layers.

When the learning environment is restricted to a single static graph, the bank

stores the coin operators as individual coin matrices distributed across each node in

the graph. However, for dynamic or multi-graph situations, the bank operates by

learning a function that produces coin matrices from node features f : X → Cd×d

where d is the maximum degree of the graph. In general, f can be any arbitrary

21

function that produces a matrix followed by a unitary projection to produce a coin

C. This projection step is expensive as it requires a singular value decomposition of

a d× d matrix.

In recurrent neural networks (RNN), unitary matrices are employed to deal with

exploding or vanishing gradients because backpropagating through a unitary matrix

does not change the norm of the gradient. To avoid expensive unitary projections,

several recursive neural network architectures use functions whose ranges are subsets

of the set of unitary matrices. A common practice is to use combinations of low

dimensional rotation matrices [8, 44].

In this work, we focus on elementary unitary matrices of the form U = I −

2wwT/(wTw) where I denotes the identity matrix and w is any real valued vector.

These matrices can be computed efficiently in the forward pass of the neural network

and their gradients can similarly be calculated efficiently during backpropagation.

While this work focuses on using a single elementary matrix for each coin operator,

any unitary matrix can be composed as the product of multiple elementary unitary

matrices. The QWNN bank produces the coin matrix for node vi according the

following:

Ci = I− 2f(vi)f(vi)
T/(f(vi)

Tf(vi)). (3.11)

We propose two different functions f(vi).

The first function:

f1(vi) = WTvec
(
XN (vi)

)
+ b, (3.12)

where vec
(
XN (vi)

)
denotes the column vector of concatenated features of the neigh-

bors of vi, is a standard linear function parameterized by a weight matrix W ∈

R(Fd)×d, with F the number of features, and a bias vector b ∈ Rd. This method has

individual weights for each node but is not equivariant to the ordering of the nodes in

the graph. This means that permuting the neighbors of vi changes the output of the

22

function. We mitigate this effect by using a heuristic node ordering based on node

centrality that we outline in Section 3.5.4.

The second function:

f2(vi) = XN (i)WXT
i , (3.13)

with W ∈ RF×F , computes a similarity measure between the node vi and each of its

neighbors. This method is equivariant with respect to the node ordering of the graph

(i.e. permuting the neighborhood of vi equally permutes the values of f2(vi)). This

in turn allows the entire neural network to be invariant to node ordering.

3.5.2 Walk

For a graph with N vertices, the QWNN processes N separate, non-interacting

walks in parallel. One walk originates from each node in the graph. The walks

share the same bank functions. A T -step walk produces a sequence of superpositions

{ΦΦΦ(0),ΦΦΦ(1), ...,ΦΦΦ(T)}. For a graph with maximum degree d, the initial superposition

tensor ΦΦΦ(0) ∈ CN×N×d is initialized with equal spin along all incident edges to the

node it begins at such that (ΦΦΦ
(0)
ii·)

HΦΦΦ
(0)
ii· = 1 and ∀i 6=j : ΦΦΦ

(0)
ijk = 0. The value of ΦΦΦ

(t)
ijk

denotes the amplitude of the i-th walker at node vj with spin k after t steps of the

walk.

A complete walk can be broken down into individual step layers. Each quantum

step layer takes as input the current superposition tensor ΦΦΦ(t), the set of coins op-

erators C(t) produced by the bank, and a shift tensor S ∈ ZN×d×N×d
2 that encodes

the graph structure: Smjni = 1 iff vm is the the ith neighbor of vn and vn is the jth

neighbor of vm. The superposition evolves according to:

ΦΦΦ(t+1) = ΦΦΦ(t)C(t)··S (3.14)

whereA··B denotes the tensor double inner product of A and B. Equivalently, for an

edge (vm, vn), with vm being the ith neighbor of vn and vn being the jth neighbor of

23

vm:

ΦΦΦ
(t+1)
wmj =

(
ΦΦΦ(t)

n C(t)
n

)
wi

(3.15)

ΦΦΦ
(t+1)
wni =

(
ΦΦΦ(t)

m C(t)
m

)
wj

(3.16)

The output ΦΦΦ(t+1) is fed into the next quantum step layer (if there is one) and

finally is appended to the outputs of the other quantum step layers to form the input

to the final diffusion layer.

3.5.3 Diffusion

The superpositions at each step of the walk are used to diffuse the signal X across

the graph. Given a superposition ΦΦΦ, the diffusion matrix is constructed by summing

the squares of the spin states: PPP =
∑

k ΦΦΦ··k�ΦΦΦ··k. The value PPP ij gives the probability

of the walker beginning at vi and ending at vj similar to a classical random walk

matrix. Diffused features are computed as a function of P and X by Y = h(PX + b)

where h is an optional nonlinearity (e.g. reLU). The complete calculation for a forward

pass for the QWNN is given in Algorithm 3.1.

Algorithm 3.1: QWNN Forward Pass

1 given : Initial Superpositions ΦΦΦ(0), Shift S
2 input : Features X
3 output: Diffused Features Y

4 for t = 1 to T do
5 for All nodes vi do

6 v
(t)
i ←WTvec

(
XN (vi)

)
+ b or v

(t)
i ← XN (i)WXT

i

7 C
(t)
i ← I− 2v

(t)
i (v

(t)
i)T/((v

(t)
i)Tv

(t)
i)

8 ΦΦΦ
(t)
·i· ← ΦΦΦ

(t−1)
·i· ·C(t)

i··

9 ΦΦΦ(t) ← ΦΦΦ(t)··S
(
i.e., ΦΦΦ

(t)
wuj =

∑
v

∑
i ΦΦΦ

(t)
wviSviuj

)
10 P(t) ←

∑
k ΦΦΦ

(t)
··k �ΦΦΦ

(t)
··k

11 Y(t) ← h(P(t)X + b(t))

12 return : {Y(0),Y(1), ...,Y(T)}

24

3.5.4 Node and Neighborhood Ordering

Node ordering and by extension neighborhood ordering of each node can have

an effect on a quantum walk if the coin is not equivariant to the ordering. Given a

non-equivariant set of coins, if the order of nodes in the graph is permuted, the result

of the walk may change.

This is the case for the first of the two bank functions (3.12). We address this

issue using a centrality score. The betweenness centrality [22] of node vi is calculated

as:

g(vi) =
∑
j 6=i 6=k

σjk(vi)

σjk
(3.17)

where σjk is the number of shortest paths from vj to vk and σjk(vi) is the number of

shortest paths from vj to vk that pass through vi. A larger betweenness centrality score

implies a node is more central within the graph. Conversely, a leaf node connected

to the rest of the graph by a single edge has a score of 0. Nodes in the graph

are then ranked by their betweenness centrality and each neighborhood follows this

ranking so that when ordering a node’s neighbors, the most central nodes in the

graph come first. In this setting, a walker moving along a higher ranked edge is

moving towards a more central part of the graph compared to a walker moving along

a lower ranked edge. While the walk is still variant to the node ordering of nodes with

equal centrality score, this effect has been greatly diminished and the combination of

this node ordering with (3.12) allows geometry of the graph to have a greater influence

on the quantum walk than (3.13).

3.5.5 Relation to Attention Based Graph Neural Networks

Many spatial graph neural networks, such as GCN [49] and DCNN [9], pass in-

formation between nodes using static diffusion operators (e.g. the graph Laplacian).

Attention based graph neural networks, like QWNN, focus attention on specific neigh-

bors in the graph. This has made attention base graph neural networks a popular

25

model for graph classification problems [92, 101, 102] and graph pooling [52]. Atten-

tion based Transformer Networks [91] have also found implementations for graph-to-

sequence tasks [24].

Using graph attention networks (GAT) [92] as our primary representative of atten-

tion based methods, we compare how information is moved throughout the graph in

these models to QWNN. We observe the process at two scales: individual layers and

deep networks. Graph attention networks use a self attention mechanism (3.3–3.5) to

focus on information from specific neighbors. In GAT, the attention coefficients are

computed by concatenating a linear function of each node’s features hi with a weight

matrix W and then taking the product with an attention vector a

eij = aT

[
(Whi)

T (Wehj)
T

]T
. (3.18)

Using a softmax, eij is converted into a probability to determine the weight on the

incoming features vj.

The equivariant function used to form the coin matrices in QWNN (3.13) serves a

parallel role to the attention coefficient in GAT. An alternative attention coefficient

function to concatenation is dot product attention: eij = 〈Whi,Whj〉. The function

f2 can be equivalently written in this form. Instead of directly relating to the weight

of incoming information like eij, the value of f2(vi)[j] influences the transformation

of the spin states to and from spin j. Additionally, for QWNN, the direction of

information flow is opposite that of GAT, the quantum walk calculates the weight on

the information sent from a node, rather than received, to each neighbor of the node.

The difference is that in GAT, the information flow from u to v is dependent on the

neighbors of v, while in QWNN it is dependent on the neighbors of u.

The methods by which GAT and QWNN diffuse information over multiple layers

are even more pronounced than the differences in a single layer. In GAT, layer lk

affects layer lk+1 through the changed features at each node. GAT uses output features

26

from the last attention layer in determining the attention scores of the current layer.

In contrast, QWNN does not alter node features until the final diffusion layer. A

QWNN could be constructed to mimic GAT in this respect by including a diffusion

layer in between each step layer.

In QWNN layer lk influences layer lk+1 through the current superposition of the

walker. This gives each QWNN layer a memory of its last step. The incoming spin

state of the walker at each quantum step layer provides the information of what node

the walker came from because each spin state corresponds to a neighbor of a node.

The coin operation interacts with each of these spin states in a way that the diffusion

of information at step k in the walk is directly impacted by step k−1. The difference

between GAT and QWNN in regards to what is passed between intermediary layers

highlights possible applications where one network might be better suited than the

other. Tasks which can benefit from heavier, nonlinear processing of a graph signal

can take advantage of modifying the feature vectors of each node at each layer in

GAT. On the other hand, tasks which require modeling more complex dynamics of

passing messages along the graph may be better suited to QWNN.

3.6 Experiments

We demonstrate the effectiveness of QWNNs across three different types of tasks:

node level regression, graph classification and graph regression. Our experiments

focus on comparisons with three other graph neural network architectures: diffusion

convolution neural networks (DCNN) [9], graph convolution networks (GCN) [49],

and graph attention networks (GAT) [92].

The implementation for QWNN is done in pyTorch. For compatibility and com-

putational efficiency, the state of the quantum walk and the operators are limited to

real values. For graph level experiments, we employ a set2vec layer [94] as an inter-

mediary between the graph layers and standard neural network feed forward layers.

27

Set2vec has proved effective in other graph neural networks [37] as it is a permutation

invariant function that converts a set of node features into a fixed length vector.

3.6.1 Node Regression

In the node regression task, daily temperatures are recorded across 409 locations

in the United States during the year 2009 [103]. The goal of the task is to use a day’s

temperature reading to predict the next day’s temperatures. A nearest neighbors

graph (Figure 3.3a) is constructed using longitudes and latitudes of the recording

locations by connecting each station to its closest neighbors. Adding edges from each

station to its eight closest neighbors produces a connected graph. The QWNN is

formed from a series of quantum step layers (indicated by walk length) followed by a

diffusion layer. Since the neural network in this experiment only uses quantum walk

layers, we relax the unitary constraint on the coin operators. While this can no longer

be considered a quantum walk in the strictest sense, the relaxation is necessary to

allow the temperature vector to grow or shrink to match increases or decreases in

temperatures from day to day. For this experiment, we also compare the results

with multiple DCNN walk lengths. For GCN and GAT, an effective walk length is

constructed by stacking layers. Data is divided into thirds for training, validation,

and testing. Learning is limited to 32 epochs.

Table 3.1 gives the test results for the trained networks. The root-mean-square

error (RMSE) and standard deviation (STD) are reported from five trials. We observe

that quantum walk techniques yield lower errors compared to other graph neural

network techniques. The two networks that control the amount of information flow

between nodes, QWNN and GAT, appear to be able to take advantage of more distant

relationships in the graph for learning, while DCNN and GCN perform best with more

restrictive neighborhood sizes.

28

(a) Graph of Temperature Recording Locations

(b) Diffusion of a 4-step Classical Random Walk

(c) Diffusion of a 4-step Quantum Walk After Training

Figure 3.3: Comparison of a classical walk and a learned quantum walk. The
classical and quantum random walks evolve from left to right over 4 steps. Both walks
originate at the highlighted node. At each step, the brighter colored nodes correspond
to a higher probability of the random walker at that node. A classical walk, as used
in GCN and DCNN, diffuses uniformly to neighboring nodes. The learned quantum
walk can direct the diffusion process to control the direction information travels. The
third and fourth steps of the quantum walk show the information primarily directed
southeast.

29

Table 3.1: Temperature Prediction Results (RMSE ± STD)

Walk Length 1 2 3 4 5

GCN 8.56± 0.02 8.14± 0.41 7.82± 0.13 8.55± 0.52 8.88± 0.73
DCNN 8.07± 0.21 7.40± 0.13 7.46± 0.06 7.44± 0.10 10.19± 0.18
GAT 7.84± 0.16 8.43± 0.42 8.47± 1.02 8.23± 0.69 7.93± 0.15

QWNN 6.11± 0.14 5.54± 0.16 5.38± 0.07 5.28± 0.08 5.65± 0.02

We use this experiment to provide a visualization for the learned quantum walk.

Figure 3.3b and 3.3c shows the evolution of a classical random walk and the learned

quantum random walk originating from the highlighted node, respectively. At each

step, warmer color nodes correspond to nodes with larger superposition amplitudes.

Initially, the quantum walk appears to diffuse outward in a symmetrical manner

similar to a classical random walk, but in the third and fourth steps of the walk, the

learned quantum walk focuses information flow towards the southeast direction. The

ability to direct the walk in this way proves beneficial in the prediction task.

3.6.2 Graph Classification

The second type of graph problem we focus on is graph classification. We apply the

graph neural networks to several common graph classification datasets: Enzymes [20],

Mutag [29], and NCI1 [95]. Enzymes is a set of 600 molecules extracted from the

Brenda database [80]. In the dataset, each graph represents a protein and each node

represents a secondary structure element (SSE) within the protein structure, e.g.

helices, sheets, and turns. Nodes contain a type label, and physical and chemical

information as features. The task is to classify each enzyme into one of six classes.

