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Eigenvalue Approximation

Basic linear algebraic primitive: Given symmetric A ∈ Rn×n, compute
approximations to all of A’s eigenvalues.

• Nearly exact computation of all eigenvalues in O(nω) time via
full eigendecomposition/Schur decomposition — but this is
prohibitive for large n.

• Accurate approximation to k largest magnitude eigenvalues
using Õ(k) matrix vector multiplications with A (power method,
Krylov subspace methods, eigs). Õ(n2 · k) time for dense
matrices.

How well can we approximate the spectrum in sublinear time, i.e.,
o(n2) time for dense matrices?

Need some assumptions — otherwise for a single pair (i, j), Aij and Aji
can be arbitrarily large and dominate the top eigenvalues. Finding
this single pair takes Ω(n2) time.
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Summary

Today:

• Very simple sublinear time algorithm for approximating all
eigenvalues of any symmetric bounded entry matrix.

• Just sample a uniform random principal submatrix and
computes its eigenvalues.

• Improved algorithm for sparse matrices when you can sample
rows/columns with probabilities proportional to their sparsity.

• Lots of open questions for bounded entry matrix computations.
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Our Main Result

Consider a symmetric matrix A ∈ Rn×n with entries bounded in
magnitude by 1, and eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Main Result: There is an algorithm that reads O
(
log6 n
ϵ6

)
entries of A

and outputs λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n such that, for all i ∈ [n],

|λi − λ̃i| ≤ ϵ · n.
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Some Remarks

How good are ±ϵn additive error approximations to each of A’s
eigenvalues?

• |λi| ≤ ∥A∥F ≤ n for all i.

•
∑

λ2i = ∥A∥2F ≤ n2. So there are at most 1/ϵ2 outlying
eigenvalues with |λi| ≥ ϵ · n.

• These are the only eigenvalues for which we give a non-trivial
approximation.

• It is easy to see that additive error scaling linearly in n is
necessary.

• Could equivalently remove the bounded entry assumption, and
obtain additive error ϵ · n · ∥A∥∞.
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Lower Bound Instance

Only ≈ ϵ2n2 entries differ across these matrices. Need to read
at least Ω(1/ϵ2) entries before you can distinguish them with
good probability.
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The Algorithm

The algorithm just computes the eigenvalues of a small random
principal submatrix of A.

1. Let s = c log3 n
ϵ3 , and let AS be the random principal submatrix of A

where each row/column is included independently with
probability s

n .

2. Compute all eigenvalues of ns · AS.

3. Use these eigenvalues to approximate all eigenvalues of A.

Observe that AS has O(s) eigenvalues while A has n.
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Eigenvalue Alignment

Approximate the large positive eigenvalues using the positive
eigenvalues of AS, the large negative ones using the negative
eigenvalues of AS, and the rest by 0.
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Improved Bounds for Sparse Matrices

Consider a symmetric matrix A ∈ Rn×n with entries bounded in
magnitude by 1, nnz(A) non-zero entries, and nnz(Ai) entries in row i.

Sparse Matrix Result: Given the ability to sample i ∈ [n] with
probability ∝ nnz(Ai)

nnz(A) , there is an algorithm that reads O
(
log16 n
ϵ16

)
entries of A and outputs λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n such that, for all i ∈ [n],

|λi − λ̃i| ≤ ϵ ·
√
nnz(A).

• Observe that |λi| ≤ ∥A∥F ≤
√
nnz(A) ≤ n for all i.

• Sparsity sampling requires sublinear queries per sample in the
standard graph query model, where A is the adjacency matrix.

• Also possible via sampling a random non-zero entry when A is
stored in sparse matrix format.

• Surprisingly, simply computing the eigenvalues of a random
submatrix does not suffice here. Need to carefully zero out
some entries of the sampled matrix.
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Related Work

Recently, several works have looked at sublinear time property
testing algorithms for matrices in the bounded entry model.

• [Balcan, Li, Woodruff, Zhang ‘18] give algorithms for testing rank,
stable rank, and matrix norms. E.g., Õ(1/ϵc) queries for testing if
A’s Schatten-p norm is ≥ cnp or at least an ϵ fraction of A’s
entries must be changed for it to have this property.

• [Bakshi, Chepurko, Jayaram ‘20] give Õ(1/ϵc) query algorithms
for testing if A is either positive semidefinite or has at least one
negative eigenvalue < −ϵn.

• Our point-wise approximation guarantee immediately implies
such a testing result, but can be stronger. However, our ϵ
dependence is worse.

