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are typically iterative and linearly convergent (i.e., with
log(1/€) error dependence).

- Coarser approximation methods give general solutions e.g.
for linear systems, eigenvalue computation, and low-rank
approximation, with poly(1/¢) dependence.

- Essentially nothing is known beyond these techniques.

- All known linear algebraic algorithms which work with high
accuracy on general matrices require full n x n x n matrix
multiplication (i.e. O(n®) time). Why?
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Lower Bounds (much less work here):

- [Baur, Strassen ‘83] shows that an arithmetic circuit for the
determinant with M gates gives a circuit for matrix
inversion/multiplication with O(M) gates.

- No reduction known for uniform computation.

- An emerging line of work on reductions and hardness for
linear algebraic problems [Kyng, Zhang “17], [Backurs, Indyk,
Schmidt “17], [Musco, Woodruff “17].
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Algorithms: Give o(n“) time approximation algorithms
(poly(1/€) dependence) for a many spectral summarization
tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly

accurate o(n“) time methods for many of these tasks by giving
reductions from matrix multiplication.

- Bounds extend to many natural problems like determinant,
trace inverse, effective resistance computation, etc.
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Basic Question: Given a matrix A € R™", can we approximate,
in some useful way, its singular value spectrum

o1 > ... > op > 0 without performing a full SVD. l.e., in o(n*)
time, for the current value of w?

Our algorithmic contribution: Show how to efficiently compute
an approximate histogram of the spectrum.
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APPLICATION: O(ﬂw) TIME MATRIX NORMS

Use our histogram primitive to give the first algorithms for
approximating many matrix norms in o(n“) time.

- O(n”'%/¢’) time algorithm for approximating the nuclear
norm to 1+ € relative error. O(n>*/€*) time without fast

matrix mult. n
Al =" a;.
i=1

O(n” - p/e’) time algorithm for approximating the Schatten
p-norm for any real p > 2

n 1/p
A, = (Z of) :
=1

- Results for general Schatten p-norms, SVD entropy, and
more general matrix norms of the form 3>, g(o;). 6
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LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

« For ||Al|, for any p # 2, SVD entropy, tr(A="), tr(exp(A)),
det(A), log(det(A)), all pairs effective resistances:

1+€ approximation

in O(n7e©) time, [vw10] O(n2ly +4cl/3) time
even when Ais a ‘ ‘ Boolean matrix
well-conditioned multiplication
graph Laplacian

- Our O(n?/€®) time algorithm for ||A||3 would give faster
triangle detection if the e dependence was ~ 61%

- An O(n*79 . log(1/e€)) time algorithm gives O(n3%) time
triangle detection and O(n3~9/3) time matrix multiplication.



HIGH LEVEL VIEW

Fast, Approximate:
Slow: 6(n®) o(n»)/ecforc21/2
Matrix multiplication Linear systems
Matrix inversion Top eigenvalue
Eigendecomposition Low-rank approximation
Full SVD Schatten norms
SVD entropy

Fast, Accurate, No Assumptions:
o(n«)/e¢ for small ¢

Fast, With Assumptions: o(n log(1/€))
Linear systems Anything?
Eigenvectors/values Our results give negative
Low-rank approximation evidence for many
exp(A), A"/, etc. candidate problems.
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Key Primitive: Approximately count the number of singular
values in each bucket.

- Combine randomized trace estimation, stochastic
optimization, polynomial approximation, and
preconditioning.

- Leverage stochastic gradient based system solvers, which
give better guarantees than the conjugate gradient method
for certain spectrums. Use these guarantees to give generic
speed ups. E.g, O(n?°) — O(n?33) for ||A|.
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Triangle detection naturally reduces to Schatten-3 norm
estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if
tr(A%) > 0, where A is the adjacency matrix. l.e, relative error
approximation to tr(A%) gives triangle detection.

IS

(A% = S A(AY) = T A(A) £ 5 o (A) AL

nonzeros = length-3 paths
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T

tr(D?) exactly computable in O(n?) time.
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tr(DAz) = tr(D?), exactly computable in O(n?) time.
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REDUCTION SKETCH

Additive § < 1 approximation to ||L||3 gives additive § < 1
approximation to tr(A®) and triangle detection.

“ |IL|3 < 8n* for unweighted graphs.

- So multiplicative (1+ €) approximation for e < # gives
triangle detection.

+ Computing (1 £ ¢€)||L[)3 in O(n” - e7€) time gives triangle
detection in O(n7+4) time.
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Extend reduction to other matrix norms, logdet, trace inverse,
trace exponential, etc. via Taylor expansion.

C o = Limo(=X)"

(1 + 5A)"| = diszac |

- Traces of large terms can again be computed exactly.
- After subtracting out these terms, tr(6°A%) dominates
tr((14 6A)~") (we set 6 = 1/ poly(n)). So fine enough

approximation gives triangle detection.
- Bound for determinant is similar, by expanding out

det(l + 6A) = [T,(1+ 6Ai(A)). .
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time for general matrices with high accuracy? (e.g. log(1/e)
dependence on the error).

- Can we compute even a constant factor approximation to
det(A) in o(n“) time?

- Can the our reductions from matrix multiplication (through
triangle detection) be tightened?

- Can we deterministically approximate o4(A) without
computing a full SVD (i.e. in o(n®) time).

- If we could solve any PSD linear system in O(n?) time, would
this imply anything about how fast we can solve matrix
multiplication?

Thanks! Questions?
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