Mutag is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds

that are classified into one of two categories based on whether they exhibit a mutagenic

effect. NCI1 consists of 4110 graphs representing two balanced subsets of chemical

compounds screened for activity against non-small cell lung cancer. For both the

30

Mutag and NCI1 datasets, each graph represents a molecule, with nodes representing

atoms and edges representing bonds between atoms. Each node has an associated

label that corresponds to its atomic number. Summary statistics for each dataset are

given in Table 3.2. The experiments are run using 10-fold cross validation.

For the Enzyme and NCI1 experiment, the quantum walk neural networks are

composed of a length 6 walk, followed by a set2vec layer, a hidden layer of size 64,

and a final softmax layer. Because Mutag is a much smaller dataset, the walk length

is reduced to 4 and the hidden layer size to 16. The reduced size helps alleviate some

of the overfitting from such a small training set. We report the best results using

the centrality based node ordering version of the network that uses the linear bank

function: QWNN (cen) as well as the invariant QWNN using the equivariant bank

function: QWNN (inv). We also report results from the three other graph networks.

GCN, DCNN, and GAT are all used as an initial layer to a similar neural network

followed by a set2vec layer, a hidden layer of size 64 (16 for Mutag) and a softmax

output layer. DCNN uses a walk length of 2, while GCN and GAT use feature sizes

of 32. Additionally, we compare with two graph kernel methods, Weisfeiler-Lehman

(WL) kernels [82] and shortest path (SP) kernels [19], using the results given in [82].

Classification accuracies are reported in Table 3.3. The best neural network ac-

curacies and the best overall accuracies are bolded. Quantum Walks are competitive

with the other neural network approaches. QWNN demonstrates the best average ac-

curacy on Mutag and Enzymes, but the other neural network approaches are within

the margin of error. On the NCI1 experiment, QWNN shows a measurable improve-

ment over the other neural networks. The WL kernels outperform all the neural

network approaches on both Enzymes and NCI1.

31

Table 3.2: Graph Classification Datasets Summary

Enzymes Mutag NCI1

Graphs 600 188 4110
Average Nodes 33 18 30

Max Nodes 126 28 111
Max Degree 9 4 4
Node Classes 3 7 37
Graph Classes 6 2 2

Table 3.3: Graph Classification Accuracy (Mean ± STD)

Enzymes Mutag NCI1

GCN 0.31± 0.06 0.87± 0.10 0.69± 0.02
DCNN 0.27± 0.08 0.89± 0.10 0.69± 0.01
GAT 0.32± 0.04 0.89± 0.06 0.66± 0.03

WL 0.59± 0.01 0.84± 0.01 0.85± 0.00
SP 0.41± 0.02 0.87± 0.01 0.73± 0.00

QWNN (cen) 0.26± 0.03 0.90± 0.09 0.76± 0.01
QWNN (inv) 0.33± 0.04 0.88± 0.04 0.73± 0.02

32

3.6.3 Graph Regression

The graph regression task uses the QM7 dataset [17, 75], a collection of 7165

molecules each containing up to 23 atoms. The geometries of these molecules are

stored in Coulomb matrix format defined as

Cij =

 0.5Z2.4
i i = j

ZiZj

|Ri−Rj | i 6= j
(3.19)

where Zi, Ri are the charge of and position of the i-th atom in the molecule, respec-

tively. The goal of the task is to predict the atomization energy of each molecule.

Atomization energies of the molecules range from −440 to −2200 kcal/mol.

For this task, we form an approximation of the molecular graph from the Coulomb

matrix by normalizing out the atomic charges and separating all atom-atom pairs

into two sets based on their physical distances. One set contains the atom pairs

with larger distances between them and the other the smaller distances. We create

an adjacency matrix from all pairs of atoms in the smaller distance set. There is

generally a significant gap between the distances of bonded and unbonded atoms in

a molecule, but this approach leaves 19 disconnected graphs. For these molecules,

edges are added between the least distant pairs of atoms until the graph becomes

connected. We use the element of each atom, encoded as a one-hot vector, as the

input features for each node.

The two variants of QWNN (node ordering invariant and centrality ordered) are

constructed using a 4-step walk, followed by the set2vec layer, a hidden layer of size

10, and a final output layer. For the other graph neural networks, a single graph

layer is used, followed by the same setup of a set2vec layer, a hidden layer of size

10, and the output layer. A DCNN of length 2 walk and GCN and GAT using 32

features were found to give the best results. Root-mean-square error (RMSE) and

33

Table 3.4: Atomization Energy Prediction Results

RMSE MAE

GCN 16.51± 0.38 12.39± 0.29
DCNN 11.90± 0.59 8.53± 0.42
GAT 18.75± 0.51 14.52± 1.12

QWNN (cen) 9.70± 0.77 6.74± 0.24
QWNN (inv) 10.91± 0.56 8.28± 0.47

mean absolute prediction error (MAE) are reported for each network in Table 3.4.

QWNNs demonstrate a marked improvement over other methods in this task.

3.7 Alternative Formulations of QWNN

We experimented with alternative methods of parameterizing the unitary coin

matrix C and the node ordering of the graph for the non-invairant case.

A method of parameterizing a unitary matrix proposed in [44] is to build a large

unitary matrix from a sequence of rotation matrices. A N × N unitary matrix UN

is represented as a product of rotation matrices Rk` and a unitary diagonal matrix

D, such that UN = D
∏k=N

k=2

∏`=i−1
`=1 Rk`, where Rk` is defined as the N -dimensional

identity matrix with the elements Rkk, Rk` , R`k and R`` replaced as follows:

Rkk Rk`

R`k R``

 =

eiϕk` cos(θk`) −eiϕk` sin(θk`)

sin(θk`) cos(θk`)

 (3.20)

with θk` and ϕk` being parameters specific to Rk` which can be updated through

backpropagation. Each of these rotation matrices acts as a unitary transformation on

a 2-dimensional subspace of the N -dimensional Hilbert space and leaves the remaining

N − 2 dimensions unchanged.

It is possible to impose local orderings on the nodes rather than a single global

ordering. A local ordering orders the neighbors of each node, but does not imply that

34

if vi precedes vj in one node’s set of neighbors that this is true for another node that

also has vi and vj as neighbors. To differentiate this from a global node ordering, we

refer to it as an edge ordering of the graph. We compute a similarity score between

every adjacent pair of nodes in the graph, each node’s neighbors are then ordered

in descending order of their similarity score with itsself. We investigated using the

random walk node similarity measure:

sim(vi, vj) = Wk
i

(
Wk

j

)T
(3.21)

where Wk is a classical random walk matrix raised to the kth power.

When using the global centrality measure, the coin operator has some measure

of control in determining whether the walk will move to a more central node in the

graph or a less central node. With the random walk score edge ordering, the coin

operator sends the walker either towards similar nodes (with respect to their position

and roll in the graph) or to less similar nodes. Note that this similarity measure does

not account for similarity or differences in the features of neighboring nodes. This

ordering has a similar downside to the centrality ordering in that two neighbors of a

node can have equal similarity scores. Different orderings of these neighbors can then

lead to different outcomes of the quantum walk.

Table 3.5 compares the alternative coin matrix parameterization using both cen-

trality node ordering and similarity edge ordering to the invariant QWNN formula-

tion. Classification accuracy is reported for the Enzymes, Mutag, and NCI1 datasets

and the RMSE is given for QM7. The results show that the elementary unitary ma-

trix formulation of the coin operator generally outperforms the product of rotation

matrices. Only on Enzymes do the alternative QWNN formulations have a measur-

able edge. The results continue to demonstrate a heuristic ordering of the graph can

have substantive effects on the accuracy of QWNN, often improving results over the

35

Table 3.5: Comparison of QWNN Formulations

Enzymes Mutag NCI1 QM7

QWNN (cen) 0.26± 0.03 0.90± 0.09 0.76± 0.01 9.70± 0.77
QWNN (inv) 0.33± 0.04 0.88± 0.04 0.73± 0.02 10.91± 0.56

altQWNN (cent) 0.32± 0.03 0.85± 0.06 0.68± 0.02 12.52± 0.91
altQWNN (sim) 0.32± 0.03 0.92± 0.03 0.71± 0.01 16.01± 0.96

invariant formulation. This can likely be attributed to increasing the influence of the

graph structure on the diffusion process of the quantum walk.

3.8 Limitations

Storing the superposition of a single walker requires O(Nd) space, where N is

the number of nodes in the graph, and d is the maximum degree of the graph. To

calculate a complete diffusion matrix requires that a separate walker begin at every

node, increasing the space requirement to O(N2d) which starts to become intractable

for very large graphs, especially when doing learning on a graphics processing unit

(GPU). Some of this cost can be alleviated using sparse tensors. At time t=0 the

superpositions are localized to single nodes so only O(Nd) space is used by nonzero

amplitudes. At time t=1 the first step increases this to O(Nd2) as each neighboring

node becomes nonzero. Given a function s(G, t) which determines the number of

nodes in a graph reachable after a t-length random walk, the space complexity for a

t-length walk is O(Nds(G, t)).

The majority of graph neural networks are invariant to the ordering of the nodes

in the graph. This is true for GCN, DCNN, and GAT. We provide one formulation

for a QWNN that is also invariant, however the second formulation is not. Although

we have greatly reduced the effect, node ordering can still affect the walk produced

in this variant of QWNN and thus the overall output of the network. This can occur

when two otherwise distinguishable nodes have the same betweenness centrality.

36

3.9 Conclusion

Quantum walk neural networks outperformed other graph neural network ap-

proaches across a range of different experiment types. QWNN is specifically suited

for applications involving small graph regression problems. The ability of quantum

walks to adapt spatially over the graph provide QWNN with the ability to fine-tune

the output in regression tasks further than the other comparison networks. While out-

performed by WL kernels in two of the graph classification, QWNN offers increased

flexibility in the type of problems it can be applied to compared to the kernel method

which is restricted to classification tasks.

37

CHAPTER 4

ASYMMETRIC NODE SIMILARITY EMBEDDING FOR
DIRECTED GRAPHS

4.1 Introduction

The representational power of graphs–the ability to model relationships between

objects–make them an essential tool in data visualization and processing. The com-

mon matrix forms of graphs, namely adjacency (A) and Laplacian (L) matrices,

represent nodes in the graph by their connections to other nodes. Each row of the

matrix forms a sparse vector representation in R|V | of a node. While this is an ac-

curate depiction of the local geometry around a node, it is impossible to determine,

for example, the distance of two nodes, which do not share an edge or neighbor, from

only their vector representations. In data processing tasks where the rows of the

adjacency or Laplacian matrices are insufficient, an embedding of the nodes into a

dense vector format can provide a richer representation of the graph. Node embed-

ding techniques are also used for nonlinear dimensionality reduction of data matrices

by forming nearest neighbor graphs of the data points [15].

Many node embedding schemes utilize the spectra of graph matrix (e.g. Laplacian

or shortest path matrix) to form vector representations of nodes [15, 28, 88]. These

approaches, while effective, require an eigen decomposition of the matrices and do

not scale well as the number of nodes in the graph increases. Stochastic sampling

methods have been proposed to improve scaling issues. Recent embedding methods

sample random walks from the graph and use a stochastic gradient descent process to

learn vector representations for the nodes [68, 41]. These methods have been shown

to be efficient on graphs scaling up to millions of nodes.

38

Implementing graph embedding methods designed for undirected graphs (such as

those above) on a directed graph often require making sacrifices to the graph structure

because these methods rely on symmetric relationships between nodes. This leads to

the unrecoverable loss of the asymmetric relationships between nodes, such as the

direction of an edge between two nodes. Node embeddings have been proposed for

digraphs that rely on dual, independent embeddings for each node [106] to preserve

graph asymmetries. The two embeddings, the source embedding and the target em-

bedding, correspond to the a node’s role as either the source or the target node of a

directed edge, respectively. A node’s role as a source and target are not independent

in a graph. A graph with high reciprocity (a large portion of edges between nodes in

the graph are bidirectional) obviously should have similar source and target embed-

dings. The set of edges coming into a node can also often provide insight into the

set of edges leaving a node. Because of this, our goal is an embedding method that

recognizes the codependency between source and target roles of a node.

In this chapter, we propose a directed random walk based approach to learning

node embeddings that requires only a single embedding for each node: asymmetric

node similarity embedding (ANSE). ANSE simultaneously learns the node embed-

ding vectors and the parameters of an asymmetric similarity function KA(vi, vj) on

the embeddings. Because KA(vi, vj) and KA(vj, vi) can have different values, ANSE

preserves the direction of edges so that they can be recovered from the embeddings.

Crucially, ANSE embeddings can also represent an edge between two nodes that ex-

ist in both directions or neither. Like dual embedding digraph approaches, ANSE

preserves asymmetric relationships in the graph. However, ANSE’s single embed-

ding scheme ties source and target information about each node together, improving

the embedding of nodes when information about one or the other is lacking in the

observable graph (e.g. a node without incoming edges). Like other random walk

approaches, ANSE scales linearly with the size of the graph. Additionally, we pro-

39

vide a modified form of ANSE, ANSE-H, that embeds the nodes of the graph onto

a unit hypersphere. Spherical embeddings have been shown to be effective in similar

domains to preserve directional similarities [61, 54]. We provide an illustration of a

2-dimensional embedding of a small lattice graph and demonstrate the effectiveness

of our approach in several link prediction tasks on real world directed networks.

4.2 Problem Definition

An undirected graph G = (V,E) is a set of vertices (nodes), V = {v0, v1, ..., vN−1},

and a set of edges, E = {(vi, vj) : vi, vj ∈ V }, representing objects and relationships

between pairs of objects, respectively. A directed graph (digraph) imposes an ordering

on the vertices of each edge such that (vi, vj) denotes an edge pointing from node vi,

the source, to node vj, the target. A random walk on a digraph is a sequence of nodes(
v(0), v(1), ..., v(K)

)
ordered such that v(k+1) is selected at random from the neighbors

incident to the outgoing edges of v(k).