• Our techniques are related to those of Bakshi, Chepurko,
Jayaram.
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A’s Schatten-p norm is ≥ cnp or at least an ϵ fraction of A’s
entries must be changed for it to have this property.

• [Bakshi, Chepurko, Jayaram ‘20] give Õ(1/ϵc) query algorithms
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Related Work

Several other works look at sublinear time spectral density
estimation for normalized graph adjacency matrices, which are a
special class of bounded entry matrices.

• The goal is to approximate the spectral density: the distribution
placing mass 1/n at each eigenvalue.

• [Cohen-Steiner, Kong, Sohler, and Valiant ‘18] give a 2O(1/ϵ) time
algorithm for ϵ error approximation in the Wasserstein-1
distance.

• [Braverman, Krishnan, and Musco ‘22] give a Õ(n/ϵc) time
algorithm for the same task.

• Our result gives ϵn error approximation in the Wasserstein-1
distance.

• Note that the eigenvalues of a general bounded entry matrix lie
in [−n,n]. Those of a normalized adjacency matrix lie in [−1, 1].
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Broader Context

Broader Research Goal: Use randomness to give sublinear time
algorithms for natural linear algebraic problems. Typically under
some assumption on the input matrix structure.

• Õ(nk/ϵc) time algorithms for near optimal rank-k approximation
of positive semidefinite and distance matrices [Musco Musco
’17, Musco Woodruff ‘17, Bakshi Woodruff ‘18, Indyk et al. ‘19]

• Õ(d · n1.173) time algorithm for estimating the top eigenvalue of
a Gaussian kernel matrix [Backurs Indyk Musco Wagner ‘21]

• Sublinear time algorithms for structured matrices via sublinear
time matrix vector multiplication [Shi Woodruff ‘19]

• ‘Quantum-inspired’ algorithms for linear algebra [Tang ‘18,
Chepurko Clarkson Horesh Lin Woodruff ‘21]

• Classic additive error randomized SVD [Frieze Kannan Vempala
‘04, Drineas Kannan Mahoney ‘06].
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Proof Approach
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Proof Approach

Recall: For a uniformly random principal submatrix AS, need to
show that the eigenvalues of ns · AS, appropriately padded with
zeros, approximate all eigenvalues of A to error ±ϵn.

• AS will be O(s)× O(s) for s = poly(logn, 1/ϵ).
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Positive Semidefinite Case

The proof is simple when A is positive semidefinite (PSD) — i.e., has
all non-negative eigenvalues.

• Let B ∈ Rn×n be such that BBT = A.

• Let ns · AS = STAS be our random principal submatrix, where
S ∈ Rn×s is an appropriately scaled sampling matrix.

• The non-zero eigenvalues of ns · AS = STAS = STBBTS are
identical to those of BTSSTB. And those of A = BBT are identical
to those of BTB.

• So it suffices to analyze how well the eigenvalues of BTSSTB
approximate those of BTB.
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Positive Semidefinite Case

So Far: To show that the eigenvalues of ns · AS approximate those of
A, it suffices to show that those of BTSSTB approximate those of BTB.

• Via a standard approximate matrix multiplication analysis (c.f.
[Drineas Kannan ‘01]), with high probability when s = O(1/ϵ2),

∥BTB− BTSSTB∥F ≤ ϵn.

• By an eigenvalue version of the Hoffman–Wielandt perturbation
bound (c.f. [Bhatia ‘13]), letting Λ(·) denote the eigenvalue
vector of a matrix,

∥Λ(BTB)− Λ(BTSSTB)∥∞ ≤ ∥Λ(BTB)− Λ(BTSSTB)∥2 ≤ ϵn.

• This gives that |λi − λ̃i| ≤ ϵn for all i (padding the eigenvalues of
n
s · AS with zeros accounts for the n− O(s) zero eigenvalues of
BTSSTB that are not present in n

s · AS.).
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General Case

In the general bounded entry setting, the previous proof breaks
down for a simple reason: when A is not PSD, it does not admit a real
square root B ∈ Rn×n with BBT = A.

• Feels like a technicality, but observe that when A is PSD,
∥Λ(A)∥1 =

∑n
i=1 λi = tr(A) ≤ n.

• When A is not PSD, we can have ∥Λ(A)∥1 = O(n3/2). I.e., there can
be significantly more eigenvalue mass overall.

