
Log-Linear Models
with Structured Outputs 

(continued)

Introduction to Natural Language Processing
Computer Science 585—Fall 2009

University of Massachusetts Amherst

David Smith



Overview

• What computations do we need?

• Smoothing log-linear models

• MEMMs vs. CRFs again

• Action-based parsing and dependency 
parsing



Recipe for Conditional 
Training of p(y | x)

1. Gather constraints/features from training data

2. Initialize all parameters to zero

3. Classify training data with current parameters; calculate 
expectations

4. Gradient is

5. Take a step in the direction of the gradient

6. Repeat from 3 until convergence 43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

4343 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43



Recipe for Conditional 
Training of p(y | x)

1. Gather constraints/features from training data

2. Initialize all parameters to zero

3. Classify training data with current parameters; calculate 
expectations

4. Gradient is

5. Take a step in the direction of the gradient

6. Repeat from 3 until convergence 43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

4343 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

Where have we seen 
expected counts before?



Recipe for Conditional 
Training of p(y | x)

1. Gather constraints/features from training data

2. Initialize all parameters to zero

3. Classify training data with current parameters; calculate 
expectations

4. Gradient is

5. Take a step in the direction of the gradient

6. Repeat from 3 until convergence 43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

4343 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

Where have we seen 
expected counts before?

EM!



Gradient-Based Training

• λ <- λ + rate * Gradient(F)

• After all training examples? (batch)

• After every example? (on-line)

• Use second derivative?

• A big field: numerical optimization



Overfitting
• If we have too many features, we can choose 

weights to model the training data perfectly

• If we have a feature that only appears in spam 
training, not ham training, it will get weight ∞ to 
maximize p(spam | feature) at 1.

• These behaviors

• Overfit the training data

• Will probably do poorly on test data



Solutions to Overfitting
• Throw out rare features. 

• Require every feature to occur > 4 times, and > 0 times with 
ling, and > 0 times with spam. 

• Only keep, e.g., 1000 features.  

• Add one at a time, always greedily picking the one that most 
improves performance on held-out data. 

• Smooth the observed feature counts. 

• Smooth the weights by using a prior. 

• max p(λ|data) = max p(λ, data) =p(λ)p(data|λ) 

• decree p(λ) to be high when most weights close to 0 



Smoothing with Priors
• What if we had a prior expectation that parameter values 

wouldn’t be very large?

• We could then balance evidence suggesting large (or 
infinite) parameters against our prior expectation.

• The evidence would never totally defeat the prior, and 
parameters would be smoothed (and kept finite)

• We can do this explicitly by changing the optimization 
objective to maximum posterior likelihood:

log P(y, λ | x) = log P(λ) + log P(y | x, λ)

Posterior          Prior        Likelihood



42 42

42



Parsing as Structured 
Prediction



Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb → book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det → that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun → flight
(Verb Det Noun) reduce, NOM → Noun
(Verb Det NOM) reduce, NP → Det NOM
(Verb NP) reduce, VP → Verb NP
(Verb) reduce, S → V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.



Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb → book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det → that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun → flight
(Verb Det Noun) reduce, NOM → Noun
(Verb Det NOM) reduce, NP → Det NOM
(Verb NP) reduce, VP → Verb NP
(Verb) reduce, S → V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.



Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb → book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det → that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun → flight
(Verb Det Noun) reduce, NOM → Noun
(Verb Det NOM) reduce, NP → Det NOM
(Verb NP) reduce, VP → Verb NP
(Verb) reduce, S → V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.

Train log-linear model of 
p(action | context)



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

slide adapted from Yuji Matsumoto



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

slide adapted from Yuji Matsumoto



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

ROOT



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP

SUBJ
COMP



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP

SUBJ
COMP

COMP



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP

SUBJ

SPEC

MOD
MOD

COMP
COMP



11

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP

SUBJ

SPEC

MOD
MOD

COMP
COMP



11

MOD

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.
Raw sentence

Part-of-speech tagging

 He reckons the current account deficit will narrow to only 1.8 billion in September.
 PRP     VBZ       DT       JJ            NN          NN    MD       VB     TO    RB    CD     CD    IN        NNP      .

