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Final Exam

• Wednesday, Dec. 16, 10:30, CS 142

• At least 2/3 from course’s second half

• Focus on modeling techniques, such as:

• Log-linear models

• Sequence labeling, e.g. for information extraction

• Formal semantics, simple λ-expressions

• Word clustering

• Simple machine translation algorithms: IBM Model-1, ITG
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Conditional Probability

P (A | B) =
P (A,B)
P (B)

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A1, A2, . . . , An) = P (A1)P (A2 | A1)P (A3 | A1, A2)
· · · P (An | A1, . . . , An−1)Chain rule

A

BA
∩B
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Independence

P (A,B) = P (A)P (B)
⇔

P (A | B) = P (A) ∧ P (B | A) = P (B)

In coding terms, knowing B doesn’t 
help in decoding A, and vice versa.
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Another View of 
Markov Models

p(w1, w2, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)
p(w4 | w1, w2, w3) · · · p(wn | p1, . . . , pn−1)
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Yet Another View

w1 w2 w3 w4

The results have shown
p(w2|The) p(w3|results) p(w4|have) p(w5|shown)

The results have shown
p(w2|The) p(w3|The,results) p(w4|results,have) p(w5|have,shown)

Directed graphical models: lack of edge means conditional independence
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Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ
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Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

sum = αVB(3)
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Bayes’ Theorem

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A | B) =
P (B | A)P (A)

P (B)

By the definition of conditional probability:

we can show:

Seemingly trivial result from 1763; 
interesting consequences...
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A “Bayesian” Classifier

Prior
Likelihood

max
R∈{!̈,"̈}

p(R | w1, w2, . . . , wn) = max
R∈{!̈,"̈}

p(R)p(w1, w2, . . . , wn | R)

Posterior

p(R | w1, w2, . . . , wn) =
p(R)p(w1, w2, . . . , wn | R)

p(w1, w2, . . . , wn)
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Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!
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NB on Movie Reviews

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features
   contains(outstanding) = True              pos : neg    =     14.1 : 1.0
         contains(mulan) = True              pos : neg    =      8.3 : 1.0
        contains(seagal) = True              neg : pos    =      7.8 : 1.0
   contains(wonderfully) = True              pos : neg    =      6.6 : 1.0
         contains(damon) = True              pos : neg    =      6.1 : 1.0

• Train models for positive, negative

• For each review, find higher posterior

• Which word probability ratios are highest?
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What’s Wrong With 
NB?

• What happens for word dependencies are 
strong?

• What happens when some words occur 
only once?

• What happens when the classifier sees a 
new word?

13



Generative vs. Conditional

! What is the most likely label for a given 
input?

! How likely is a given label for a given input?

! What is the most likely input value?

! How likely is a given input value?

! How likely is a given input value with a given 
label?

! What is the most likely label for an input 
that might have one of two values (but we 
don't know which)?

19

19
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Sequence Labeling

• Inputs: x = (x1, …, xn)

• Labels: y = (y1, …, yn)

• Typical goal: Given x, predict y

• Example sequence labeling tasks

– Part-of-speech tagging

– Named-entity-recognition (NER)

• Label people, places, organizations
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NER Example:
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First Solution:

Maximum Entropy Classifier
• Conditional model p(y|x).

– Do not waste effort modeling p(x), since x

is given at test time anyway.

– Allows more complicated input features,

since we do not need to model

dependencies between them.

• Feature functions f(x,y):

– f1(x,y) = { word is Boston & y=Location }

– f2(x,y) = { first letter capitalized & y=Name }

– f3(x,y) = { x is an HTML link & y=Location}
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First Solution: MaxEnt Classifier

• How should we choose a classifier?

• Principle of maximum entropy

– We want a classifier that:

• Matches feature constraints from training data.

• Predictions maximize entropy.

• There is a unique, exponential family

distribution that meets these criteria.
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First Solution: MaxEnt Classifier

• Problem with using a maximum entropy

classifier for sequence labeling:

• It makes decisions at each position

independently!
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Second Solution: HMM

• Defines a generative process.