• E.g., have Θ(n) eigenvalues with λi = Θ(
√
n), when A is random

±1.
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• Relatedly, we can never hope to prove an ℓ2 error bound as we
did in the PSD case, where ∥Λ− Λ̃∥∞ ≤ ∥Λ− Λ̃∥2 ≤ ϵn.

• We approximate almost all eigenvalues by 0, so in the random
matrix case will have ∥Λ− Λ̃∥2 ≈ ∥Λ∥2 = n.
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Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give
non-trivial approximations, and its middle eigenvalues, and analyze
these components separately.

• Let Vo ∈ Rn×no have columns equal to all eigenvectors with
corresponding eigenvalues satisfying |λi| ≥ ϵn. Let Vm ∈ Rn×nm

have columns equal to the remaining eigenvectors.

• Let Λo ∈ Rno×no and Λm ∈ Rnm×nm be the corresponding diagonal
eigenvalue matrices.

• Write A = Ao + Am where Ao = VoΛoVTo and Am = VmΛmVTm.

• Can similarly write n
s · AS = STAS = STAoS+ STAmS.
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Proof Approach

So Far: Have written A = Ao + Am and STAS = STAoS+ STAmS.

Step 1: Show that the non-zero eigenvalues of STAoS
approximate all the eigenvalues of Ao to ±ϵn error.

Step 2: Show that the eigenvalues of STAmS are all small in
magnitude — i.e. ≤ ϵn.

Step 3: By Weyl’s inequality and Step 2, the eigenvalues of STAS
are within ±ϵn of those of STA0S. Thus, by Step 1, they are all
either within ±2ϵn of some eigenvalue of Ao or bounded in
magnitude by ϵn.

This is enough to give that the eigenvalues of ns · AS = STAS,
appropriately padded with zeros, approximate all eigenvalues
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Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of STAoS approximate all
the eigenvalues of Ao to ±ϵn error.

Key Proof Idea: Since A has bounded magnitude entries, its outlying
eigenvectors are all incoherent — i.e., their mass is spread across
many entries. Thus, they are well approximated via uniform
sampling.

For any unit norm eigenvector v ∈ Rn with Av = λ · v and |λ| ≥ ϵn:

|v(i)| = 1
|λ|

· |[Av](i)|

=
1
|λ|

· ⟨Ai,:, v⟩ ≤
1
|λ|

· ∥Ai,:∥2 · ∥v∥2 ≤
1

ϵ
√
n
.

I.e., v is within a 1/ϵ factor of being perfectly flat.

The above bound was an important part of [Bakshi, Chepurko, and
Jayaram ‘20]. We show a related bound, that ∥[Vo]i,:∥22 ≤ 1

ϵ2n . I.e., we
show that the leverage scores of Vo are uniformly bounded.
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Sampling Outlying Eigendirections

So far: Can show that the outlying eigenspace of A is incoherent,
with ith leverage score bounded by ∥[Vo]i,:∥22 ≤ 1

ϵ2n .

• Via a standard matrix Bernstein bound, can show that if we take
s = Õ(1/ϵ4) samples, with high probability VToSSTVo ≈ VToVo ≈ I.

• Can use this to argue that the nonzero eigenvalues of
STAoS = STVoΛoVoS are close to those of Λo — i.e., close to the
outlying eigenvalues in Ao.

• This completes Step 1 of the proof.
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Sampling Middle Eigendirections

It remains to show that the eigenvalues of STAmS are bounded in
magnitude by ϵn.

• Via the incoherence of Vo, can show that ∥Ao∥∞ ≤ 1
ϵ and so by

triangle inequality, ∥Am∥∞ ≤ ∥A∥∞ + ∥Ao∥∞ ≤ 1+ 1
ϵ .

• Can then apply spectral norm bounds for random principal
submatrices of bounded entry matrices [Rudelson Vershynin
‘07, Tropp ‘08], to show that ∥STAmS∥2 ≤ ϵn when s = Õ(1/ϵ2).
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Proof Recap

Step 0: Split A = Ao+Am into its outlying and middle eigendirections.

Step 1: Prove that the outlying eigendirections of A are incoherent,
and thus, uniform sampling approximately preserves the eigenvalues
of Ao. I.e., the non-zero eigenvalues of STAoS approximate all the
eigenvalues of Ao to ±ϵn error.

Step 2: Use the incoherence of Ao to argue that Am = A− Ao is
entrywise bounded, and thus ∥STAmS∥2 ≤ ϵn.

Step 3: Combine the above to show that, after padding by zeros, the
eigenvalues of ns · AS = STAS = STAoS+ STAmS approximate those of A
up to ±ϵn error.