A node embedding is a function on a graph that maps each node in the graph

to a d-dimensional vector fG : V → Rd. The embedding of node vi is expressed as

φφφi. The embedding matrix ΦΦΦ ∈ R|V |×d is built up from rows of these embeddings, i.e.

ΦΦΦi = φφφT
i = fG(vi). Our goal is to preserve the asymmetric similarity between nodes

in the embedded space. We use the probability of a random walk beginning at node

vi visiting node vj within k steps as our similarity measure sim(vi, vj) between two

nodes. This probability is an effective similarity measure for embedding because it is

greatest when both the path between two nodes is short and when there exist many

such paths. The maximum similarity between nodes, sim(vi, vj) = 1, occurs when

all k-length paths originating from vi travel through vj and the minimum value,

sim(vi, vj) = 0, when vi and vj are more than k edges apart in the graph. The

function is asymmetric, sim(vi, vj) 6= sim(vj, vi) for most complex graphs, directed or

otherwise. This can be demonstrated by setting k = 1 and looking at the similarity

40

of two adjacent nodes with different degrees. Additionally, for a directed graph:

sim(vi, vj) > 0 6=⇒ sim(vj, vi) > 0. ANSE learns an embedding matrix ΦΦΦ and a

similarity measure KA : ΦΦΦ×ΦΦΦ→ R such that KA(φφφi,φφφj) ≈ sim(vi, vj).

4.3 Background and Related Work

There are a limited number of machine learning methods that operate directly

on graphs; graph convolutional neural networks use the structure of the graph to

operate on signals that lie on a graph rather than operate on the graph itself. Graph

embeddings are methods that translate a graph or portions of a graph into a low

dimensional space often with the intent to form embeddings that are better suited as

inputs to machine learning algorithms.

A node embedding is a function on a graph that maps each node in the graph to

a d-dimensional vector fG : V → Rd with the goal of preserving the relationships

between vertices. These relationships are usually defined by neighborhoods around

each node. An ideal node embedding produces vector representations for each node in

this neighborhood that are similar to the embedding of the central node. Skip-gram

methods are popular because of their effectiveness at doing just that.

The skip-gram model proposed for word embedding in natural language process-

ing [62, 63] extracts sentences from a document corpus and embeds each word in a

low-dimensional space to maximize the probability of predicting surrounding words.

DeepWalk [68] and subsequent algorithms such as Node2Vec [41] adapt the skip-gram

model to node embedding. These methods generate random walks on an undirected

graph in lieu of extracting sentences from a corpus. Randomly sampling sentences or

random walks produces similar frequency distributions of the appearances of words

and nodes.

Algorithm 4.1 outlines a generic skip-gram style node embedding method. Lines 6

and 9 are the two key steps in the algorithm and consequently are where many node

41

Algorithm 4.1: Skip-Gram Model of Node Embedding

1 input : Graph: G = (V,E)
Window size: w
Embedding dimesnion: d
Walks per vertex: γ
Walk length: k

2 output : Node Embedding ΦΦΦ

3 initialize: ΦΦΦ ∈ R|V |×d

4 for i = 1 to γ do
5 for All nodes vi ∈ V do
6 Wvi = RandomWalk (G, vi, k)
7 for vj ∈ Wvi do
8 for vk ∈ Wvi [j − w : j + w] do
9 J(ΦΦΦ) = − logP (vk|φφφj)

10 ΦΦΦ = ΦΦΦ− α ∗ ∂J
∂ΦΦΦ

11 return : ΦΦΦ

embedding methods differ from one another. Function RandomWalk(G, vi, k) on

line 6 collects a sequence of k nodes on the graph from a random walk originating at

vertex vi. DeepWalk samples classical random walks, while Node2Vec uses weighted

random walks that can be tuned to either encourage the walker to remain close to

the initial node or to explore further away in the graph. In both methods, after a

walk is performed, each pair on nodes in the walk within w steps of each other form

positive learning samples (i.e. P (vk|φφφj) is large).

The probability in line 9 of Alg. 4.1 is calculated using a softmax:

P (vk|φφφj) =
exp 〈φφφj,φφφk〉∑
l exp 〈φφφj,φφφl〉

. (4.1)

In practice, this calculation is prohibitively expensive because it requires an inner

product between the embedding of the source node and the embeddings of each other

node in the graph. Many algorithms employ alternative, less computationally expen-

sive, methods of approximating the conditional probabilities. DeepWalk utilizes a

hierarchical softmax [64] for computing probabilities, while Node2Vec uses a negative

42

sampling approach [63]. Negative sampling obtains N nodes from a noise distribu-

tion P (v) that are outside the walk range of the current node and thus should have

very dissimilar embeddings to it. The distribution P (v) in node2vec is proportional

to the frequency distribution of nodes in the random walks raised to the 3/4 power.

Negative sampling methods use the following approximation of the log softmax:

logP (vk|φφφj) ≈ log (σ 〈φφφj,φφφk〉) +
N∑

n=1

Evn∼P (v) log(σ 〈−φφφj,φφφn〉) (4.2)

where σ is the sigmoid function: (1 + exp(x))−1. The first term in (4.2) seeks to

maximize the probability of positive node pair samples (φφφj,φφφk), while the second

term seeks to drive down the probabilities of the negative samples (φφφj,φφφn) in order to

maximize the overall log probability logP (vk|φφφj). The hierarchical softmax in Deep-

Walk reduces the complexity of each softmax calculation from O(|V |) to O(log |V |)

by using a binary tree to calculate the conditional probabilities. The negative sam-

pling approach of Node2Vec reduces the complexity further to O(N) where N is the

number of negative samples.

To translate node embedding methods from undirected graphs to digraphs, several

digraph node embedding methods embed the nodes twice, once into a source space

and a second time into a target space [48, 67, 106]. APP [106] is a skip-gram model

that learns dual embeddings for each node in the graph. Node pair samples are

collected from the endpoints of (directed) random walks. These pairs are ordered so

that the similarity score between nodes is calculated using the source embedding of

the first node and the target embedding of the second.

4.4 Method

Many symmetric properties of undirected graphs are asymmetric on digraphs. For

example the graph geodesic, the length of the shortest path between nodes, is not

43

symmetric for a directed graph. The existence of a path from vi to vj does not even

imply that a path exists for vj to vi. The similarity measure used in an embedding

scheme for digraphs must reflect these differences if they are to be preserved in the

embeddings. This issue is compounded by the fact that some nodes in a directed graph

may have edges between them in both directions. This fact rules out skew-symmetric

functions as possible similarity measures.

To learn an embedding that can retain the asymmetric relationships between

nodes, we replace the standard (symmetric) inner product used in the softmax (4.1)

and the negative sampling approximation (4.2) with an asymmetric bilinear product

parameterized by a square matrix A ∈ Rd×d:

KA(vi, vj) = 〈φφφi,φφφj〉A = φφφT
i Aφφφj. (4.3)

In general, when A is asymmetric, KA(vi, vj) 6= KA(vj, vi). Matrix A can be learned

in tandem with the embedding matrix ΦΦΦ through standard backpropagation methods

such as stochastic gradient descent. From a geometric perspective, A can be viewed

as defining the direction of the most similar embedding vectors at any point (See

Figure 4.1b for an example).

4.4.1 Sampling Random Walks

Digraphs exhibit two properties not exhibited by undirected graphs that must be

taken into account when sampling random walks. First, the relative order of node

pairs sampled from a walk must be maintained. Second, a digraph, unlike an undi-

rected graph, has two levels of connectivity. A weakly connected directed graph has

an undirected path from any to node to every other node. A strongly connected

digraph has a directed path from any node to every other node. Strongly connected

digraphs are much rarer than weakly connected digraphs or connected undirected

graphs and so we often can’t assume strong connectivity. Walks on digraphs that

44

are weakly connected, but not strongly connected, may dead end. In a connected

undirected graph or a strongly connected digraph, a random walk can continue in-

definitely because each node in the graph must have an outgoing edge. This is not

the case for a weakly connected digraph in which nodes may not have any outgoing

edges. In such events, the walk must either jump to a non-neighbor node or be forced

to terminate.

A consequence of these two properties is that nodes without outgoing edges will

never be sampled first in a pair. In these cases, there is an increased importance

in reaching the node from random walks beginning at other nodes so that positive

samples containing the node are still collected. In scenarios in which a node has an

arbitrarily small likelihood of being reached in a random walk, e.g. the only incoming

edge to a node comes from another node with a high out-degree, the node is unlikely

to appear as the second node in any positive sample pair. To address these issues, we

introduce a reverse random walk sampling method in addition to regular random walk

sampling. Reverse walks are sampled from a dual graph, G∗ = (V, (vj, vi) : (vi, vj) ∈

E), where all edges are reversed (bidirectional edges remain so). The sequence of

nodes in the walk is then reversed again to provide a random walk on G whose

transition probabilities are proportional to the in-degrees of nodes rather than their

out-degrees. This guarantees that there are sample pairs containing each node with

at least one incoming edge as the second node.

Negative sampling is used to approximate the softmax function. Nodes are ran-

domly sampled from the graph and used as negative samples as in (4.2). Combining

the positive and negative sampling methods with the asymmetric similarity function

produces our method given in Algorithm 4.2. The overall loss is split into 4 parts:

J1, J2, J3, and J4. The positive samples produce losses J1 and J3 and the negative

sampling produces losses J2 and J4. The focus node is the preceding node in losses

J1 and J2 and the succeding node in losses J3 and J4.

45

Algorithm 4.2: Asymmetric Node Similarity Embedding

1 input : graph: G(V,E)
embedding dimesnion: d
walks per vertex: γ
walk length: k

2 output: embeddings matrix: ΦΦΦ
similarity matrix: A

3 Initialize ΦΦΦ ∈ R|V |×d, A ∈ Rd×d

4 for All nodes vi ∈ V do
5 for w = 1 to γ do
6 Wvi = RandomWalk(G, vi, k)
7 W rev

vi
= ReverseRandomWalk(G∗, vi, k)

8 J1(ΦΦΦ) = −
∑

vj∈Wvi
log(σ 〈φφφi,φφφj〉A)

9 J2(ΦΦΦ) = −
∑N

n=1 Evn∼P (v) log(σ 〈−φφφi,φφφn〉A)
10 J3(ΦΦΦ) = −

∑
vj∈W rev

vi
log(σ 〈φφφj,φφφi〉A)

11 J4(ΦΦΦ) = −
∑N

n=1 Evn∼P (v) log(σ 〈−φφφn,φφφi〉A)

12 J(ΦΦΦ) =
∑4

n=1 Jn(ΦΦΦ)

13 ΦΦΦ = ΦΦΦ− α ∗ ∂J
∂ΦΦΦ

4.4.2 Hypersphere Embedding

ANSE can be adapted to embed nodes of a graph onto the unit hypersphere. This

has been shown to be effective for word [61] and face [54] embeddings by removing

the length of the embedding vector as a factor when evaluating the embeddings. To

embed nodes in the unit hypersphere, the embedding vectors are constrained to have

unit length: ||φφφi||22 = 1. This is accomplished by renormalizing the length of the

vector following each backpropagation update.

The bilinear matrix A should also be constrained such that ∀vi, vj ∈ V : −1 ≤

kA(vi, vj) ≤ 1. This constraint allows the similarity function to match the range

of a standard inner product between two points on the unit hypersphere. If A is a

unitary matrix, the product φφφT
i A will also have unit length and thus−1 ≤ φφφT

i Aφφφj ≤ 1,

guaranteeing the constraint will hold.

We can project A onto the set of unitary matrices whenever it diverges during

learning, similar to renormalizing the embedding vectors. Unfortunately, this projec-

46

tion is computationally costly, requiring a singular value decomposition of the matrix.

Alternatively, we compose A as the product of a set of elementary reflector matrices

of the form A(m) = I − 2 ∗ vmvT
m

vT
mvm

, where vm is any vector and I is the identity ma-

trix. Any unitary matrix can be decomposed into a product of elementary reflectors.

We use this decomposition to efficiently construct a unitary matrix A =
∏M

m=1 A(m),

where M ∈ {1, ..., d}. Smaller values of M restrict the space of possible unitary ma-

trices but also reduces both the computational cost to calculate A and the number of

parameters for the model to learn. The vectors vm are learned by backpropagating

the loss through A.

4.4.3 Comparison to Other Embedding Spaces

ANSE can be viewed as learning a dual embedding, similar to [106], where the

source embedding for node vi is φφφi and the target embedding is Aφφφi. Compared to

learning two embeddings, ANSE reduces the number of embedding parameters from

2|V |d to |V |d + d2, as typically d � |V |. Additionally, tying the source and target

embeddings together in our approach overcomes a potential issue in [106], in which

the source or target embeddings of a node in a digraph may have no positive samples

if the node has no outgoing or incoming edges, respectively.

A related asymmetric product is used in [87] for text retrieval. The asymmetric

Hermitian inner product of two complex vector embeddings 〈ai,bj〉 = aH
i bj is used

to score co-attention between complex valued word vectors: ai,bj ∈ Cd, where aH is

the conjugate transpose of a. The product sij = Re(aHi Mbj), where M ∈ Cd×d and

Re(x) indicates the real portion of the complex number x, is also studied. Unlike our

work, however, the matrix M is tuned as a hyperparameter and fixed rather than

treated as a learnable parameter.

Complex vector embeddings have also been studied for link prediction. In [90], a

given observation matrix X ∈ Rn×n is decomposed as Xso = Re
(
EH

s WEo

)
, where

47

E ∈ Cn×d is a matrix of eigenvectors and W ∈ Cd×d is a diagonal matrix of eigenval-

ues. Like dual embeddings, a d-dimensional complex embedding requires 2d param-

eters per node (the real and imaginary part). But, like our method, the two roles of

each object (e.g. source and target) are tied together because the scoring functions

use both the real and imaginary parts of each of the complex embeddings.

Gaussian embeddings were proposed for word embedding as a means of better

capturing asymmetries [93] and have also been applied to node embedding in at-

tributed graphs [18]. Nodes are mapped to a mean µ ∈ Rd and covariance Σ ∈ Rd×d.

