
Computational
Semantics

Introduction to Natural Language Processing
Computer Science 585—Fall 2009

University of Massachusetts Amherst

David Smith
with slides from Dan Klein, Stephen Clark & Eva Banik

1

Overview
• Last time: What is semantics?

• First order logic and lambda calculus for compositional
semantics

• Today: How do we infer semantics?

• Minimalist approach

• Semantic role labeling

• Semantically informed grammar

• Combinatory categorial grammar (CCG)

• Tree adjoining grammar (TAG)

2

Semantic Role Labeling
• Characterize predicates (e.g., verbs, nouns, adjectives) as relations with roles

(slots)

[Judge She] blames [Evaluee the Government] [Reason for failing to do enough to
help] .

Holman would characterize this as blaming [Evaluee the poor] .

The letter quotes Black as saying that [Judge white and Navajo ranchers]
misrepresent their livestock losses and blame [Reason everything] [Evaluee on
coyotes] .

• We want a bit more than which NP is the subject (but not much more):

• Relations like subject are syntactic, relations like agent or experiencer are
semantic (think of passive verbs)

• Typically, SRL is performed in a pipeline on top of constituency or dependency
parsing and is much easier than parsing.

3

SRL Example

!

"#$%&'()*+,

-./*0(12%3%4.(),5,6

! 4.(),5,67%./+,8%89(.,:%;,6<,,1%=,.;8

! -./*0(127%,(>9%=,.;%9(8%?6@8%/<1%./+,8

! -./*0(12%)/.,%A8,:B%;,>(A8,%?6@8%+(C,.,:%/=,.%69,%6.,,;(12%D(1:%
8/%9(8%E.,(6,.%>/=,.(E,B%*+A8%*(.8,8F

! 5/6,7%8/),%+?1EA?86?>%69,/.?,8%*/86A+(6,%,=,1%G,<,.%./+,8%69(1%
4.(),5,6%D,HEH%IJ!K%6/6(+7%(E,16B%*(6?,16B%?186.A),16B%,6>HF

4

PropBank Example

!

"#$%&'()*+,'-%./

"#$%&'()*+,'-%./

5

PropBank Example

!

"#$%&'()*+,'-%./

"#$%&'()*+,'-%./

6

PropBank Example

!

"#$%&'()*+,'-%./

01'#/2*3#45-/(67

7

Shared Arguments

!

"#$%&'()*+,'-%./

01'#/2*3#45-/(67

8

Path Features

!

"#$%&'(#$)*(+

,(+)-$+

! '(#$)*(+.
! "#$%&/*01&$#*2($&$0&/3--(*

! '3--(*4+&+56$#7$37&$58(9&%(#:;0*:9&7#+(

! <#*2($4+&3:(6$3$5

! =(6$(67(&>037(9&($7?

! @0$+&0/&0$%(*&+(706:A0*:(*&/(#$)*(+

! B0-:&>+&8#*+(:&+0)*7(&$*((+

! =,@&3+&/#3*-5&(#+5&06&20-:&$*((+

! C#*:(*&06&#)$01#$37&8#*+(+

9

SRL Accuracy
• Features

• Path from target to role-filler

• Filler’s syntactic type, headword, case

• Target’s identity

• Sentence voice, etc.

• Lots of other second-order features

• Gold vs. parsed source trees

• SRL is fairly easy on gold trees

• Harder on automatic parses

• Joint inference of syntax and semantics not a helpful as expected

!

"#$%&'(#$)*(+

,(+)-$+

! '(#$)*(+.
! "#$%&/*01&$#*2($&$0&/3--(*

! '3--(*4+&+56$#7$37&$58(9&%(#:;0*:9&7#+(

! <#*2($4+&3:(6$3$5

! =(6$(67(&>037(9&($7?

! @0$+&0/&0$%(*&+(706:A0*:(*&/(#$)*(+

! B0-:&>+&8#*+(:&+0)*7(&$*((+

! =,@&3+&/#3*-5&(#+5&06&20-:&$*((+

! C#*:(*&06&#)$01#$37&8#*+(+

10

Interaction with Empty Elements

!

"#$%&'($)*#+,)$-+./0$1+.2%/%#$3

./0$1+.2%/%#$3

! "#+$-%+4567+$-&%%+8)#93+*:+%/0$1+%2%/%#$3;

! <=22+)$%/3+>=3='221+(*/02%/%#$)?%&3@

! A)32*('$)*#+>BCD$&'(%37+$*0)('2)?'$)*#7+&%2'$)E%+
(2'=3%+'#9+-%'E1+<4+%F$&'0*3)$)*#@

! G*#$&*2+>&')3)#H7+0'33)E%37+(*#$&*27+3-'&%9+
'&H=/%#$'$)*#@

! <%%9+$*+&%(*#3$&=($+$-%3%+>'#9+&%3*2E%+
'#1+)#9%F'$)*#@

11

Empty Elements

• In Penn Treebank, 3 kinds of empty elem.

