Log-Linear Models with Structured Outputs

Introduction to Natural Language Processing
Computer Science 585—Fall 2009
University of Massachusetts Amherst

David Smith
including slides from Andrew McCallum
Overview

• Sequence labeling task (cf. POS tagging)
• Independent classifiers
• HMMs
• (Conditional) Maximum Entropy Markov Models
• Conditional Random Fields
• Beyond Sequence Labeling
Sequence Labeling

• Inputs: $x = (x_1, \ldots, x_n)$
• Labels: $y = (y_1, \ldots, y_n)$
• Typical goal: Given x, predict y

• Example sequence labeling tasks
 – Part-of-speech tagging
 – Named-entity-recognition (NER)
 • Label people, places, organizations
NER Example:

Red Sox and Their Fans Let Loose

Fans of the slugger David Ortiz in Boston's Copley Square.

By PETE THAMEL
Published: October 31, 2007

BOSTON Oct. 30 — Jonathan Papelbon turned Boston's World Series victory parade into a full-scale dance party Tuesday as the Red Sox put an exclamation point on the 2007 season.
First Solution: Maximum Entropy Classifier

• Conditional model $p(y|x)$.
 – Do not waste effort modeling $p(x)$, since x is given at test time anyway.
 – Allows more complicated input features, since we do not need to model dependencies between them.

• Feature functions $f(x,y)$:
 – $f_1(x,y) = \{ \text{word is Boston} \land y=\text{Location} \}$
 – $f_2(x,y) = \{ \text{first letter capitalized} \land y=\text{Name} \}$
 – $f_3(x,y) = \{ x \text{ is an HTML link} \land y=\text{Location} \}$
First Solution: MaxEnt Classifier

• How should we choose a classifier?

• Principle of maximum entropy
 – We want a classifier that:
 • Matches feature constraints from training data.
 • Predictions maximize entropy.

• There is a unique, exponential family distribution that meets these criteria.
First Solution: MaxEnt Classifier

• $p(y|x;\theta)$, inference, learning, and gradient.
• (ON BOARD)
First Solution: MaxEnt Classifier

- Problem with using a maximum entropy classifier for sequence labeling:
- It makes decisions at each position independently!
Second Solution: HMM

\[P(y, x) = \prod_{t} P(y_t | y_{t-1})P(x | y_t) \]

- Defines a generative process.
- Can be viewed as a weighted finite state machine.
Second Solution: HMM

- HMM problems: (ON BOARD)
 - Probability of an input sequence.
 - Most likely label sequence given an input sequence.
 - Learning with known label sequences.
 - Learning with unknown label sequences?
Second Solution: HMM

• How can we represent multiple features in an HMM?
 – Treat them as conditionally independent given the class label?
 • The example features we talked about are not independent.
 – Try to model a more complex generative process of the input features?
 • We may lose tractability (i.e. lose a dynamic programming for exact inference).
Second Solution: HMM

• Let’s use a conditional model instead.
Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

\[P(y \mid x) = \prod_{t} P_{y_{t-1}}(y_t \mid x) \]
Third Solution: MEMM

- Finding the most likely label sequence given an input sequence and learning.
- (ON BOARD)
Third Solution: MEMM

- Combines the advantages of maximum entropy and HMM!
- But there is a problem…
Problem with MEMMs: Label Bias

• In some state space configurations, MEMMs essentially completely ignore the inputs.

• Example (ON BOARD).

• This is not a problem for HMMs, because the input sequence is generated by the model.
Fourth Solution: Conditional Random Field

- Conditionally-trained, undirected graphical model.
- For a standard linear-chain structure:

\[
P(y \mid x) = \prod_{t} \Psi_k(y_t, y_{t-1}, x)
\]

\[
\Psi_k(y_t, y_{t-1}, x) = \exp \left(\sum_{k} \lambda_k f(y_t, y_{t-1}, x) \right)
\]
Fourth Solution: CRF

• Finding the most likely label sequence given an input sequence and learning. (ON BOARD)
Fourth Solution: CRF

• Have the advantages of MEMMs, but avoid the label bias problem.

• CRFs are globally normalized, whereas MEMMs are locally normalized.

• Widely used and applied. CRFs give state-of-the-art results in many domains.
Example Applications

• CRFs have been applied to:
 – Part-of-speech tagging
 – Named-entity-recognition
 – Table extraction
 – Gene prediction
 – Chinese word segmentation
 – Extracting information from research papers.
 – Many more…