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Overview

• What computations do we need?

• Smoothing log-linear models

• MEMMs vs. CRFs again

• Action-based parsing and dependency 
parsing



Recipe for Conditional 
Training of p(y | x)

1. Gather constraints/features from training data

2. Initialize all parameters to zero

3. Classify training data with current parameters; calculate 
expectations

4. Gradient is

5. Take a step in the direction of the gradient

6. Repeat from 3 until convergence 43 43
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Where have we seen 
expected counts before?

EM!



Gradient-Based Training

• λ <- λ + rate * Gradient(F)

• After all training examples? (batch)

• After every example? (on-line)

• Use second derivative?

• A big field: numerical optimization



Overfitting
• If we have too many features, we can choose 

weights to model the training data perfectly

• If we have a feature that only appears in spam 
training, not ham training, it will get weight ∞ to 
maximize p(spam | feature) at 1.

• These behaviors

• Overfit the training data

• Will probably do poorly on test data



Solutions to Overfitting
• Throw out rare features. 

• Require every feature to occur > 4 times, and > 0 times with 
ling, and > 0 times with spam. 

• Only keep, e.g., 1000 features.  

• Add one at a time, always greedily picking the one that most 
improves performance on held-out data. 

• Smooth the observed feature counts. 

• Smooth the weights by using a prior. 

• max p(λ|data) = max p(λ, data) =p(λ)p(data|λ) 

• decree p(λ) to be high when most weights close to 0 



Smoothing with Priors
• What if we had a prior expectation that parameter values 

wouldn’t be very large?

• We could then balance evidence suggesting large (or 
infinite) parameters against our prior expectation.

• The evidence would never totally defeat the prior, and 
parameters would be smoothed (and kept finite)

• We can do this explicitly by changing the optimization 
objective to maximum posterior likelihood:

log P(y, λ | x) = log P(λ) + log P(y | x, λ)

Posterior          Prior        Likelihood
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Parsing as Structured 
Prediction



Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb → book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det → that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun → flight
(Verb Det Noun) reduce, NOM → Noun
(Verb Det NOM) reduce, NP → Det NOM
(Verb NP) reduce, VP → Verb NP
(Verb) reduce, S → V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.
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Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb → book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det → that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun → flight
(Verb Det Noun) reduce, NOM → Noun
(Verb Det NOM) reduce, NP → Det NOM
(Verb NP) reduce, VP → Verb NP
(Verb) reduce, S → V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.

Train log-linear model of 
p(action | context)
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Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.
 p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …

each choice depends on a limited part of the history

but which dependencies to allow?
what if they’re all worthwhile?

p(D | A,B,C)?
p(D | A,B,C)?

… p(D | A,B) * p(C | A,B,D)?
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Great ideas in NLP: Log-linear models
     (Berger, della Pietra, della Pietra 1996; Darroch & Ratcliff  1972)

 In the beginning, we used generative models.

 

 Solution: Log-linear (max-entropy) modeling

 Features may interact in arbitrary ways
 Iterative scaling keeps adjusting the feature weights

until the model agrees with the training data.

p(A) * p(B | A) * p(C | A,B) * p(D | A,B,C) * …
which dependencies to allow? (given limited training data)
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…
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 Also good for predicting sequences

 Also good for dependency parsing

9

How about structured outputs?

but to allow fast dynamic 
programming, 
only use n-gram features

but to allow fast dynamic 
programming or MST parsing,
only use single-edge features…find preferred links…

find preferred tags

v a n
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Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 Is this a good edge?

jasný  den
(“bright day”)

jasný  N
(“bright NOUN”)

V A A A N J N V C

A  N
preceding 

conjunction A  N
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Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

not as good, lots of red ...
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(“bright clocks”)

... undertrained ...

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking
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jasný  hodiny
(“bright clocks”)

... undertrained ...

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

 How about this competing edge?