POS-tagged sentence

Word dependency parsing

slide adapted from Yuji Matsumoto

Word dependency parsed sentence
He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

S-COMP

SUBJ

SPEC

MOD
MOD

COMP
COMP



12 7

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.
 p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …



12 7

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.
 p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …



12 7

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.
 p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …

each choice depends on a limited part of the history



12 7

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.
 p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …

each choice depends on a limited part of the history

but which dependencies to allow?
what if they’re all worthwhile?

p(D | A,B,C)?
p(D | A,B,C)?

… p(D | A,B) * p(C | A,B,D)?



13 8

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …
which dependencies to allow? (given limited training data)



13 8

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.

p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …
which dependencies to allow? (given limited training data)



13 8

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.

p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …
which dependencies to allow? (given limited training data)

(1/Z) * Φ(A) * Φ(B,A) * Φ(C,A) * Φ(C,B) 

                     * Φ(D,A,B) * Φ(D,B,C) * Φ(D,A,C) * 

…
throw them all in!



13 8

Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.

 

 Solution: Log-linear (max-entropy) modeling

 Features may interact in arbitrary ways
 Iterative scaling keeps adjusting the feature weights

until the model agrees with the training data.

p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …
which dependencies to allow? (given limited training data)

(1/Z) * Φ(A) * Φ(B,A) * Φ(C,A) * Φ(C,B) 

                     * Φ(D,A,B) * Φ(D,B,C) * Φ(D,A,C) * 

…
throw them all in!



14 9

How about structured outputs?



14

 Log-linear models great for n-way classification

9

How about structured outputs?



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

9

How about structured outputs?

find preferred tags

v a n



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram featuresfind preferred tags

v a n



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram featuresfind preferred tags

v a n



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram featuresfind preferred tags

v a n



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram featuresfind preferred tags

v a n



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

 Also good for dependency parsing

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram features

…find preferred links…

find preferred tags

v a n



14

 Log-linear models great for n-way classification
 Also good for predicting sequences

 Also good for dependency parsing

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram features

but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…

find preferred tags

v a n



14 9

How about structured outputs?
but to allow fast dynamic 
programming or MST parsing,
only use single-edge features

…find preferred links…



15 10

How about structured outputs?
but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…



15 10

How about structured outputs?
but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…



15 10

How about structured outputs?
but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…



15 10

How about structured outputs?
but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…



15 10

How about structured outputs?
but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…



16

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?



16

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

yes, lots of green ...



17

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?



17

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)



18

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

V A A A N J N V C



18

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C



19

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C



19

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C

A  N



20

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C

A  N



20

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C

A  N
preceding 

conjunction A  N



21

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C



21

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

not as good, lots of red ...



22

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C



22

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasný  hodiny
(“bright clocks”)



22

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasný  hodiny
(“bright clocks”)

... undertrained ...



23

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

jasný  hodiny
(“bright clocks”)

... undertrained ...



23

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

jasný  hodiny
(“bright clocks”)

... undertrained ...

jasn  hodi
(“bright clock,”

stems only)



24

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasn  hodi
(“bright clock,”

stems only)

byl jasn stud dubn den a hodi odbí třin

jasný  hodiny
(“bright clocks”)

... undertrained ...



24

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasn  hodi
(“bright clock,”

stems only)

byl jasn stud dubn den a hodi odbí třin

Aplural  Nsingular 

jasný  hodiny
(“bright clocks”)

... undertrained ...



25

jasný  hodiny
(“bright clocks”)

... undertrained ...

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasn  hodi
(“bright clock,”

stems only)

byl jasn stud dubn den a hodi odbí třin

Aplural  Nsingular 



25

jasný  hodiny
(“bright clocks”)

... undertrained ...

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasn  hodi
(“bright clock,”

stems only)

byl jasn stud dubn den a hodi odbí třin

Aplural  Nsingular 
A  N 

where N follows
a conjunction



26

jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?
 “bright day” or “bright clocks”?



27

jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin



27

jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?