• Can be viewed as a weighted finite

state machine.! 

P(y,x) = P(yt | yt"1)P(x | yt )
t

#
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Second Solution: HMM

• HMM problems: (ON BOARD)

– Probability of an input sequence.

– Most likely label sequence given an input

sequence.

– Learning with known label sequences.

– Learning with unknown label sequences?
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Second Solution: HMM

• How can represent we multiple features

in an HMM?

– Treat them as conditionally independent

given the class label?

• The example features we talked about are not

independent.

– Try to model a more complex generative

process of the input features?

• We may lose tractability (i.e. lose a dynamic

programming for exact inference).
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Second Solution: HMM

• Let’s use a conditional model instead.
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P (y | x) =
∏

t

P (yt | yt−1,x)

Third Solution: MEMM

• Use a series of maximum entropy

classifiers that know the previous label.

• Define a Viterbi algorithm for inference.

! 

P(y | x) = Pyt"1 (yt | x)
t

#
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Third Solution: MEMM

• Combines the advantages of maximum

entropy and HMM!

• But there is a problem…
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Problem with MEMMs: Label Bias

• In some state space configurations,

MEMMs essentially completely ignore

the inputs.

• Example (ON BOARD).

• This is not a problem for HMMs,

because the input sequence is

generated by the model.
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P (y | x) =
1
Z

∏

t

Ψt(yt, yt−1,x)

Ψt(yt, yt−1,x) = exp

[
∑

k

λkfk(yt, yt−1,x)

]

Z =
∑

y′

∏

t

Ψ(y′t, y
′
t−1,x)

Fourth Solution:

Conditional Random Field

• Conditionally-trained, undirected

graphical model.

• For a standard linear-chain structure:

! 

P(y | x) = "k (yt ,yt#1,x)
t

$

"k (yt ,yt#1,x) = exp %k
k

& f (yt ,yt#1,x)
' 

( 
) 

* 

+ 
, 

Normalize over all 
possible outputs 
using forward alg.

Dot-product of 
weights and features

Bigram model: 
potentials consider 
pairs of labels
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Fourth Solution: CRF

• Have the advantages of MEMMs, but

avoid the label bias problem.

• CRFs are globally normalized, whereas

MEMMs are locally normalized.

• Widely used and applied.  CRFs give

state-the-art results in many domains.
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Example Applications

• CRFs have been applied to:

– Part-of-speech tagging

– Named-entity-recognition

– Table extraction

– Gene prediction

– Chinese word segmentation

– Extracting information from research

papers.

– Many more…
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Edge-Factored Parsers (McDonald et al. 2005)
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jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector
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Recipe for Conditional 
Training of p(y | x)

1. Gather constraints/features from training data

2. Initialize all parameters to zero

3. Classify training data with current parameters; calculate 
expectations

4. Gradient is

5. Take a step in the direction of the gradient

6. Repeat from 3 until convergence 43 43
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6. Until convergence, return to step 3.
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Where have we seen 
expected counts before?

EM!
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Gradient-Based Training

• λ := λ + rate * Gradient(F)

• After all training examples? (batch)

• After every example? (on-line)

• Use second derivative for faster learning?

• A big field: numerical optimization
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Overfitting
• If we have too many features, we can choose 

weights to model the training data perfectly

• If we have a feature that only appears in spam 
training, not ham training, it will get weight ∞ to 
maximize p(spam | feature) at 1.

• These behaviors

• Overfit the training data

• Will probably do poorly on test data

34



Solutions to Overfitting
• Throw out rare features. 

• Require every feature to occur > 4 times, and > 0 times with 
ling, and > 0 times with spam. 

• Only keep, e.g., 1000 features.  

• Add one at a time, always greedily picking the one that most 
improves performance on held-out data. 

• Smooth the observed feature counts. 

• Smooth the weights by using a prior. 