• Null items

• Movement traces (WH, topicalization,
relative clause and heavy NP extraposition)

• Control (raising, passives, control, shared
arguments)

• Semantic interpretation needs to reconstruct
these and resolve indices

12

English Example

!

"#$%&'()*"+,'-./

"#$%&'()*0(1%$+

13

German Example

!

"#$%&'()*"+,'-./

"#$%&'()*0(1%$+

14

Combinatory
Categorial Grammar

15

Combinatory Categorial Grammar (CCG)

• Categorial grammar (CG) is one of the
oldest grammar formalisms

• Combinatory Categorial Grammar now well
established and computationally well
founded (Steedman, 1996, 2000)

• Account of syntax; semantics; prodody
and information structure; automatic
parsers; generation

16

• CCG is a lexicalized grammar

• An elementary syntactic structure – for CCG a lexical
category – is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and I return a
sentence”

• A small number of rules define how categories can
combine

• Rules based on the combinators from Combinatory
Logic

Combinatory Categorial Grammar (CCG)

17

CCG Lexical Categories
• Atomic categories: S , N , NP , PP , . . . (not many more)

• Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

• Complex categories encode subcategorisation information

• intransitive verb: S \NP walked

• transitive verb: (S \NP)/NP respected

• ditransitive verb: ((S \NP)/NP)/NP gave

• Complex categories can encode modification

• PP nominal: (NP \NP)/NP

• PP verbal: ((S \NP)\(S \NP))/NP

18

Simple CCG Derivationccg Grammar 21

A Simple ccg Derivation

interleukin − 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
<

S

> forward application
< backward application

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

19

Function Application Schemata
ccg Grammar 22

Function Application Rule Schemata

• Forward (>) and backward (<) application:

X /Y Y ⇒ X (>)
Y X \Y ⇒ X (<)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

20

Classical Categorial Grammar
ccg Grammar 23

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP (S\NP)/NP NP

S\NP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200921

Classical Categorial Grammar
ccg Grammar 24

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP V NP

VP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200922

ccg Grammar 25

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

23

ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

24

ccg Grammar 27

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
>B

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

25

ccg Grammar 28

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

26

ccg Grammar 29

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

27

ccg Grammar 30

Forward Composition and Type-Raising

• Forward composition (>B):

X /Y Y /Z ⇒ X /Z (>B)

• Type-raising (T):

X ⇒ T/(T\X) (>T)
X ⇒ T\(T/X) (<T)

• Extra combinatory rules increase the weak generative power to
mild context -sensitivity

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

28

ccg Grammar 31

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

29

ccg Grammar 32

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
S/NP

S

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

30

ccg Grammar 33

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

31

ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

32

ccg Grammar 35

Combinatory Categorial Grammar

• ccg is mildly context sensitive

• Natural language is provably non-context free
• Constructions in Dutch and Swiss German (Shieber, 1985) require

more than context free power for their analysis
• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages =

natural languages (?)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

33

CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations
and lambda calculus semantic operations

!"

#$%&'()*+,)-&./0()/1

! 203()*+4$'&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0'+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+
.&0:$)()*=

! >(/4+3.$909('(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!"#$%$&' /4&+&)&;1+40:+)(*4/+I(:($)+*$**'&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+
5(/4+BCD+-$)8(%&)-&=

! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+
:1;9$'(-0''1+0)1501=

! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+</('(/1+$8+-0''()*+.&()8$.-&;&)/:M

! N)+:4$./?+5&+)&&%+3.$909('(:/(-+.&0:$)()*?+)$/+O<:/+3.$909('(:/(-+
%(:0;9(*<0/($)+8$''$5&%+91+:1;9$'(-+.&0:$)()*6

()*+,-#./+,%0+/)*+*1*2'+,#&34*",+04/)+145)/+5#55&*,6

PP2+E0.:()*

! P$;9()0/$.1+
P0/&*$.(0'+
2.0;;0.
! Q<''1+R;$)$ST+
'&L(-0'(U&%+
*.0;;0.

! P0/&*$.(&:+&)-$%&+
0.*<;&)/+
:&V<&)-&:

! W&.1+-'$:&'1+
.&'0/&%+/$+/4&+
'0;9%0+-0'-<'<:

! P0)+40I&+:3<.($<:+
0;9(*<(/(&:+R541MT

!"