27

jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better? our current weight vector



27

jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)

our current weight vector



27

jasný

Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector



28

Edge-Factored Parsers (McDonald et al. 2005)

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector



28

Edge-Factored Parsers (McDonald et al. 2005)

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)



28

Edge-Factored Parsers (McDonald et al. 2005)

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)

can‘t have both
(no crossing links)



28

Edge-Factored Parsers (McDonald et al. 2005)

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)

can‘t have both
(no crossing links)

Can’t have all three
(no cycles)



28

Edge-Factored Parsers (McDonald et al. 2005)

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)

can‘t have both
(no crossing links)

Can’t have all three
(no cycles)

Thus, an edge may lose (or win) 
because of a consensus of other 
edges.  



29

Finding Highest-Scoring Parse

The cat  in the hat wore a stovepipe. ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming



29

Finding Highest-Scoring Parse

The cat  in the hat wore a stovepipe. ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

The
cat

in

the
hat

wore

a
stovepipe

ROOT

let’s vertically stretch 
this graph drawing



29

Finding Highest-Scoring Parse

The cat  in the hat wore a stovepipe. ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

let’s vertically stretch 
this graph drawing



29

Finding Highest-Scoring Parse

The cat  in the hat wore a stovepipe. ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

let’s vertically stretch 
this graph drawing



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case

 to score “cat  wore” link, not enough to know this is NP



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case

 to score “cat  wore” link, not enough to know this is NP
 must know it’s rooted at “cat”



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case

 to score “cat  wore” link, not enough to know this is NP
 must know it’s rooted at “cat”
 so expand nonterminal set by O(n): {NPthe, NPcat, NPhat, ...}



30

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT so CKY’s “grammar constant” is no longer constant 

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case

 to score “cat  wore” link, not enough to know this is NP
 must know it’s rooted at “cat”
 so expand nonterminal set by O(n): {NPthe, NPcat, NPhat, ...}



31

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT



31

Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
cat

in

the
hat

wore

a
stovepipe

ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case
 Solution: Use a different decomposition (Eisner 1996)

 Back to O(n3)



32

Spans vs. constituents

Two kinds of substring.
»Constituent of the tree: links to the rest only 

through its headword (root).

»Span of the tree: links to the rest 
only through its endwords.

The cat  in the hat wore a stovepipe. ROOT

The cat  in the hat wore a stovepipe. ROOT



Decomposing a tree into spans

The cat  in the hat wore a stovepipe. ROOT

The cat

wore a stovepipe. ROOTcat  in the hat wore

+

+

in the hat worecat  in +

hat worein the hat +

cat  in the hat wore a stovepipe. ROOT



34

Finding Highest-Scoring Parse



34

Finding Highest-Scoring Parse

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case
 Solution: Use a different decomposition (Eisner 1996)

 Back to O(n3)



34

Finding Highest-Scoring Parse

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case
 Solution: Use a different decomposition (Eisner 1996)

 Back to O(n3)
 Can play usual tricks for dynamic programming parsing

 Further refining the constituents or spans 
 Allow prob. model to keep track of even more internal information 

 A*, best-first, coarse-to-fine
 Training by EM etc.



34

Finding Highest-Scoring Parse

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case
 Solution: Use a different decomposition (Eisner 1996)

 Back to O(n3)
 Can play usual tricks for dynamic programming parsing

 Further refining the constituents or spans 
 Allow prob. model to keep track of even more internal information 

 A*, best-first, coarse-to-fine
 Training by EM etc. require “outside” probabilities

of constituents, spans, or links 



35

Hard Constraints on Valid Trees

 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)

can‘t have both
(no crossing links)

Can’t have all three
(no cycles)

Thus, an edge may lose (or win) 
because of a consensus of other 
edges.  



35

Hard Constraints on Valid Trees

can‘t have both
(no crossing links)



36

Non-Projective Parses

can‘t have both
(no crossing links)

The “projectivity” restriction.
Do we really want it?



36

talk

Non-Projective Parses

can‘t have both
(no crossing links)

The “projectivity” restriction.
Do we really want it?