22



Sparse Matrices
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Importance Sampling

In many cases in randomized numerical linear algebra, more
refined sampling probabilities can give stronger error bounds.
It is natural to expect this for eigenvalue estimation.

• Uniform Sampling: ±ϵn (just showed)
• Sparsity Sampling ∝ nnz(Ai)

nnz(A) : ±ϵ
√
nnz(A)?

• Norm Sampling ∝ ∥Ai∥22
∥A∥2F

: ±ϵ∥A∥F?

We show that the improvement for sparsity-based sampling is
possible — although not so straightforward. Further
improvement e.g., for norm-based sampling is open.
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Sparsity Sampling Algorithm

Natural extension of random submatrix algorithm to
sparsity-based sampling:

1. Let s = poly(logn, 1/ϵ), and let AS be the random principal
submatrix of A where each row/column is included
independently with probability pi = s · nnz(Ai)nnz(A) .

2. Let D be the diagonal matrix with Di,i = 1√
pj
if the ith

sampled row/column is row j.
3. Compute all eigenvalues of DASD.
4. Use these eigenvalues to approximate all eigenvalues of A.

Observe that if the rows have uniform sparsity, DASD = n
s · AS,

and we have exactly the uniform sampling algorithm.
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Challenge 1: The Identity

Say that A = I, so sparsity-based sampling is just uniform sampling,
so DASD = n

s · AS. Also nnz(A) = n.

• Want to approximate all eigenvalues up to ±ϵ
√
n

• However, AS is just a smaller identity matrix, so n
s · AS has all

eigenvalues equal to n
s .

• Would need to set s ≥
√
n
ϵ to achieve the desired bound.

Simple Fix: Set the diagonal of AS to 0. Introduces at most ±1 error
into the eigenvalue estimates and resolves this issue. When A = I,
AS = 0. So our eigenvalue estimates all have error 1.
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Challenge 2: Sparse Rows and Columns

Consider A with Ai,i+1 = Ai+1,i = 1 for all i = 1, . . . ,n− 1.

•
√
nnz(A) ≤

√
2n and |λi| ≤ 2 for all i. Roughly, DASD ≈ n

s · AS.

• If s = o(
√
n), with good probability, ns · AS = 0, and we get good

estimates: ±2 error.

• When s = c
√
n, with constant probability, ns · AS is non-zero

(birthday paradox), and we have error ≈ n
s =

√
n
c > ϵ

√
n.

• Can find many related examples: entries at the intersection of
sparse rows/columns get scaled up too much in DASD, leading
to large estimation errors.
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Zeroing Out Entries

To handle these cases, we argue that zeroing out the entries of A
lying at the intersection of sparse rows and columns does not
significantly alter the eigenvalues.

Key Lemma: Let A′ be equal to A but with A′ij = 0 if√
nnz(Ai) · nnz(Aj) ≤

ϵ
√
nnz(A)

c log n . Then ∥A− A′∥2 ≤ ϵ
√
nnz(A).

• Can be thought of as a generalization of Girshgorin’s circle
theorem, which would show that zeroing out the entries in
rows/columns with nnz(Ai) ≤ ϵ

√
nnz(A) does not perturb the

eigenvalues by more than ϵ
√
nnz(A).

• Ensures that after sampling, no entries are scaled up too much
in DASD, and lets us extend our uniform sampling proof to give
±ϵ

√
nnz(A) error with sparsity-based sampling.

• I’m ignoring many details here — see paper for the full
argument. Challenging to obtain bounds on STAmS when S is
sampled non-uniformly.
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Open Questions

• Can we obtain tight Õ(1/ϵ2) query complexity for computing ±ϵn
approximations to all eigenvalues? Requires going beyond
principal submatrix sampling, for which a simple Ω(1/ϵ4) lower
bound holds. What is even a plausible algorithm here?

• Can we approximate ∥A∥1 =
∑n

i=1 |λi| to error 1/2 · n3/2 using
o(n2) queries to A? [Balcan, Li, Woodruff, Zhang ‘18] show that
Ω̃(n) is required. Key challenge problem in understanding how
to approximate bulk spectral properties.

• Can we give ±ϵ∥A∥F approximations to all eigenvalues via
norm-based sampling?

• For what other classes of structured matrices can we give
stronger approximation bounds? E.g., interesting bounds are
known for normalized graph adjacency matrices. What else?

• What other spectral properties can we approximate in sublinear
time? 28