• max p(λ|data) = max p(λ, data) =p(λ)p(data|λ) 

• decree p(λ) to be high when most weights close to 0 
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Smoothing with Priors
• What if we had a prior expectation that parameter values 

wouldn’t be very large?

• We could then balance evidence suggesting large (or 
infinite) parameters against our prior expectation.

• The evidence would never totally defeat the prior, and 
parameters would be smoothed (and kept finite)

• We can do this explicitly by changing the optimization 
objective to maximum posterior likelihood:

log P(y, λ | x) = log P(λ) + log P(y | x, λ)

Posterior          Prior        Likelihood
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 Better: ∃g goldfish(g) AND swallowed(Gilly, g)

 Or using one of our quantifier predicates:
 exists(λg goldfish(g), λg swallowed(Gilly,g)) 

 Equivalently: exists(goldfish, swallowed(Gilly))
 “In the set of goldfish there exists one swallowed by Gilly”

 Here goldfish is a predicate on entities
 This is the same semantic type as red
 But note: goldfish is noun and red is adjective

First-order Representations
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 Add a “sem” feature to each context-free rule
 S → NP loves NP
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 TAG version:
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loves(x,y)

NP
  the bucket

V
kicked

VP

S

NP
x

died(x)

 Template filling: S[sem=showflights(x,y)] → 
      I want a flight from NP[sem=x] to NP[sem=y]
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ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations 
and lambda calculus semantic operations
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Words as Vectors 

 Represent each word type w by a point in k-
dimensional space
 e.g., k is size of vocabulary 
 the 17th coordinate of w represents strength of w’s 

association with vocabulary word 17
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dimensional space
 e.g., k is size of vocabulary 
 the 17th coordinate of w represents strength of w’s 
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(too influential)

count
too low

Arlen Specter abandoned the Republican party.
There were lots of abbots and nuns dancing at that party. 
The party above the art gallery was, above all, a laboratory 

for synthesizing zygotes and beer.  

From
corpus:

= party
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Learning Classes by Clustering 

 Plot all word types in k-dimensional space
 Look for clusters of close-together types

Plot in k dimensions (here k=3)
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Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

example from Manning & Schütze
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Bottom-Up Clustering – Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
             dist(A,B) = min dist(a,b) for a∈A, b∈B

each word type is
a single-point cluster

merge
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Bottom-Up Clustering 

Start with one cluster per point
Repeatedly merge 2 closest clusters

 Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

 Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
 too slow to update cluster distances after each merge; but ∃ alternatives!
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 Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

 Centroid-link: dist(A,B) = dist(mean(A),mean(B))

Stop when clusters are “big enough”
 e.g., provide adequate support for backoff (on a development corpus)

Some flexibility in defining dist(a,b)
 Might not be Euclidean distance; e.g., use vector angle

Start with one cluster per point
Repeatedly merge 2 closest clusters

 Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

 Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
 too slow to update cluster distances after each merge; but ∃ alternatives!
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EM Clustering (for k clusters)
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EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

 Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

 Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

 Parameters: k points representing cluster centers
 Hidden structure: for each data point (word type), 

which center generated it?
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1

Lexical translation

• How to translate a word → look up in dictionary

Haus — house, building, home, household, shell.

• Multiple translations

– some more frequent than others
– for instance: house, and building most common
– special cases: Haus of a snail is its shell

• Note: During all the lectures, we will translate from a foreign language into
English

Philipp Koehn JHU SS 6 July 2006
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2

Collect statistics

• Look at a parallel corpus (German text along with English translation)

Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50

Philipp Koehn JHU SS 6 July 2006
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3

Estimate translation probabilities

• Maximum likelihood estimation

pf(e) =






0.8 if e = house,

0.16 if e = building,

0.02 if e = home,

0.015 if e = household,

0.005 if e = shell.