I give a on bootstrappingtomorrowROOT ‘ll



36

talk

Non-Projective Parses

can‘t have both
(no crossing links)

The “projectivity” restriction.
Do we really want it?

I give a on bootstrappingtomorrowROOT ‘ll



36

talk

Non-Projective Parses

can‘t have both
(no crossing links)

The “projectivity” restriction.
Do we really want it?

I give a on bootstrappingtomorrowROOT ‘ll

subtree rooted at “talk”
is a discontiguous noun phrase



37

Non-Projective Parses

I give a on bootstrappingtalk tomorrowROOT ‘ll

occasional non-projectivity in English



37

Non-Projective Parses

ista meam norit gloria canitiemROOT

I give a on bootstrappingtalk tomorrowROOT ‘ll

occasional non-projectivity in English

frequent non-projectivity in Latin, etc.



37

Non-Projective Parses

ista meam norit gloria canitiemROOT

I give a on bootstrappingtalk tomorrowROOT ‘ll

  That glory may-know my going-gray
    (i.e., it shall last till I go gray)

occasional non-projectivity in English

frequent non-projectivity in Latin, etc.



37

Non-Projective Parses

ista meam norit gloria canitiemROOT

I give a on bootstrappingtalk tomorrowROOT ‘ll

thatNOM myACC may-know gloryNOM going-grayACC

  That glory may-know my going-gray
    (i.e., it shall last till I go gray)

occasional non-projectivity in English

frequent non-projectivity in Latin, etc.



37

Non-Projective Parses

ista meam norit gloria canitiemROOT

I give a on bootstrappingtalk tomorrowROOT ‘ll

thatNOM myACC may-know gloryNOM going-grayACC

  That glory may-know my going-gray
    (i.e., it shall last till I go gray)

occasional non-projectivity in English

frequent non-projectivity in Latin, etc.



37

Non-Projective Parses

ista meam norit gloria canitiemROOT

I give a on bootstrappingtalk tomorrowROOT ‘ll

thatNOM myACC may-know gloryNOM going-grayACC

  That glory may-know my going-gray
    (i.e., it shall last till I go gray)

occasional non-projectivity in English

frequent non-projectivity in Latin, etc.



38

Finding highest-scoring non-projective tree
 Consider the sentence “John saw Mary” (left).
 The Chu-Liu-Edmonds algorithm finds the maximum-

weight spanning tree (right) – may be non-projective.
 Can be found in time O(n2).

9

10

30

20

30 0

11

3

9

root

John

saw

Mary

10

30

30

root

John

saw

Mary

slide thanks to Dragomir Radev

Every node selects best parent
If cycles, contract them and repeat



39

Summing over all non-projective trees
Finding highest-scoring non-projective tree
 Consider the sentence “John saw Mary” (left).
 The Chu-Liu-Edmonds algorithm finds the maximum-

weight spanning tree (right) – may be non-projective.
 Can be found in time O(n2).

 How about total weight Z of all trees?
 How about outside probabilities or gradients?
 Can be found in time O(n3) by matrix determinants and 

inverses (Smith & Smith, 2007).

slide thanks to Dragomir Radev



40

Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row and 
column r is equal to the sum of scores of all directed 
spanning trees of G rooted at node r.



40

Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row and 
column r is equal to the sum of scores of all directed 
spanning trees of G rooted at node r.

Exactly the Z we need!



40

Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row and 
column r is equal to the sum of scores of all directed 
spanning trees of G rooted at node r.

Exactly the Z we need!

O(n3) time!



41

Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant



41

Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant



41

Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant



41

Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant



41

Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant

N.B.: This allows multiple children of root, but see Koo et al. 2007.



42

Why Should This Work?
Chu-Liu-Edmonds analogy:
Every node selects best parent
If cycles, contract and recur

Clear for 1x1 matrix; use induction

Undirected case; special root cases for directed



42

Why Should This Work?
Chu-Liu-Edmonds analogy:
Every node selects best parent
If cycles, contract and recur

Clear for 1x1 matrix; use induction

Undirected case; special root cases for directed