Gaussian distribution embeddings lead to a natural asymmetric dissimilarity measure

via Kullback–Leibler divergence:

DKL(Nj||Ni) =
1

2

[
tr(Σ−1

i Σj) + (µi − µj)
TΣ−1

i (µi − µj)− d− log
det(Σj)

det(Σi)

]
. (4.4)

During implementation, the covariance matrix for each node is restricted to a diagonal

matrix to make updates efficient. This means N is a set of d independent univariate

Gaussians. Letting σij = Σi[j, j], the KL-divergence reduces to the following:

DKL(Nj||Ni) =
1

2

∑
k

σjk/σik + (µik − µjk)2/σik − log σjk + log σik − d/k, (4.5)

where there are no interactions between dimensions. Because ANSE uses a dense

matrix for its bilinear similarity function, it has the advantage of incorporating in-

teractions between dimensions of the node embeddings allowing for more complex

relationships between nodes to be modeled. An inherent advantage of Gaussian em-

beddings is the benefit of providing confidence scores for predictions.

Hyperbolic embeddings, specifically embeddings onto the Poincaré ball, have been

shown to be effective for link prediction in knowledge graphs [14]. The radius c−1/2

48

Poincaré ball is a d-dimensional manifold: Bd
c = {x ∈ Rd : c||x||2 < 1}. The distance

between points u and v in the Poincaré ball is given by:

dB(u, v) = cosh−1

(
1 + 2

||u− v||2

(1− ||u||2)(1− ||v||2)

)
. (4.6)

This distance measure can be used to develop a score function for embeddings of a

hypergraph: S(es, r, eo) = −dB(h
(r)
s ,h

(r)
o)2 + bs + bo. Here r represents a specific type

of relationship and introduces asymmetry into the otherwise symmetrical function,

es and eo are entities i and o, respectively, and bs and bo are biases. The vectors

h
(r)
s and h

(r)
o are functions of hyperbolic embedding vectors hs and ho of es and eo,

respectively, and dependent on their role in the relationship r.

Hyperbolic embeddings have been shown to outperform euclidean embeddings for

hierarchical relationships and are also a logical choice for node embedding of graphs.

An arbitrary sized tree can be embedded onto the Poincaré disk (B2
c) with arbitrarily

small distortion in distances between vertices [78] and more sophisticated complex

networks have also been demonstrated to have hyperbolic structure [50]. One advan-

tage euclidean embeddings (such as ANSE) retain over hyperbolic embeddings is their

general applicability to downstream methods, which are often designed to operate in

euclidean space. However, this advantage is diminishing as methods designed to op-

erate in hyperbolic space are developed. For example, hyperbolic graph convolution

networks [25] map euclidean graph signals to hyperbolic spaces and operate on them

in that space.

4.5 Experiments

In this section, we conduct multiple experiments to demonstrate both quantita-

tively and qualitatively the effectiveness of our approach to embedding nodes of a

graph. We first provide a visual of how ANSE embeds the nodes of a digraph and

49

learns a similarity function that allows the direction of an edge to be recovered from

the embeddings. We then measure the effectiveness of ANSE compared to other node

embedding methods by how well the embeddings can recover missing edges from the

graph. To measure this, a subset of the edges of a graph is withheld during the

training phase and used in conjunction with a random set of node pairs that do not

contain an edge between them to determine how well the embeddings can differentiate

the two groups.

4.5.1 Lattice Example

A 2D lattice graph provides a simple but useful visual representation of the em-

bedding produced by ANSE. The lattice is composed of 10 rows and 12 columns of

vertices. All lateral edges in the graph are oriented to point right and all vertical

edges to point up. Eight walks of length three are sampled from every node in the

graph. The lattice is shown in Figure 4.1a and the learned 2-dimensional embed-

ding of the vertices is shown in 4.1b. Additionally, the effect of the matrix A in the

similarity function is drawn as a vector field in the background such that a source

node is most similar to target nodes that lie in the direction of the local arrows. The

embedded nodes form a spiral pattern with the bottom-left-most node of the original

lattice innermost in the spiral and the top-right-most one outermost. Diagonal sets

of nodes in the original lattice representation are structurally similar in the graph

and are roughly clustered together along the spiral. Edges are also oriented along

the direction of the field induced by A. Because of the effect of A, nodes have a

higher affinity with nodes immediately ahead of them when moving outwards from

the center of the spiral than nodes behind or even side by side to them.

50

(a) Original Lattice Graph (b) Embedded Lattice Graph

Figure 4.1: Example embedding of a directed lattice. The original lattice (a)
and vector embeddings (b). The direction and magnitude of the vector field illustrates
the bias of the similarity measure across the space.

4.5.2 Link Prediction

Node embeddings can be used to predict missing or future edges in a graph by

measuring pairwise similarities. Node pairs with a high similarity score are more likely

to form an edge. We evaluate the area under the receiver-operator curve (AUC) for

several real world networks to evaluate our method and compare to several other

skip-gram algorithms.

Arxiv [53] is a co-authorship network consisting of 5,242 nodes representing au-

thors and 28,980 edges linking authors who have co-authored a paper together. Arxiv

is the only undirected network in this set of experiments. Cora [84] is a citation net-

work where the 23,166 nodes in the graph are papers and the 91,500 edges points

from one paper to another if the first paper cites the second. Epinions [70] is a

social network dataset with 75,879 users (nodes) and 508,837 edges indicating trust

placed by one user in another.

The reciprocity of a graph is the ratio of the number of bidirectional edges to the

total number of edges. The three datasets we evaluate on provide a diverse sample

of graphs with various reciprocities. Arxiv, an undirected graph, has a reciprocity

51

of 1.00. Cora with nearly 0 bidirectional edges and a reciprocity of 0.05. Epinions

sits in the middle at 0.40. Together, the three graphs provide a range of node-pair

relations covering bidirectional, one-directional, and unrelated.

We use the same hyper-parameters for asymmetric node similarity embeddings

(ANSE) and the hypersphere variant (ANSE-H) across all three experiments. Nodes

are embedded into a 32-dimensional space and 16 total walks (8 forward, 8 backward)

are collected at each node. Each walk continues for three steps. In ANSE-H, we use

a single elementary reflector matrix for A. We evaluate our method against sev-

eral modern skip-gram style embedding methods. Deepwalk [68] and Node2Vec [41]

are methods developed for undirected graphs. Line [86] and asymmetric proximity

preserving embeddings (APP) [106] are methods for embedding nodes of either undi-

rected or directed graphs. We compare ANSE against the scores of the other methods

reported in [106]. We also compare against HOPE [67], a recent spectral method for

directed graphs that learns both a source and target embedding for each node.

The embedding methods are trained using 70% of the edges of the graph, while the

remaining 30% appear as positive examples in the test set along with an equal number

of random node pairs without edges to form the negative examples. The pairwise node

score is used to whether or not an edge exists between each pair of nodes in the test

set. The AUC for each method is given in Table 4.1. On two of the three graph

domains, ANSE and ANSE-H demonstrates significant improvements over all the

other methods tested. On Cora, APP joins ANSE and ANSE-H in outperforming the

other methods tested. Despite Arxiv being an undirected graph, our method learns

asymmetric random walk similarities between pairs of nodes resulting in the high

AUC.

The effect of the length of the walk on the AUC is shown for Cora in Figure 4.2.

Other parameters are held constant to the values given above. While there is some

amount of robustness to the length of the walk, the AUC begins to rapidly drop off

52

Table 4.1: Link Prediction Area Under Curve (AUC)

Arxiv Cora Epinions

DeepWalk 0.887 0.936 0.823
Node2Vec 0.810 0.734 0.865

Line 0.750 0.694 0.867
APP 0.887 0.944 0.926

HOPE 0.596 0.874 0.629

ANSE 0.902 0.925 0.948
ANSE-H 0.920 0.942 0.924

Figure 4.2: AUC as a function of walk length. The AUC for varying the walk
length of ANSE and ANSE-H when embedding the nodes of the Cora dataset. Both
ANSE and ANSE have an optimal walk length of 3.

53

for longer walks. This isn’t unexpected because, although Cora has a diameter of

20, it a much smaller effective diameter. Long walks quickly spread across a large

portion of the graph causing embeddings to converge to similar values which hampers

the ability to differentiate between likely adjacent nodes and separated nodes.

4.6 Conclusion

We proposed ANSE, a scalable method to embed a digraph into a vector space,

and ANSE-H, a variant of ANSE that embeds the graph onto a hypersphere. ANSE

simultaneously learns a vector representations of nodes and an asymmetric similar-

ity function for embedding directed graphs. Learning both the embedding and the

similarity function offers the ability to recover the direction of edges from the embed-

ded nodes. Additionally, we proposed a random walk sampling method to improve

learning for nodes without either incoming or outgoing edges. On multiple real world

datasets, ANSE and ANSE-H outperforms other skip-gram embedding schemes for

link prediction.

54

CHAPTER 5

FILTERED MANIFOLD ALIGNMENT

5.1 Introduction

In many domains, raw data has become abundant and inexpensive, while labeled

data often remains sparse and expensive to create. Methods which can leverage

available labeled data to bolster learning on related unlabeled or sparsely labeled

datasets are essential to cost-effective machine learning. Transfer learning is the

process of adapting knowledge from one problem to another and domain adaptation

is a subset of transfer learning focused on applying knowledge of a specific problem

from one domain, the source, to a second domain, the target. The data distribution

of the source domain often varies from that of the target domain. For example, the

pose, lighting, and backgrounds of a set of images from an amateur photographer may

differ significantly from precompiled, labeled photos taken by a professional. These

differences can cause a significant degradation of the accuracy of a machine learning

model trained on one dataset and applied to another when they are not adjusted for.

Manifold alignment (MA) is a domain adaptation approach based on the theory

that data in both the source and target domains are drawn from the same underly-

ing, low-dimensional manifold. MA projects and aligns two or more datasets onto

this manifold so that learning can be done in the joint space. In this chapter, we in-

troduce a new semi-supervised filtered manifold alignment (FMA) technique in which

we align two datasets by first learning an individual embedding for each domain based

on a discrete graph approximation of the underlying manifold and then subsequently

aligning these two embeddings by connecting the two graphs via cross-domain cor-

55

respondences. The initial embeddings filter noise in the original domains prior to

aligning the two domains. This ensures that the filter of one domain does not affect

the second domain or the cross-domain correspondences. This approach offers low

computational complexity, can be applied to new samples even after the alignment

is complete, and is applicable to heterogeneous domains (i.e. domains with different

feature sets). Additionally, a feature-based version of our method further simplifies

the task of embedding new data points that weren’t part of the original alignment.

The complexity of the feature-based method scales with the number of features rather

than the number of samples in the dataset allowing one to choose the method most

suited for their task.

5.2 Manifold Alignment

Manifold alignment [96] facilitates knowledge transfer between two domains by uti-

lizing correspondences across the domains to align their underlying manifolds. Semi-

supervised manifold alignment (SMA) [43] combines the task of projecting data down

to its underlying low-dimensional manifold and aligning instances across datasets.

Given datasets X(1) and X(2) with possibly different numbers of samples and features,

SMA seeks low n-dimensional embeddings Z(1) and Z(2) that preserve intra-dataset

relationships and inter-dataset correspondences. The former can be calculated using

a similarity measure, sim(a, b), between two samples such as the cosine similarity

of their feature vectors. The latter, the inter-dataset correspondences, cor(a, b), are

determined by matching a small set of labeled instances from the target domain with

labeled instances in the source domain. Weight matrices {W(1),W(2),W∗}, where

W
(a)
ij = sim

(
X

(a)
i ,X

(a)
j

)
encodes the similarity (e.g. cos similarity) between samples

i and j in dataset a ∈ {1, 2} and W∗
ij = cor

(
X

(1)
i ,X

(2)
j

)
encodes the correspondence

between sample i in the source domain and sample j in the target domain (e.g. 1

when they share a label and 0 if the labels differ or are unknown). In an optimization

56

setting, the two goals of preserving intra- and inter-dataset relationships are expressed

as a pair of loss functions:

L1 (Z) =
2∑

a=1

∑
i,j

W
(a)
ij ||Z

(a)
i − Z

(a)
j ||2l2 (5.1)

L2 (Z) =
∑
i,j

W∗
ij||Z

(1)
i − Z

(2)
j ||2l2 . (5.2)

The loss in (5.1) penalizes the embedding distance between related examples within a

dataset and (5.2) penalizes the embedding distance between corresponding examples

across the two datasets. Combining the matrices such that Z =

Z(1) 0

0 Z(2)

 and

W =

W(1) W∗

W∗ W2

 and summing the two loss functions produces the combined loss:

L(Z) =
∑
i,j

W(i, j)||Z[i]− Z[j]||2l2 (5.3)

= tr(ZTLZ), (5.4)

where L =

D(1) −W(1) −W∗

−W∗ D(2) −W(2)

 is referred to as the joint Laplacian. Given

the joint degree matrix D =

D(1) 0

0 D(2)

, the constraint ZTDZ = I removes trivial

solutions to the optimization problem. Minimizing (5.4), subject to this constraint,

is equivalent to solving the generalized eigenvalue problem for the first n nontrivial

eigenvectors ΦΦΦ corresponding to the smallest eigenvalues ΛΛΛ:

LΦΦΦ = DΦΦΦΛΛΛ. (5.5)

57

The rows of the eigenvector matrix provide low dimensional embeddings of each sam-

ple, Xi → ΦΦΦi, that allows samples from different domains to be compared.

5.3 Filtered Manifold Alignment

The approach in filtered manifold alignment (FMA) is to separate the process of

embedding each dataset into a low dimensional space from the process of aligning the

embeddings. FMA calculates the spectra of the graph Laplacians associated with the

source and target domains individually and combines them into an approximation of

the spectra of the joint graph Laplacian.

In order to separate the embedding process from the alignment process, FMA first

converts the generalized eigenvector equation in (5.5) into a standard eigenvector

problem. Because D is a diagonal matrix, this conversion is straightforward and

produces the standard eigenproblem:

D−1/2LD−1/2ΦΦΦ = ΦΦΦΛΛΛ. (5.6)

The n-dimensional embeddings of each sample for semisupervised manifold alignment

are now given by the rows of the matrix Z = D−1/2ΦΦΦ∗,1:nΛΛΛ
−1/2
1:n,1:n.