V A A A N J N V C

jasn  hodi
(“bright clock,”

stems only)

byl jasn stud dubn den a hodi odbí třin

Aplural  Nsingular 
A  N 

where N follows
a conjunction
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Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?
 “bright day” or “bright clocks”?
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Edge-Factored Parsers (McDonald et al. 2005)
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 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)

can‘t have both
(no crossing links)

Can’t have all three
(no cycles)

Thus, an edge may lose (or win) 
because of a consensus of other 
edges.  
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Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
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in

the
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wore

a
stovepipe

ROOT so CKY’s “grammar constant” is no longer constant 

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case

 to score “cat  wore” link, not enough to know this is NP
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Finding Highest-Scoring Parse

each subtree is a linguistic constituent
(here a noun phrase)

The
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in
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ROOT

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case
 Solution: Use a different decomposition (Eisner 1996)

 Back to O(n3)
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Spans vs. constituents

Two kinds of substring.
»Constituent of the tree: links to the rest only 

through its headword (root).

»Span of the tree: links to the rest 
only through its endwords.

The cat  in the hat wore a stovepipe. ROOT

The cat  in the hat wore a stovepipe. ROOT



Decomposing a tree into spans

The cat  in the hat wore a stovepipe. ROOT

The cat

wore a stovepipe. ROOTcat  in the hat wore

+

+

in the hat worecat  in +

hat worein the hat +

cat  in the hat wore a stovepipe. ROOT
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Finding Highest-Scoring Parse

 Convert to context-free grammar (CFG)
 Then use dynamic programming

 CKY algorithm for CFG parsing is O(n3)
 Unfortunately, O(n5) in this case
 Solution: Use a different decomposition (Eisner 1996)

 Back to O(n3)
 Can play usual tricks for dynamic programming parsing

 Further refining the constituents or spans 
 Allow prob. model to keep track of even more internal information 

 A*, best-first, coarse-to-fine
 Training by EM etc. require “outside” probabilities

of constituents, spans, or links 
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Hard Constraints on Valid Trees

 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector

can’t have both
(one parent per word)

can‘t have both
(no crossing links)

Can’t have all three
(no cycles)

Thus, an edge may lose (or win) 
because of a consensus of other 
edges.  
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talk

Non-Projective Parses

can‘t have both
(no crossing links)

The “projectivity” restriction.
Do we really want it?

I give a on bootstrappingtomorrowROOT ‘ll

subtree rooted at “talk”
is a discontiguous noun phrase
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Finding highest-scoring non-projective tree
 Consider the sentence “John saw Mary” (left).
 The Chu-Liu-Edmonds algorithm finds the maximum-

weight spanning tree (right) – may be non-projective.
 Can be found in time O(n2).

9

10

30

20

30 0

11

3

9

root

John

saw

Mary

10

30

30

root

John

saw

Mary

slide thanks to Dragomir Radev

Every node selects best parent
If cycles, contract them and repeat
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Summing over all non-projective trees
Finding highest-scoring non-projective tree
 Consider the sentence “John saw Mary” (left).
 The Chu-Liu-Edmonds algorithm finds the maximum-

weight spanning tree (right) – may be non-projective.
 Can be found in time O(n2).

 How about total weight Z of all trees?
 How about outside probabilities or gradients?
 Can be found in time O(n3) by matrix determinants and 

inverses (Smith & Smith, 2007).

slide thanks to Dragomir Radev
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Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row and 
column r is equal to the sum of scores of all directed 
spanning trees of G rooted at node r.
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Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row and 
column r is equal to the sum of scores of all directed 
spanning trees of G rooted at node r.

Exactly the Z we need!

O(n3) time!
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Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant
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Building the Kirchoff 
(Laplacian) Matrix

• Negate edge scores
• Sum columns 

(children)
• Strike root row/col.
• Take determinant

N.B.: This allows multiple children of root, but see Koo et al. 2007.
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Why Should This Work?
Chu-Liu-Edmonds analogy:
Every node selects best parent
If cycles, contract and recur

Clear for 1x1 matrix; use induction

Undirected case; special root cases for directed
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