Philipp Koehn JHU SS 6 July 2006
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4

Alignment

• In a parallel text (or when we translate), we align words in one language with
the words in the other

das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

• Word positions are numbered 1–4

Philipp Koehn JHU SS 6 July 2006
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6

Reordering

• Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1→ 3, 2→ 4, 3→ 2, 4→ 1}

Philipp Koehn JHU SS 6 July 2006
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10

IBM Model 1

• Generative model: break up translation process into smaller steps
– IBM Model 1 only uses lexical translation

• Translation probability
– for a foreign sentence f = (f1, ..., flf) of length lf
– to an English sentence e = (e1, ..., ele) of length le
– with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j → i

p(e, a|f) =
ε

(lf + 1)le

le∏

j=1

t(ej|fa(j))

– parameter ε is a normalization constant

Philipp Koehn JHU SS 6 July 2006
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11

Example
das Haus ist klein

e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
household 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e, a|f) =
ε

43
× t(the|das)× t(house|Haus)× t(is|ist)× t(small|klein)

=
ε

43
× 0.7× 0.8× 0.8× 0.4

= 0.0028ε

Philipp Koehn JHU SS 6 July 2006
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12

Learning lexical translation models

• We would like to estimate the lexical translation probabilities t(e|f) from a
parallel corpus

• ... but we do not have the alignments

• Chicken and egg problem

– if we had the alignments,
→ we could estimate the parameters of our generative model

– if we had the parameters,
→ we could estimate the alignments

Philipp Koehn JHU SS 6 July 2006
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EM algorithm

• Incomplete data

– if we had complete data, would could estimate model
– if we had model, we could fill in the gaps in the data

• Expectation Maximization (EM) in a nutshell

– initialize model parameters (e.g. uniform)
– assign probabilities to the missing data
– estimate model parameters from completed data
– iterate

Philipp Koehn JHU SS 6 July 2006
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Symmetrizing word alignments

Maria no daba una

bofetada

a la

bruja

verde

Mary

witch

green

the

slap

not

did

Maria no daba una

bofetada

a la

bruja

verde

Mary

witch

green

the

slap

not

did

Maria no daba una

bofetada

a la

bruja

verde

Mary

witch

green

the

slap

not

did

english to spanish spanish to english

intersection

• Intersection of GIZA++ bidirectional alignments

Philipp Koehn JHU SS 6 July 2006
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IBM Model 4

Mary did not slap the green witch

Mary not slap slap slap the green witch

Mary not slap slap slap NULL the green witch

Maria no daba una botefada a la verde bruja

Maria no daba una bofetada a la bruja verde

n(3|slap)

p-null

t(la|the)

d(4|4)

Philipp Koehn JHU SS 6 July 2006
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Phrase Models
I

did

not

unfortunately

receive

an

answer

to

this

question

Auf diese Frage habe ich leider keine Antwort bekom
men

Some good phrase pairs.
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Synchronous Grammars

• Just like monolingual grammars except...
–Each rule involves pairs (tuples) of nonterminals
–Tuples of elementary trees for TAG, etc.

• First proposed for source-source translation in 
compilers

• Can be constituency, dependency, lexicalized, 
etc.

• Parsing speedups for monolingual grammar 
don’t necessarily work
–E.g., no split-head trick for lexicalized parsing

• Binarization less straightforward
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

fox NN/NN

knows
VB/VB

many
JJ/JJ

things

póll’ oîd’ alṓpēx

the fox knows many things

A variant of CKY chart parsing.
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

NP/NP
fox

NP/NP

knows
VP/VP

many

NP/NP
things

NP/NP

póll’ oîd’ alṓpēx

the fox knows many things

NPNP

NP NP

V’

V’
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

NP/NP
fox

NP/NP

knows

VP/VPVP/VP
many

VP/VPVP/VP

things

VP/VPVP/VP

póll’ oîd’ alṓpēx

the fox knows many things

NPNP

NP NP

V’

V’

VP

VP
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

S/SS/SS/S

fox

S/SS/SS/S
knows

S/SS/SS/S

many

S/SS/SS/S

things

S/SS/SS/S

póll’ oîd’ alṓpēx

the fox knows many things

NPNP

NP NP

V’

V’

VP

VP

S

S
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