Once converted into a standard eigenproblem, the next step is to divide the em-

bedding and aligning tasks. This is done by separating the joint Laplacian into

two matrices. The joint graph Laplacian is the sum of the disconnected Laplacian

L∗ =

L(1) 0

0 L(2)

 and the product of the cross-domain incidence matrix with its

transpose: L = L∗ + AAT . The cross-domain incidence matrix A maps each cross-

domain correspondence pair (i, j) to a unique column k in A, such that Aik = 1 and

Ajk = −1. All other elements of A are 0. The L.H.S. of (5.6) becomes:

D−1/2LD−1/2ΦΦΦ =
(
D−1/2L∗D−1/2 + D−1/2AATD−1/2

)
ΦΦΦ. (5.7)

58

This eigenproblem is solved by determining the eigenvectors and eigenvalues of D−1/2L∗D−1/2

and updating each using D−1/2AATD−1/2 to match D−1/2LD−1/2.

Because the disconnected Laplacian is block diagonal and symmetric (each block

being the Laplacian of one domain), the eigendecomposition of D−1/2L∗D−1/2 can

be efficiently computed by computing the eigendecomposition of each block and then

combining them:

D−1/2L∗D−1/2 =

ΦΦΦ(1) 0

0 ΦΦΦ(2)


ΛΛΛ(1) 0

0 ΛΛΛ(2)


ΦΦΦ(1) 0

0 ΦΦΦ(2)


T

. (5.8)

FMA retains the smallest n/2 eigenvectors of each block in (5.8). The eigendecom-

position process of each block is equivalent to using Laplacian eigenmaps [15] to

embed each of the original datasets. The rows of the matrix ΦΦΦ(i) produces an n-

dimensional embedding of the original samples in X(i) that best preserves the local

geometry, according to the loss in (5.1). This subspace embedding has the effect

of denoising the manifold represented by the graphs of each domain by filtering out

eigenvector-eigenvalue pairs associated with the highest frequencies on the graph [31].

By minimizing (5.1) separately from (5.2), this filtering focusses on noise in the intra-

dataset relationships and not the cross domain correspondences. This filtering effect

can be seen in Figure 5.1 where the Joint Laplacian of two graphs is decomposed,

filtered, and reassembled.

The second step in FMA is to align the projections for each dataset by updating

the joint eigenvectors and eigenvalues using the cross-domain correspondences. We

adapt the low-rank spectral update in [21] (Algorithm 5.1). Given USVT = X, the

spectral update computes new singular values and vectors ÛŜV̂T = X+ABT without

ever directly referencing X. We apply the update algorithm to the eigenvectors and

eigenvalues computed above. Alg. 5.2 reduces the complexity of the spectral update

59

(a) Original Laplacian (b) Standard Filter (c) Subgraph Filter

Figure 5.1: Comparison of graph filtering methods. The original Laplacian (a) is
composed of two 20 node Erdős–Rényi graphs with several random connecting edges.
The standard filter (b) shows the matrix recomposed from half of its eigenvectors. The
subgraph filter (c) performs the same eigen-filter on each subgraph before combining
them via the linking edges resulting in smoother off-diagonal blocks.

Algorithm 5.1: SVD Update

Solves U′S′V′T = X + ABT given USVT = X
1: Input: U, S, V, A, B

2:
[
U P

] [I UTA
0 RA

]
← QR

([
U A

])
3:
[
V Q

] [I VTB
0 RB

]
← QR

([
V B

])
4: Z =

[
S 0
0 0

]
−
[
UTA
RA

] [
VTB
RB

]T
5: U∗,S∗,V∗ ← svd(Z)
6: Û←

[
U P

]
U∗

7: Ŝ = S∗

8: V̂←
[
V Q

]
V∗

9: Return: Û, Ŝ, V̂

Algorithm 5.2: Block SVD Update

Updates the eigenvectors and eigenvalues for X + AAT given X = ΦΦΦΛΛΛΦΦΦT

1: Input: ΦΦΦ, ΛΛΛ, A
2: ΦΦΦ′,ΛΛΛ′,ΦΦΦ′T ← svd

(
ΛΛΛ + ΦΦΦTAATΦΦΦ

)
3: ΦΦΦ′′ ← ΦΦΦΦΦΦ′

4: Return: ΦΦΦ′′,ΛΛΛ′

60

under the following assumptions: X is symmetric, A = B, and only the projection of

A onto the span of X is relevant.

These assumptions hold when updating the eigenvectors of L∗ + AAT . The last

condition, specifically, is met by FMA because only the smallest eigenvalues and

eigenvectors are used in the embedding. Any information in A that lies outside of

the smallest eigenvectors of L∗ will only increase the eigenvalues of the corresponding

vectors and thus is likely to continue to be filtered out. Alg. 5.2 is efficient when

rank(X) is small because it relies on a spectral decomposition of a square matrix

whose size is equal to its rank. By performing the filtering in the first step of FMA,

the rank of the disconnected Laplacian has been reduced, making the update step

efficient. The complete FMA algorithm to embed two datasets is given in Alg. 5.3.

An illustrative example of the process FMA performs is given in Figure 5.2. The

two datasets being aligned are composed of 400 points sampled from two different

three-dimensional manifolds: the swiss roll manifold and the S-curve manifold (Figure

5.2a). Noise is added to the points and they are colored according to their location

along the true intrinsic 1 dimensional manifold. A nearest neighbor graph, using the

5 nearest neighbors of each point is formed for each of the two datasets. Each point

is embedded onto the first two nontrivial eigenvectors of the Laplacian matrix of the

nearest neighbor graphs (Figure 5.2b). The joint graph is formed using 40 correspond-

ing points across the two manifolds and the block SVD update is used to combine

and align the two embeddings and reduce the embeddings to 1D (Figure 5.2c).

61

(a) Original Data Points (b) Independent Spectral Embeddings

(c) Joint Embedding

Figure 5.2: Example FMA process. (a) A random sample of 400 points are
collected from a noisy 3D swiss roll manifold and a noisy 3D S-curve manifold. (b) The
datapoints from the two manifold are embedded independently onto a two dimensional
manifold via spectral embedding. (c) The two embeddings are aligned onto the same
1D manifold.

62

5.3.1 Feature-Level Alignment

Semi-supervised manifold alignment can be modified to find a linear mapping

from the original feature spaces to the embedding space. This is referred to as linear

or feature-level alignment in contrast to instance-level alignment because it maps

features of the original domains into the joint embedding space rather than mapping

instances directly. Replacing (5.5) with the new generalized eigenproblem [98]:

XTLXΦΦΦ = XTDXΦΦΦΛΛΛ, (5.9)

allows us to solve for the eigenvectors ΦΦΦ, which can be used to map features from

the original domains into the joint embedding space X → XΦΦΦ. The R.H.S of (5.9)

now contains the dense matrix X in addition to the diagonal matrix D in (5.5).

The conversion to a regular eigenvector problem requires an extra step to calculate

(XTDX)−1/2. The adjusted algorithm is given in Alg. 5.4.

Algorithm 5.3: Filtered Manifold Alignment

1: Input: Data Matrices: X(1) ∈ Rm1×n1 , X(2) ∈ Rm2×n2

Cross Correspondence Incidence Matrix: A
Neighbors: k
Embedding Dimension: n

2: for all X(i) do
3: L(i) ← knn(X(i), k)
4: ΦΦΦ(i),ΛΛΛ(i) ← eign/2

(
(D(i))−1/2L(i)(D(i))−1/2

)
5: end for

6: ΦΦΦ,ΛΛΛ←
[
ΦΦΦ(1) 0
0 ΦΦΦ(2)

]
,

[
ΛΛΛ(1) 0
0 ΛΛΛ(2)

]
7: A′ ← D−1/2A
8: ΦΦΦ′,ΛΛΛ′ ← svdu(ΦΦΦ,ΛΛΛ,A′) ; // Alg. 5.2

9: Z← D−1/2ΦΦΦ′ΛΛΛ′−1/2

10: Return: Z1:m1,1:n, Zm1+1:m1+m2,1:n

63

Algorithm 5.4: Linear Filtered Manifold Alignment

1: Input: Data Matrices: X(1) ∈ Rm1×n1 , X(2) ∈ Rm2×n2

Cross Correspondence Incidence Matrix: A
Neighbors: k
Embedding Dimension: n

2: for all X(i) do
3: L(i),D(i) ← knn(X(i), k)

4: T =
(
(X(i))TD(i)X(i)

)−1/2

5: ΦΦΦ(i),ΛΛΛ(i) ← eign/2

(
(X(i)T(i))TL(i)X(i)T(i)

)
6: end for

7: ΦΦΦ,ΛΛΛ←
[
ΦΦΦ(1) 0
0 ΦΦΦ(2)

]
,

[
ΛΛΛ(1) 0
0 ΛΛΛ(2)

]
8: A′ ← AT
9: ΦΦΦ′,ΛΛΛ′ ← bsvdu(ΦΦΦ,ΛΛΛ,A′) ; // Alg. 5.2

10: Z← XTΦΦΦ′(ΛΛΛ′)−1/2

11: Return: Z1:n1,1:n, Zn1+1:n1+n2,1:n

5.3.2 Complexity Analysis and Extensions

Filtered manifold alignment computation is dominated by the matrix spectral

decompositions. These include decompositions of each of the sparse graph Laplacian

matrices, each of which has a näıve complexity of O(N3), and a decomposition of an

n×nmatrix where n� N is the dimension of the final embedding space. The summed

complexity of three smaller singular value decompositions is a large improvement over

single step semi-supervised manifold alignment which diagonalizes the joint Laplacian

matrix O((2N)3). Taking advantage of sparse solvers can further speed up both

methods. Feature-level filtered manifold alignment scales with the size of the feature

space rather than the number of samples. The spectral decompositions of the graph

Laplacian matrices are replaced with M ×M matrices where M is the number of

features leading to a complexity of O(M3). As the number of samples in a dataset

grows in comparison to the number of features per sample, linear FMA becomes more

efficient compared to nonlinear FMA.

Feature-level filtered manifold alignment can be trivially applied to samples not

in the initial alignment because it learns a linear mapping from the feature space of a

64

sample to the joint embedding space. Nonlinear alignment, which learns a direct map

for each sample, can not be directly applied to new samples. However, the spectral

update (Alg. 5.2) can be applied to embed a new sample using the incidence matrix

of the nearest neighbors as the update matrix. Additionally, both instance-level and

feature-level schemes can align more than 2 datasets at a time by extending the block

diagonal formatting of the joint Laplacian and related matrices.

5.4 Experiments

In this section, we perform multiple experiments to illustrate the effectiveness of

nonlinear instance-level filtered manifold alignment (FMA-I) and linear, feature-level

filtered manifold alignment (FMA-F). We compare the performance of both filtered

manifold alignment approaches to that of several state-of-the-art domain adaptation

methods: Geodesic Flow Kernel (GFK) [38], Manifold Embedded Distribution Align-

ment (MEDA) [100], Correlation Alignment (CORAL) [85], Semi-Supervised Sub-

space Alignment (SSA) [104], and Semi-Supervised Manifold Alignment (SMA) [43].

GFK, MEDA, and CORAL are unsupervised methods. SSA and SMA are semi-

supervised.

5.4.1 Datasets

We use 9 different datasets organized into 3 different experimental groups based

upon shared classes between the datasets.1 Each dataset is composed of a collection

of images for which SURF (speeded up robust features) [77] and/or DeCaf6 [32]

features are provided. The DeCaf6 features are the hidden representations of the

images extracted from the second to last layer of the deep DeCaf convolutional neural

network. In general, Decaf6 features are more descriptive than SURF features and

1Datasets available at https://github.com/jindongwang/transferlearning

65

https://github.com/jindongwang/transferlearning

provide better classification accuracy. The datasets were chosen because they are

popular benchmarks composed of real world images.

The Office+Caltech [77] benchmark is formed from a set of 4 individual image

datasets that share 10 categories and have SURF and DeCaf6 features available. The

four domains that make up the Office+Caltech benchmark Amazon (A), Caltech (C),

DSLR (D), and Webcam (W), are comprised of 958, 1123, 157, and 295 images,

respectively. Example images from each domain and from four of the classes are

shown in Figure 5.3. Differences in pose, lighting, resolution, and background activity

between the datasets are apparent in the images motivating the need for domain

alignment. Each ordered pair of domains forms a separate experiment with a source

and target domain for a total of 12 combinations. We use X → Y to denote aligning

the source domain X with target domain Y . Combined with the two separate feature

sets for each domain, this provides 24 individual alignment experiments.

The MNIST-USPS [57] benchmark uses SURF features from a reduced set of 2000

images from the MNIST image dataset and 1800 from the USPS dataset. Each digit,

0-9, is represented in the images providing 10 class labels. A random sample of the

digits in both datasets is given in Figure 5.4. Using both MNIST and USPS as the

source and target domains provides 2 separate experiments.

The final experiment uses 5 shared classes across the Caltech101 [40], ImageNet [35],

and VOC2007 [34] datasets. The domains contain the DeCaf6 features for 1415, 7341,

and 3376 images, respectively. The source/target combinations of the 3 domains pro-

vide 6 total experiments.

66

(a) Amazon (b) DSLR

(c) Webcam (d) Caltech

Figure 5.3: Example Images from the Office+Caltech Datasets. Each set of
images contains a random image with each of the labels: backpack, bike, laptop, and
mug.

(a) MNIST (b) USPS

Figure 5.4: Example from the MNIST and USPS datasets. Each set of digits
contains a random sample of 48 images. MNIST (a) images are 48x48 pixels. USPS
(b) images are 16x16 pixels.

67

5.4.2 Experimental Setup

We follow the same experimental setup as previous work wherever possible and

report the best performance for each method. In Office-Caltech, 800 SURF and 4096

DeCaf6 features are extracted from each image. In the MNIST-USPS experiment,

256 SURF features are calculated for each image. Caltech-ImageNet-VOC use 4096

DeCaf6 features. All features are normalized to have zero mean and unit variance.

For each experiment, 20 randomized splits are created and results are given as the

average across each split. The splits for the Office-Caltech datasets are the same

splits as provided in [38]. In each experiment, the training set for the semi-supervised

methods is composed of 20 labeled instances per class for the source domain (except

for DSLR in which only 8 are used) and 3 labeled instances per class for the target

domain. The target domain labels are used only for correspondences and not for

training the final classifier. Additionally, we introduce a new domain and feature

adaptation task using the Caltech-Office dataset to demonstrate FMA’s applicability

to heterogeneous domains. The source domain and target domains in this task differ

in using SURF or DeCaf6 features.