#$%&'()*+,)-&./0()/1

! 203()*+4$'&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0'+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+
.&0:$)()*=

! >(/4+3.$909('(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!"#$%$&' /4&+&)&;1+40:+)(*4/+I(:($)+*$**'&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+
5(/4+BCD+-$)8(%&)-&=

! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+
:1;9$'(-0''1+0)1501=

! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+</('(/1+$8+-0''()*+.&()8$.-&;&)/:M

! N)+:4$./?+5&+)&&%+3.$909('(:/(-+.&0:$)()*?+)$/+O<:/+3.$909('(:/(-+
%(:0;9(*<0/($)+8$''$5&%+91+:1;9$'(-+.&0:$)()*6

()*+,-#./+,%0+/)*+*1*2'+,#&34*",+04/)+145)/+5#55&*,6

PP2+E0.:()*

! P$;9()0/$.1+
P0/&*$.(0'+
2.0;;0.
! Q<''1+R;$)$ST+
'&L(-0'(U&%+
*.0;;0.

! P0/&*$.(&:+&)-$%&+
0.*<;&)/+
:&V<&)-&:

! W&.1+-'$:&'1+
.&'0/&%+/$+/4&+
'0;9%0+-0'-<'<:

! P0)+40I&+:3<.($<:+
0;9(*<(/(&:+R541MT

34

CCG Semantics
Left arg. Right arg. Operation Result

X/Y : f Y : a Forward
application

X : f(a)

Y : a X\Y : f Backward
application

X : f(a)

X/Y : f Y/Z : g Forward
composition

X/Z : λx.f(g(x))

X : a Type raising T/(T\X) : λf.f(a)

etc.
35

Tree Adjoining
Grammar

36

TAG Building Blocks

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

• Elementary trees (of many depths)

• Substitution at ↓

• Tree Substitution Grammar equivalent to
CFG

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

37

TAG Building Blocks

• Auxiliary trees for adjunction

• Adds extra power beyond CFG
TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

38

Derivation Tree Derived Tree

α1

!!!!!!!!!!!!!

"""""""""""""

α2
Harry

β
passionately

α3
peanuts

S

!!!!!!!!!!

""""""""""

NP

Harry

VP1

!!!!!!!!!

"""""""""

VP2

!!!!!
"""""

V

likes

NP

peanuts

Adv

passionately

Semantics

Harry(x) ∧ likes(e, x, y) ∧ peanuts(y) ∧ passionately(e)

4

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

39

Semantic representation - derived or derivation tree?

Derived tree

• not monotonic (e.g. immediate domination)

• contains nodes that are not needed for semantics

Derivation tree in TAG shows

• what elementary and auxiliary trees were used

• how the trees were combined

• where the trees were adjoined / substituted

⇒ Derivation tree provides a natural representation for compo-
sitional semantics

5

40

Elementary Semantic Representations

• description of meaning (conjunction of formulas)

• list of argument variables

βsay S
!!!!

""""

NP VP
!!! """

V

say

S∗

say(e1, x, e2)
arg: < x,00 >, < e2,011 >

10

41

Composition of Semantic Representations

• sensitive to way of composition indicated in the derivation
tree

• sensitive to order of traversal

Substitution: a new argument is inserted in σ(α)

• unify the variable corresponding to the argument node (e.g.
x in thought(e, x)) with the variable in the substituted tree
(e.g. NP: Peter(x5))

• semantic representations are merged

11

42

Adjoining: σ(β) applied to σ(α)

• predicate: semantic representation of adjoined auxiliary tree

• argument: a variable in the ’host’ tree

12

43

Harry likes peanuts passionately.

Harry(x)
arg: -

likes(e, x, y)
arg: < x,00 >, < y,011 >

peanuts(y)
arg: -

passionately(e)
arg: e

Result:

likes(e, x, y)∧
Harry(x)∧
peanuts(y)∧
passionately(e)
arg: -

13

44

Extensions and Multi-Component LTAG

To what extent can we obtain a compositional semantics by
using derivation trees?

Problem: Representation of Scope

Every boy saw a girl.

(suppose there are 5 boys in the world, how many girls have to
exist for the sentence to be true?)

14

45

Quantifiers have two parts:

• predicate-argument structure

• scope information

The two parts don’t necessarily stay together in the final seman-
tic representation.

15

46

Multi-Component Lexicalized Tree Adjoining Grammar

• Building blocks are sets of trees (roughly corresponding to
split-up LTAG elementary trees)

• Locality constraint: a multi-component elementary tree has
to be combined with only one elementary tree (tree locality;
Tree local MC-TAG is as powerful as LTAG)

• We use at most two components in each set

• Constraint on multiple adjunction

16

47

Representation of Quantifiers in MC-TAG






β1 α4

S∗ ,
NP

!!!
"""

Det

every

N↓






17

48

Derivation Tree with Two Quantifiers - underspecified scope

Some student loves every course.

!
!

!!"

#
#
##$

% %

&&&&&&&&'

(((((((()

00 011 0

α5α4

α1

α2 α3

0

β2β1

01 01

18

49

CCG & TAG

• Lexicon is encoded as combinators or trees

• Extended domain of locality: information is
localized in the lexicon and “spread out”
during derivation

• Greater than context-free power;
polynomial-time parsing; O(n5) and up

• Spurious ambiguity: multiple derivations for a
single derived tree

50