We use the same hyper-parameters for both versions of filtered manifold align-

ment across both the Office-Caltech and the Caltech-ImageNet-VOC experiment sets.

Nearest neighbor graphs are formed from instances within each dataset using cosine

similarity. The edge weights for the 12 nearest neighbors of each sample are set to

α ∗ cos(vi, vj), where α = 0.2. Cross dataset correspondences between samples that

share labels in the training set have edges weights of 1. We calculate 20 singular vec-

tors from both the source and target domains and then combine them into a n = 40

dimensional aligned embedding space. The edge weights and embedding dimensions

were selected for high scores across the experiments. We report on the sensitivity of

these parameters in section 5.4.5. After alignment, a logistic classifier using categori-

cal cross-entropy is trained on the labeled subset of the source domain and evaluated

68

on the entire target domain. In the MNIST-USPS, experiments the number of near-

est neighbors is reduced to 4 and the coefficient of the edge weights is decreased to

α = 1.0. All other parameters match those above.

The same parameters used in FMA are used for MA where applicable. Results for

the unsupervised methods (MEDA, GFK, CORA) are reported from [100] for both

the Office+Caltech and MNIST-USPS experiments. For the remaining methods, the

default parameters given for each method are used. SSA requires the embedding size

be less than or equal to the minimum number of labeled source samples for any class.

To this end, we used an embedding dimension of 8 across most tasks and reduced it

when necessary to facilitate convergence.

5.4.3 Evaluation

The classification accuracies for the Office-Caltech datasets using SURF and De-

Caf6 features are presented in Tables 5.1 and 5.2, respectively. In addition, Table 5.3

presents the accuracies for the task where the source and target domains use different

feature sets. The classification results for MNIST-USPS as well as Caltech-ImageNet-

VOC are given in Table 5.4. The best accuracies for each task are presented in

boldface.

FMA demonstrated the second highest average accuracy across all the Office-

Caltech experiments falling just below MEDA. Semi-supervised subspace alignment

also has higher classification accuracy than FMA when using the SURF features, but

does considerably worse with the Decaf6 features. Additionally, FMA had the highest

classification accuracy on both the MNIST-USPS tasks and the Caltech-ImageNet-

VOC tasks. These results demonstrate the effectiveness of filtered manifold alignment

across a large range of different datasets and experiments.

Table 5.3 shows the accuracy of FMA on the Office-Caltech experiments when

the source and target domain have different feature sets. The accuracy on the target

69

Table 5.1: Office + Caltech 10 Classification Accuracy using SURF Features

MEDA GFK CORAL SSA SMA FMA-I FMA-F

A→C 43.9 40.7 45.1 72.4 29.8 33.4 32.8
A→D 45.9 40.1 39.5 58.3 56.8 56.9 57.4
A→W 53.2 37.0 44.4 54.7 69.2 65.4 67.8
C→A 56.5 46.0 52.1 59.8 47.9 49.2 48.1
C→D 50.3 40.8 45.9 59.5 56.1 53.7 58.0
C→W 53.9 37.0 46.4 54.0 68.7 65.3 67.2
D→A 41.2 28.7 37.7 59.4 40.8 50.8 49.8
D→C 34.9 29.3 33.8 71.2 27.0 34.8 33.2
D→W 87.5 80.3 84.7 53.9 68.1 72.2 70.8
W→A 42.7 27.6 36.0 60.1 45.5 50.0 50.3
W→C 34.1 24.8 33.7 74.2 28.5 31.4 31.5
W→D 88.5 85.4 86.6 54.3 56.5 56.1 59.0

Ave 52.7 43.1 48.8 61.0 49.6 51.6 52.2

domains roughly matches those of the homogeneous domain tasks using the same

features as the target domains. None of MEDA, GFK, CORAL, or SSA are applicable

to domains with different feature sets.

Figure 5.5 shows the time in seconds to align each pair of domains in the Caltech-

ImageNet-VOC experiments from a cold start. Each method was implemented in

Python3.7.5 and ran on an 3.60GHz AMD Ryzen 7 3700X Processor with 16GB

of RAM. Across every experiment, FMA and linear FMA provide significant time

advantages over the other compared techniques. Additionally, experiments involving

the larger ImageNet dataset as either the source or target domain demonstrate the

superior complexity of feature-level FMA when the number of samples eclipses the

number of features in the dataset as compared to instance-level FMA.

70

Table 5.2: Office + Caltech 10 Classification Accuracy using DeCaf6 Features

MEDA GFK CORAL SSA SMA FMA-I FMA-F

A→C 87.4 79.2 83.2 75.9 69.2 84.6 85.8
A→D 88.1 82.2 84.1 70.8 88.9 95.4 91.9
A→W 88.1 70.9 74.6 85.6 88.7 95.0 94.5
C→A 93.4 86.0 92.0 69.0 90.7 91.4 91.4
C→D 91.1 86.6 84.7 59.8 87.9 95.1 90.6
C→W 95.6 77.6 80.0 72.1 89.1 92.5 92.0
D→A 93.0 76.3 85.5 70.0 55.8 91.3 90.8
D→C 87.5 71.4 76.8 70.6 48.4 85.6 85.7
D→W 97.6 99.3 99.3 72.5 72.4 94.2 92.7
W→A 99.4 76.8 81.2 68.8 66.7 91.6 91.9
W→C 93.2 69.1 75.5 72.4 55.7 85.7 86.2
W→D 99.4 100.0 100 71.7 86.1 96.7 91.9

Ave 92.9 74.0 84.7 71.6 74.6 91.6 90.5

Table 5.3: Office 10 Classification Accuracy SURF to DeCaf6 Features

SURF to DeCaf6 DeCaf6 to SURF
FMA-I FMA-F FMA-I FMA-F

A→C 82.8 82.9 32.6 33.4
A→D 90.2 88.6 58.3 58.9
A→W 92.9 94.4 69.9 70.0
C→A 89.8 89.6 49.9 49.7
C→D 91.7 89.6 58.3 58.4
C→W 90.7 91.5 68.4 68.8
D→A 90.2 90.1 50.0 49.8
D→C 84.1 84.7 32.4 33.0
D→W 92.7 93.5 71.8 70.8
W→A 90.8 91.2 50.0 50.4
W→C 83.8 84.6 30.3 31.7
W→D 92.7 91.1 60.1 59.7

Ave 89.4 89.3 52.7 52.8

71

Table 5.4: MNIST-USPS and Caltech-ImageNet-VOC Classification Accuracy

MEDA GFK CORAL SSA SMA FMA-I FMA-F

M→U 89.5 31.2 49.2 63.9 66.0 87.3 76.3
U→M 72.1 46.5 30.5 73.3 58.0 81.0 66.5

Ave 80.8 38.9 39.9 68.6 62.0 84.2 71.4

C→I 76.1 49.3 21.3 50.0 17.4 81.9 76.0
C→V 54.3 30.7 48.6 63.0 45.0 58.9 62.5
I→C 73.1 78.7 35.5 26.4 61.6 99.8 99.6
I→V 67.3 64.8 34.0 65.0 38.3 60.5 62.5
V→C 95.6 56.0 69.6 24.8 67.4 99.8 93.3
V→I 74.7 61.3 42.3 50.7 48.8 84.4 78.4

Ave 73.5 56.8 41.9 46.9 46.4 80.9 78.7

Figure 5.5: Runtime comparison of alignment methods. The time to align
each pair of domains in the Caltech-ImageNet-VOC dataset is given for each of the
7 domain alignment methods tested.

72

5.4.4 Inductive Performance

Using the MNIST-USPS [57] benchmark, we evaluate the ability of feature-level

filtered manifold alignment to generalize to unseen samples in the target domain.

Samples that aren’t initially available can’t used for the graph construction portion

of alignment. This can lead to forming a graph that is not an accurate representation

of the domain’s underlying manifold. However, unlike instance-level FMA, feature-

level FMA learns a transformation matrix that can be applied to project new samples

onto the joint manifold even though they weren’t used in the original alignment phase.

For the inductive experiment, the hyper-parameters and experimental setup are

the same as the MNIST-USPS experiment above, but only a portion of the target

domain samples are used in the alignment phase. The remaining portion are withheld

and then embedded using the learned linear transform on the features. We vary the

portion of the target domain used for training. Figure 5.6 illustrates the results on

both the MNIST to USPS transfer and the reverse. As the portion of the target

domain samples used in training grows, the classification accuracy of the withheld

samples approaches the accuracy of the training samples. Using 60% or roughly 1200

samples from the target domain builds an accurate graph of the domain manifold so

that the learned joint embedding and transformation can generalize to new samples

with only a minor loss in classification accuracy.

73

(a) MNIST→USPS (b) USPS→MNIST

Figure 5.6: Inductive classification accuracy of FMA-F on MNIST-USPS
Classification accuracy on the training samples and the withheld test samples are
given for USPS as the target domain (a) and for MNIST as the target (b). As the
training size expands, the classification accuracy approaches the training accuracy.

5.4.5 Hyper-Parameter Evaluation

Using the office-Caltech dataset with SURF and DeCaf6 features, we study FMA’s

sensitivity to hyper-parameters for both instance-level and feature-level algorithms.

In each experiment, we vary one parameter while keeping the others constant. The

constant hyper-parameters match those used in the previous office-Caltech experi-

ments: the edge weight coefficient is α = 0.2 and the embedding dimension is set to

40.

Figure 5.7 presents the overall classification accuracy for the office-Caltech exper-

iment for different final embedding dimensions. The initial embedding size for each

individual dataset is always half of the final embedding size in each experiment.

Figure 5.8 demonstrates the effect of varying the scaling on the edge weights of

the nearest neighbor graphs for each domain. A smaller scalar places less emphasis

on the final embeddings of like instances within a domain having similar embeddings

while a large value de-emphasizes the cross-domain correspondences in comparison.

74

Figure 5.7: Classification accuracy as a function of embedding dimension.
The effect on the overall classification accuracy for the office-Caltech dataset due to
varying the final embedding dimension.

Figure 5.8: Classification accuracy as a function of α. The effect on the overall
classification accuracy for the office-Caltech dataset due to varying the edge weights
of the nearest neighbor graphs.

75

Note that increments on the y-axes are much smaller in comparison to Figure 5.7 due

to scaling having a much smaller effect on the overall classification accuracy.

While the effect of the embedding dimension on the classification accuracy is large,

it is due in part to the logistic classifier and the accuracy does somewhat level off

for sufficiently large dimensions. Combined with the small effect of the edge weights

on the final accuracy, this shows that FMA is not reliant on finding the best hyper-

parameters and can perform well over a wide range of them.

5.5 Related Work

Domain Adaptation is a large area of study that stretches across disciplines such

as computer vision, natural language processing, and machine learning. It is studied

as an unsupervised, semi-supervised, or supervised problem. We focus on reviewing

unsupervised and semi-supervised methods below.

Geodesic Flow Kernel (GFK) [38] is an unsupervised domain adaptation method.

GFK treats the source domain and the target domain as points on a Grassma-

nian manifold defined by their principal components. An infinite-dimensional fea-

ture space, H∞, can be constructed by interpolating between the source and target

points. An inner product can be computed in H∞ to construct a kernelized classifier:

〈zi, zj〉 = xTi Gxj, where zi are the transformed features of sample point xi and G is

the kernel matrix.

Manifold Embedded Distribution Alignment (MEDA) [100], like FMA, takes a two

step approach to dataset alignment. MEDA first performs manifold feature learning

on each domain followed by dynamic distribution alignment. The manifold feature

learning is done using GFK where learned features zi =
√

Gxi. The second step,

dynamic distribution alignment, balances the importance of the marginal distribution

and conditional distributions of samples between the domains. Soft labels, using a

76

classifier on zi are used in place of actual labels in the target domain when calculating

the distributions.

Correlation Alignment (CORAL) [85] transforms the source domain to match

the target domain by first whitening the domain using the inverse square root of the

covariance matrix of the source domain and then recoloring using the target covariance

matrix: ZS = XSC
−1/2
S C

1/2
T , where Ci = cov(Xi) + I.

Semi-Supervised Subspace Alignment (SSA) [104] learns orthogonal linear maps

for source and target domains by simultaneously preserving intra-domain and inter-

domain relationships and reducing classification error. CORAL does so by minimizing

a loss function that is a weighted sum of the empirical risk, the distance between

corresponding labeled points across the two domains, and a manifold regularizer on

the pairwise similarities of the unlabeled samples in the target domain.

Manifold alignment methods [43, 97, 99] are nonlinear embedding methods that

work by forming a joining graph between samples within and across domains. The

eigenvectors of the Laplacian of this graph corresponding to the smallest eigenvalues

embed the original domains in a way to preserve the embedded distance between

points.

5.6 Conclusion

Filtered manifold alignment provides a novel approach to performing manifold

alignment and domain adaptation. Across a large number of canonical experimental

test beds, FMA meets or exceeds other state-of-the-art methods, while being consid-

erably faster in calculating the alignment. Additionally, because we present both an

instance-based and a feature-based version, the method can scale with the smaller of

the two options.

77

CHAPTER 6

CONCLUSION

Graphs are useful models of the relationships between objects in datasets and can

be utilized by machine learning algorithms to great effect. This thesis proposed three

innovative machine learning methods that incorporate the graph-structure of data to

solve a wide range of tasks.

Quantum walk neural networks (QWNN) are designed for supervised learning

problems in which there is an information rich signal on a graph. QWNN innovates

over previous graph convolution networks by closely tying the graph dynamics to

the learning process. A quantum walk determines how the signal is diffused across

objects in the graph to be used for a classification or regression problem. In turn,

the results of the problem change the parameters of the quantum walk to learn a

better future diffusion process. We compare quantum walk neural networks against a

range of other graph neural networks and across a wide variety of tasks. The results

demonstrate the effectiveness of our method to diffuse information across the graph in

a manner best suited to the current learning task. We also compare a model of QWNN

invariant to the ordering of nodes in the graph to a model that uses a heuristic node

ordering. While not offering the same guarantees, the heuristic model demonstrated

the effectiveness of incorporating global graph information into the quantum walk

process.

Asymmetric node similarity embeddings (ANSE) tackle the unsupervised node

embedding problem for directed graphs. Directed graphs provide additional infor-

mation compared to undirected graphs about the relationships between the objects

78

in the graph by orienting the edges between objects. Unfortunately, this additional

information is lost when node embedding algorithms designed for undirected graphs

are applied to directed graphs. ANSE preserves the asymmetric relationships between

nodes in the graph. Unlike several other digraph node embedding methods, ANSE

uses a single rather than a dual embedding for each node in the graph. Along with

learning an asymmetric similarity function, this better encapsulates the codependency

between a node’s role as the source and the target of edges in the graph. We provide

experimental results that show that not only does ANSE improve node embeddings

for digraphs, it can provide better node embeddings for undirected graphs as well by

better preserving asymmetric relationships between nodes, such as expected hitting

time, that exist in undirected graphs.

Filtered Manifold Alignment (FMA) is a semi-supervised method for dataset align-

ment. The method incorporates the graph construction into the process of projecting

two datasets onto a joint low-dimensional manifold. Unlike previous manifold align-

ment methods, FMA fully separates the embedding step from the alignment step.

Not only does this improve the computational complexity of the method, it separates

the natural filtering process that embedding in a lower dimensional space has on each

dataset from interfering with the other dataset. Our method improves on both the

efficiency and the quality of the alignments produced by previous manifold alignment

methods. We offer both a nonlinear instance-level version and a linear feature-level

version of our algorithm. Across multiple experiments, filtered manifold alignment

demonstrates lower runtime and higher alignment accuracy compared to other mod-

ern domain adaptation methods. Additionally, the feature-level FMA algorithm can

be used inductively to embed new data points that were not present in the initial

alignment of the source and target datasets.

79

6.1 Future Work

In Chapter 3, we showed the effectiveness of quantum walk neural networks to

perform regression and classification problems on graphs up to several hundred nodes

with a high degree of accuracy. However, we also showed that the space complexity

of our model scales quadratically with the size of the graph. In order for this neural

network to be applicable to larger graphs (such as webscale graphs in the range of

millions or billions of nodes), future work is needed to reduce this complexity. Another

research direction of interest is the use of entangled walkers. Currently, each walk on

the graph is considered independent. However, multiple walkers can interact causing

entangled states in the quantum walk. Future work will study the effect entanglement

has on the effectiveness of the QWNN.

Finally, the impressive results of the QWNN models that used heuristic node or-

dering imply that QWNN and potentially other graph convolutional neural networks

would benefit from incorporating additional graph information into the process. In

the case of QWNN, this currently comes at the cost of losing the invariant property of

the neural network to different node ordering. Additional work to incorporate node

centrality into the invariant QWNN may produce a method that includes the best

aspects of both models.

In Chapter 4, we provide a model for learning a single embedding for each node

in a digraph and a matrix used to parameterize the node similarity function. Our

model comes from adapting the inner product (or cos similarity) of node embeddings

as our similarity function. Alternative methods of computing the similarity of node

embeddings exist, such as the absolute difference: |φφφi−φφφj|, or the euclidean distance

between embeddings:
√

(φφφi − φφφj)T (φφφi − φφφj). These functions should be investigated

in the pursuit of producing alternative asymmetric functions for use with digraphs.

In Chapter 5, we provide a method for aligning two datasets on a n-dimensional

manifold. The dimension n is determined by searching a set of potential values. Sev-

80

eral methods of automatically choosing the embedding dimension for other alignment

algorithms exist. Future work is necessary to determine if any of these approaches

are applicable to filtered manifold alignment or if a new method of determining the

optimal embedding dimension is needed.

Both the linear and nonlinear versions of the FMA algorithms can be adapted to

align more than two datasets at one time but extending the block formulation of the

joint Laplacian to include an additional block along the diagonal for each additional

dataset as well as correspondences on the new off-diagonal blocks. Ideally, including

more source domains would improve, or at worst have no effect on the classification

accuracy of the target domain. Testing this on the Caltech101 [40], ImageNet [35],

and VOC2007 [34] datasets using FMA-I led to a decrease in overall target accuracy

as shown in Table 6.1. A possible explanation is that a drastically different edge and

correspondence weighting scheme is necessary to manage the much larger set of cross-

domain correspondences. Future work will investigate this discrepancy and hopefully

provide the means to overcome it.

Table 6.1: Caltech-ImageNet-VOC Multi-Source Classification Accuracy

Target Source

Caltech101 ImageNet VOC2007 Multi-Source
Caltech101 - 99.8 99.8 78.1
ImageNet 81.9 - 84.4 53.0
VOC2007 58.9 60.5 - 55.8

81

BIBLIOGRAPHY

[1] Agarwal, Girish S, and Pathak, Pradyumna K. Quantum random walk of the
field in an externally driven cavity. Physical Review A 72, 3 (2005), 033815.

[2] Aharonov, Dorit, Ambainis, Andris, Kempe, Julia, and Vazirani, Umesh. Quan-
tum walks on graphs. In Proceedings of the Thirty-third Annual ACM Sympo-
sium on Theory of Computing (New York, NY, USA, 2001), STOC ’01, ACM,
pp. 50–59.

[3] Aharonov, Yakir, Davidovich, Luiz, and Zagury, Nicim. Quantum random
walks. Physical Review A 48, 2 (1993), 1687.

[4] Ahmad, Rashid, Sajjad, Uzma, and Sajid, Muhammad. One-dimensional quan-
tum walks with a position-dependent coin. arXiv preprint arXiv:1902.10988
(2019).

[5] Altaisky, MV. Quantum neural network. arXiv preprint quant-ph/0107012
(2001).

[6] Ambainis, Andris. Quantum walks and their algorithmic applications. Inter-
national Journal of Quantum Information 1, 04 (2003), 507–518.

[7] Ambainis, Andris, Bach, Eric, Nayak, Ashwin, Vishwanath, Ashvin, and Wa-
trous, John. One-dimensional quantum walks. In Proceedings of the Thirty-third
Annual ACM Symposium on Theory of Computing (New York, NY, USA, 2001),
STOC ’01, ACM, pp. 37–49.

[8] Arjovsky, Martin, Shah, Amar, and Bengio, Yoshua. Unitary evolution recur-
rent neural networks. In International Conference on Machine Learning (2016),
pp. 1120–1128.

[9] Atwood, James, and Towsley, Don. Diffusion-convolutional neural networks.
In Advances in Neural Information Processing Systems 29. Curran Associates,
Inc., Red Hook, NY, USA, 2016, pp. 1993–2001.

[10] Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[11] Bai, Lu, Hancock, Edwin R, Torsello, Andrea, and Rossi, Luca. A quantum
jensen-shannon graph kernel using the continuous-time quantum walk. In In-
ternational Workshop on Graph-Based Representations in Pattern Recognition
(Berlin / Heidelberg, Germany, 2013), Springer, pp. 121–131.

82

[12] Bai, Lu, Rossi, Luca, Cui, Lixin, Zhang, Zhihong, Ren, Peng, Bai, Xiao, and
Hancock, Edwin. Quantum kernels for unattributed graphs using discrete-time
quantum walks. Pattern Recognition Letters 87 (2017), 96–103.

[13] Bai, Lu, Rossi, Luca, Torsello, Andrea, and Hancock, Edwin R. A quantum
jensen–shannon graph kernel for unattributed graphs. Pattern Recognition 48,
2 (2015), 344–355.

[14] Balazevic, Ivana, Allen, Carl, and Hospedales, Timothy. Multi-relational
poincaré graph embeddings. In Advances in Neural Information Processing
Systems (2019), pp. 4463–4473.

[15] Belkin, Mikhail, and Niyogi, Partha. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15, 6 (2003), 1373–1396.

[16] Biamonte, Jacob, Wittek, Peter, Pancotti, Nicola, Rebentrost, Patrick, Wiebe,
Nathan, and Lloyd, Seth. Quantum machine learning. Nature 549, 7671 (2017),
195.

[17] Blum, L. C., and Reymond, J.-L. 970 million druglike small molecules for
virtual screening in the chemical universe database GDB-13. J. Am. Chem.
Soc. 131 (2009), 8732.

[18] Bojchevski, Aleksandar, and Günnemann, Stephan. Deep gaussian embed-
ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[19] Borgwardt, K. M., and Kriegel, H. P. Shortest-path kernels on graphs. In
Fifth IEEE International Conference on Data Mining (ICDM’05) (Houston,
TX, USA, Nov 2005), IEEE, pp. 8 pp.–.

[20] Borgwardt, Karsten M., Ong, Cheng Soon, Schönauer, Stefan, Vishwanathan,
S. V. N., Smola, Alex J., and Kriegel, Hans-Peter. Protein function prediction
via graph kernels. Bioinformatics 21, suppl 1 (2005), i47–i56.

[21] Brand, Matthew. Fast online svd revisions for lightweight recommender sys-
tems. In Proceedings of the 2003 SIAM international conference on data mining
(2003), SIAM, pp. 37–46.

[22] Brandes, Ulrik. A faster algorithm for betweenness centrality. Journal of math-
ematical sociology 25, 2 (2001), 163–177.

[23] Bruna, Joan, Zaremba, Wojciech, Szlam, Arthur, and LeCun, Yann. Spectral
networks and locally connected networks on graphs. In International confer-
ence on learning representations (ICLR) (Amherst, MA, USA, 2014), OpenRe-
view.net.

[24] Cai, Deng, and Lam, Wai. Graph transformer for graph-to-sequence learning.
In AAAI (2020), pp. 7464–7471.

83

[25] Chami, Ines, Ying, Zhitao, Ré, Christopher, and Leskovec, Jure. Hyperbolic
graph convolutional neural networks. In Advances in neural information pro-
cessing systems (2019), pp. 4868–4879.

[26] Chiang, Chen-Fu, Nagaj, Daniel, and Wocjan, Pawel. Efficient circuits for
quantum walks. Quantum Info. Comput. 10, 5 (May 2010), 420–434.

[27] Childs, Andrew M. Universal computation by quantum walk. Physical review
letters 102, 18 (2009), 180501.

[28] Coifman, Ronald R, and Lafon, Stéphane. Diffusion maps. Applied and com-
putational harmonic analysis 21, 1 (2006), 5–30.

[29] Debnath, Asim Kumar, Lopez de Compadre, Rosa L, Debnath, Gargi, Shuster-
man, Alan J, and Hansch, Corwin. Structure-activity relationship of mutagenic
aromatic and heteroaromatic nitro compounds. correlation with molecular or-
bital energies and hydrophobicity. Journal of medicinal chemistry 34, 2 (1991),
786–797.

[30] Defferrard, Michaël, Bresson, Xavier, and Vandergheynst, Pierre. Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances in
Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., Red Hook,
NY, USA, 2016, pp. 3844–3852.

[31] Deutsch, Shay, Ortega, Antonio, and Medioni, Gerard. Manifold denoising
based on spectral graph wavelets. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2016), IEEE, pp. 4673–
4677.

[32] Donahue, Jeff, Jia, Yangqing, Vinyals, Oriol, Hoffman, Judy, Zhang, Ning,
Tzeng, Eric, and Darrell, Trevor. Decaf: A deep convolutional activation feature
for generic visual recognition. In International conference on machine learning
(2014), pp. 647–655.

[33] Dunjko, Vedran, and Briegel, Hans J. Machine learning & artificial intelligence
in the quantum domain: a review of recent progress. Reports on Progress in
Physics 81, 7 (2018), 074001.

[34] Everingham, Mark, Van Gool, Luc, Williams, Christopher KI, Winn, John, and
Zisserman, Andrew. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision 88, 2 (2010), 303–338.

[35] Fang, Chen, Xu, Ye, and Rockmore, Daniel N. Unbiased metric learning: On the
utilization of multiple datasets and web images for softening bias. In Proceedings
of the IEEE International Conference on Computer Vision (2013), pp. 1657–
1664.

84

[36] Farhi, Edward, and Gutmann, Sam. Quantum computation and decision trees.
Physical Review A 58, 2 (1998), 915.

[37] Gilmer, Justin, Schoenholz, Samuel S., Riley, Patrick F., Vinyals, Oriol, and
Dahl, George E. Neural message passing for quantum chemistry. In Proceed-
ings of the 34th International Conference on Machine Learning (International
Convention Centre, Sydney, Australia, 06–11 Aug 2017), Doina Precup and
Yee Whye Teh, Eds., vol. 70 of Proceedings of Machine Learning Research,
PMLR, pp. 1263–1272.

[38] Gong, Boqing, Shi, Yuan, Sha, Fei, and Grauman, Kristen. Geodesic flow kernel
for unsupervised domain adaptation. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition (2012), IEEE, pp. 2066–2073.

[39] Gori, M., Monfardini, G., and Scarselli, F. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005. (Montreal, Que., Canada, July 2005), vol. 2, IEEE, pp. 729–734
vol. 2.

[40] Griffin, Gregory, Holub, Alex, and Perona, Pietro. Caltech-256 object category
dataset.

[41] Grover, Aditya, and Leskovec, Jure. Node2vec: Scalable feature learning for
networks. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (New York, NY, USA, 2016), KDD
’16, ACM, pp. 855–864.

[42] Gupta, Sanjay, and Zia, RKP. Quantum neural networks. Journal of Computer
and System Sciences 63, 3 (2001), 355–383.

[43] Ham, Jihun, Lee, Daniel D, Saul, Lawrence K, et al. Semisupervised alignment
of manifolds. In AISTATS (2005), vol. 120, Citeseer, p. 27.

[44] Jing, Li, Shen, Yichen, Dubcek, Tena, Peurifoy, John, Skirlo, Scott, LeCun,
Yann, Tegmark, Max, and Soljačić, Marin. Tunable efficient unitary neural
networks (eunn) and their application to rnns. In Proceedings of the 34th In-
ternational Conference on Machine Learning - Volume 70 (Sydney, Australia,
2017), ICML’17, JMLR.org, pp. 1733–1741.

[45] Joo, Jaewoo, Knight, Peter L, and Pachos, Jiannis K. Single atom quantum
walk with 1d optical superlattices. Journal of Modern Optics 54, 11 (2007),
1627–1638.

[46] Jordan, Stephen P, and Wocjan, Pawel. Efficient quantum circuits for arbitrary
sparse unitaries. Physical Review A 80, 6 (2009), 062301.

[47] Kendon, Viv. Quantum walks on general graphs. International Journal of
Quantum Information 4, 05 (2006), 791–805.

85

[48] Khosla, Megha, Leonhardt, Jurek, Nejdl, Wolfgang, and Anand, Avishek. Node
representation learning for directed graphs. ArXiv abs/1810.09176 (2018).

[49] Kipf, Thomas N., and Welling, Max. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Represen-
tations, ICLR 2017 (Amherst, MA, USA, 2017), OpenReview.net.

[50] Krioukov, Dmitri, Papadopoulos, Fragkiskos, Kitsak, Maksim, Vahdat, Amin,
and Boguná, Marián. Hyperbolic geometry of complex networks. Physical
Review E 82, 3 (2010), 036106.

[51] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural In-
formation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Curran Associates, Inc., Red Hook, NY, USA, 2012,
pp. 1097–1105.

[52] Lee, Junhyun, Lee, Inyeop, and Kang, Jaewoo. Self-attention graph pooling.
arXiv preprint arXiv:1904.08082 (2019).

[53] Leskovec, Jure, Kleinberg, Jon, and Faloutsos, Christos. Graph evolution: Den-
sification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[54] Liu, Weiyang, Wen, Yandong, Yu, Zhiding, Li, Ming, Raj, Bhiksha, and Song,
Le. Sphereface: Deep hypersphere embedding for face recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition (2017),
pp. 212–220.

[55] Loke, T, and Wang, JB. An efficient quantum circuit analyser on qubits and
qudits. Computer Physics Communications 182, 10 (2011), 2285–2294.

[56] Loke, T, and Wang, JB. Efficient circuit implementation of quantum walks on
non-degree-regular graphs. Physical Review A 86, 4 (2012), 042338.

[57] Long, Mingsheng, Wang, Jianmin, Ding, Guiguang, Sun, Jiaguang, and Yu,
Philip S. Transfer feature learning with joint distribution adaptation. In
Proceedings of the IEEE international conference on computer vision (2013),
pp. 2200–2207.

[58] Lovett, Neil B, Cooper, Sally, Everitt, Matthew, Trevers, Matthew, and
Kendon, Viv. Universal quantum computation using the discrete-time quantum
walk. Physical Review A 81, 4 (2010), 042330.

[59] Manouchehri, K, and Wang, JB. Quantum walks in an array of quantum dots.
Journal of Physics A: Mathematical and Theoretical 41, 6 (2008), 065304.

[60] Manouchehri, K, and Wang, JB. Quantum random walks without walking.
Physical Review A 80, 6 (2009), 060304.

86

[61] Meng, Yu, Huang, Jiaxin, Wang, Guangyuan, Zhang, Chao, Zhuang, Honglei,
Kaplan, Lance, and Han, Jiawei. Spherical text embedding. In Advances in
Neural Information Processing Systems (2019), pp. 8208–8217.

[62] Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. Efficient esti-
mation of word representations in vector space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings (2013).

[63] Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems (2013), pp. 3111–3119.

[64] Mnih, Andriy, and Hinton, Geoffrey E. A scalable hierarchical distributed
language model. In Advances in neural information processing systems (2009),
pp. 1081–1088.

[65] Nayak, Ashwin, and Vishwanath, Ashvin. Quantum walk on the line. arXiv
preprint quant-ph/0010117 (2000).

[66] Ortega, Antonio, Frossard, Pascal, Kovačević, Jelena, Moura, José MF,
and Vandergheynst, Pierre. Graph signal processing. arXiv preprint
arXiv:1712.00468 (2017).

[67] Ou, Mingdong, Cui, Peng, Pei, Jian, Zhang, Ziwei, and Zhu, Wenwu. Asymmet-
ric transitivity preserving graph embedding. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(New York, NY, USA, 2016), KDD ’16, ACM, pp. 1105–1114.

[68] Perozzi, Bryan, Al-Rfou, Rami, and Skiena, Steven. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining (2014), ACM,
pp. 701–710.

[69] Qiang, Xiaogang, Yang, Xuejun, Wu, Junjie, and Zhu, Xuan. An enhanced
classical approach to graph isomorphism using continuous-time quantum walk.
Journal of Physics A: Mathematical and Theoretical 45, 4 (2012), 045305.

[70] Richardson, Matthew, Agrawal, Rakesh, and Domingos, Pedro. Trust manage-
ment for the semantic web. In International semantic Web conference (2003),
Springer, pp. 351–368.

[71] Rohde, Peter P, Schreiber, Andreas, Štefaňák, Martin, Jex, Igor, and Silber-
horn, Christine. Multi-walker discrete time quantum walks on arbitrary graphs,
their properties and their photonic implementation. New Journal of Physics 13,
1 (2011), 013001.

87

[72] Rossi, Luca, Torsello, Andrea, and Hancock, Edwin R. A Continuous-Time
Quantum Walk Kernel for Unattributed Graphs, vol. 7877 of Lecture Notes in
Computer Science. Springer, Berlin / Heidelberg, Germany, 2013, pp. 101–110.

[73] Rossi, Luca, Torsello, Andrea, and Hancock, Edwin R. Measuring graph similar-
ity through continuous-time quantum walks and the quantum jensen-shannon
divergence. Physical Review E 91, 2 (2015), 022815.

[74] Rossi, Matteo AC, Benedetti, Claudia, Borrelli, Massimo, Maniscalco, Sabrina,
and Paris, Matteo GA. Continuous-time quantum walks on spatially correlated
noisy lattices. Physical Review A 96, 4 (2017), 040301.

[75] Rupp, M., Tkatchenko, A., Müller, K.-R., and von Lilienfeld, O. A. Fast and
accurate modeling of molecular atomization energies with machine learning.
Physical Review Letters 108 (2012), 058301.

[76] Ryan, Colm A, Laforest, Martin, Boileau, Jean-Christian, and Laflamme, Ray-
mond. Experimental implementation of a discrete-time quantum random walk
on an nmr quantum-information processor. Physical Review A 72, 6 (2005),
062317.

[77] Saenko, Kate, Kulis, Brian, Fritz, Mario, and Darrell, Trevor. Adapting visual
category models to new domains. In European conference on computer vision
(2010), Springer, pp. 213–226.

[78] Sarkar, Rik. Low distortion delaunay embedding of trees in hyperbolic plane.
In International Symposium on Graph Drawing (2011), Springer, pp. 355–366.

[79] Scarselli, Franco, Gori, Marco, Tsoi, Ah Chung, Hagenbuchner, Markus, and
Monfardini, Gabriele. The graph neural network model. IEEE Transactions on
Neural Networks 20, 1 (2009), 61–80.

[80] Schomburg, Ida, Chang, Antje, Ebeling, Christian, Gremse, Marion, Heldt,
Christian, Huhn, Gregor, and Schomburg, Dietmar. Brenda, the enzyme
database: updates and major new developments. Nucleic acids research 32,
suppl 1 (2004), D431–D433.

[81] Shenvi, Neil, Kempe, Julia, and Whaley, K Birgitta. Quantum random-walk
search algorithm. Physical Review A 67, 5 (2003), 052307.

[82] Shervashidze, Nino, Schweitzer, Pascal, Leeuwen, Erik Jan van, Mehlhorn,
Kurt, and Borgwardt, Karsten M. Weisfeiler-lehman graph kernels. Journal
of Machine Learning Research 12, Sep (2011), 2539–2561.

[83] Shuman, David I, Narang, Sunil K, Frossard, Pascal, Ortega, Antonio, and
Vandergheynst, Pierre. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine 30, 3 (2013), 83–98.

88

[84] Šubelj, Lovro, and Bajec, Marko. Model of complex networks based on citation
dynamics. In Proceedings of the 22nd international conference on World Wide
Web (2013), ACM, pp. 527–530.

[85] Sun, Baochen, Feng, Jiashi, and Saenko, Kate. Return of frustratingly easy
domain adaptation. In Thirtieth AAAI Conference on Artificial Intelligence
(2016).

[86] Tang, Jian, Qu, Meng, Wang, Mingzhe, Zhang, Ming, Yan, Jun, and Mei,
Qiaozhu. Line: Large-scale information network embedding. In Proceedings
of the 24th international conference on world wide web (2015), International
World Wide Web Conferences Steering Committee, pp. 1067–1077.

[87] Tay, Yi, Luu, Anh Tuan, and Hui, Siu Cheung. Hermitian co-attention networks
for text matching in asymmetrical domains. In IJCAI (2018), pp. 4425–4431.

[88] Tenenbaum, Joshua B, De Silva, Vin, and Langford, John C. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000),
2319–2323.

[89] Travaglione, Ben C, and Milburn, Gerald J. Implementing the quantum random
walk. Physical Review A 65, 3 (2002), 032310.

[90] Trouillon, Théo, Welbl, Johannes, Riedel, Sebastian, Gaussier, Éric, and
Bouchard, Guillaume. Complex embeddings for simple link prediction. In-
ternational Conference on Machine Learning (ICML).

[91] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, Kaiser, Lukasz, and Polosukhin, Illia. Attention is all you
need. In Advances in neural information processing systems (2017), pp. 5998–
6008.

[92] Velickovic, Petar, Cucurull, Guillem, Casanova, Arantxa, Romero, Adriana,
Lio, Pietro, and Bengio, Yoshua. Graph attention networks. In Proceedings of
the International Conference on Learning Representations (ICLR) (Amherst,
MA, USA, 2017), OpenReview.net.

[93] Vilnis, Luke, and McCallum, Andrew. Word representations via gaussian em-
bedding. arXiv preprint arXiv:1412.6623 (2014).

[94] Vinyals, Oriol, Bengio, Samy, and Kudlur, Manjunath. Order matters: Se-
quence to sequence for sets. In 4th International Conference on Learning Rep-
resentations, ICLR 2016 (Amherst, MA, USA, 2016), OpenReview.net.

[95] Wale, Nikil, Watson, Ian A, and Karypis, George. Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowledge and In-
formation Systems 14, 3 (2008), 347–375.

89

[96] Wang, Chang, Krafft, Peter, Mahadevan, Sridhar, Ma, Y, and Fu, Y. Manifold
alignment. In Manifold Learning: Theory and Applications. CRC Press, 2011.

[97] Wang, Chang, and Mahadevan, Sridhar. Manifold alignment using procrustes
analysis. In Proceedings of the 25th international conference on Machine learn-
ing (2008), pp. 1120–1127.

[98] Wang, Chang, and Mahadevan, Sridhar. A general framework for manifold
alignment. In 2009 AAAI Fall Symposium Series (2009).

[99] Wang, Chang, and Mahadevan, Sridhar. Heterogeneous domain adaptation
using manifold alignment. In Twenty-second international joint conference on
artificial intelligence (2011).

[100] Wang, Jindong, Feng, Wenjie, Chen, Yiqiang, Yu, Han, Huang, Meiyu, and Yu,
Philip S. Visual domain adaptation with manifold embedded distribution align-
ment. In Proceedings of the 26th ACM international conference on Multimedia
(2018), pp. 402–410.

[101] Wang, Lei, Huang, Yuchun, Hou, Yaolin, Zhang, Shenman, and Shan, Jie.
Graph attention convolution for point cloud semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2019), pp. 10296–10305.

[102] Wang, Xiao, Ji, Houye, Shi, Chuan, Wang, Bai, Ye, Yanfang, Cui, Peng, and
Yu, Philip S. Heterogeneous graph attention network. In The World Wide Web
Conference (2019), pp. 2022–2032.

[103] Williams, CN, Vose, RS, Easterling, DR, and Menne, MJ. United
states historical climatology network daily temperature, precipita-
tion, and snow data. ORNL/CDIAC-118, NDP-070. Available on-line
[http://cdiac.ornl.gov/epubs/ndp/ushcn/usa.html] from the Carbon Dioxide
Information Analysis Center, Oak Ridge National Laboratory, USA (2006).

[104] Yao, Ting, Pan, Yingwei, Ngo, Chong-Wah, Li, Houqiang, and Mei, Tao. Semi-
supervised domain adaptation with subspace learning for visual recognition. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion (2015), pp. 2142–2150.

[105] Zhang, Pei, Ren, Xi-Feng, Zou, Xu-Bo, Liu, Bi-Heng, Huang, Yun-Feng, and
Guo, Guang-Can. Demonstration of one-dimensional quantum random walks
using orbital angular momentum of photons. Physical Review A 75, 5 (2007),
052310.

[106] Zhou, Chang, Liu, Yuqiong, Liu, Xiaofei, Liu, Zhongyi, and Gao, Jun. Scalable
graph embedding for asymmetric proximity. In Thirty-First AAAI Conference
on Artificial Intelligence (2017).

90

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions

	Background and Related Work
	Matrix and Tensor Notation
	Graph Terminology
	Graph Signal Processing
	Graph Convolutional Neural Networks

	Quantum Walk Neural Networks
	Introduction
	Related Work
	Preliminaries
	Graph Quantum Walks
	Physical Implementation of Discrete Quantum Walks

	Quantum Walk Neural Networks
	Bank
	Walk
	Diffusion
	Node and Neighborhood Ordering
	Relation to Attention Based Graph Neural Networks

	Experiments
	Node Regression
	Graph Classification
	Graph Regression

	Alternative Formulations of QWNN
	Limitations
	Conclusion

	Asymmetric Node Similarity Embedding for Directed Graphs
	Introduction
	Problem Definition
	Background and Related Work
	Method
	Sampling Random Walks
	Hypersphere Embedding
	Comparison to Other Embedding Spaces

	Experiments
	Lattice Example
	Link Prediction

	Conclusion

	Filtered Manifold Alignment
	Introduction
	Manifold Alignment
	Filtered Manifold Alignment
	Feature-Level Alignment
	Complexity Analysis and Extensions

	Experiments
	Datasets
	Experimental Setup
	Evaluation
	Inductive Performance
	Hyper-Parameter Evaluation

	Related Work
	Conclusion

	Conclusion
	Future Work

	Bibliography

