SPECTRUM APPROXIMATION BEYOND FAST MATRIX
MULTIPLICATION: ALGORITHMS AND HARDNESS

Cameron Musco (MIT), Praneeth Netrapalli (MSR), Aaron Sidford (Stan-
ford), Shashanka Ubaru (UMN), David Woodruff (CMU)

ITCS 2018

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the
fundamental complexity of many linear algebraic problems.

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the
fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation,
determinant computation, and low-rank approximation.

MOTIVATING QUESTION

Despite tons of algorithmic work, we don’'t understand the
fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation,
determinant computation, and low-rank approximation.

- Most can be solved with ‘heavy hammers’ like matrix
inversion, full eigendecomposition, and SVD. These
computations are known to be equivalent in difficulty to
matrix multiplication and take O(n“) time for n x n matrices,
O(n®) time in practice.

MOTIVATING QUESTION

Despite tons of algorithmic work, we don’'t understand the
fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation,
determinant computation, and low-rank approximation.

- Most can be solved with ‘heavy hammers’ like matrix
inversion, full eigendecomposition, and SVD. These
computations are known to be equivalent in difficulty to
matrix multiplication and take O(n“) time for n x n matrices,
O(n®) time in practice.

Which natural linear algebraic problems can be solved in
o(n“) time for general matrices? Conversely, which are truly
as hard as matrix multiplication?

MOTIVATING QUESTION

Despite tons of algorithmic work, we don't understand the
fundamental complexity of many linear algebraic problems.

- E.g. linear system solving, eigenvector/value computation,
determinant computation, and low-rank approximation.

- Most can be solved with ‘heavy hammers' like matrix
inversion, full eigendecomposition, and SVD. These
computations are known to be equivalent in difficulty to
matrix multiplication and take O(n“) time for n x n matrices,
O(n®) time in practice.

Which natural linear algebraic problems can be solved in
o(n“) time for general matrices? Conversely, which are truly
as hard as matrix multiplication?’

PRIOR WORK

o(n“) Time Algorithms — Two Main Approaches:

PRIOR WORK

o(n“) Time Algorithms — Two Main Approaches:

- Assumptions like bounded condition number or eigengaps
yield accurate algorithms for linear systems, more general
matrix functions, and eigenvector computation. Algorithms
are typically iterative and linearly convergent (i.e., with
log(1/€) error dependence).

PRIOR WORK

o(n“) Time Algorithms — Two Main Approaches:

- Assumptions like bounded condition number or eigengaps
yield accurate algorithms for linear systems, more general
matrix functions, and eigenvector computation. Algorithms
are typically iterative and linearly convergent (i.e., with
log(1/€) error dependence).

- Coarser approximation methods give general solutions e.g.
for linear systems, eigenvalue computation, and low-rank
approximation, with poly(1/¢) dependence.

PRIOR WORK

o(n“) Time Algorithms — Two Main Approaches:

- Assumptions like bounded condition number or eigengaps
yield accurate algorithms for linear systems, more general
matrix functions, and eigenvector computation. Algorithms
are typically iterative and linearly convergent (i.e., with
log(1/€) error dependence).

- Coarser approximation methods give general solutions e.g.
for linear systems, eigenvalue computation, and low-rank
approximation, with poly(1/¢) dependence.

- Essentially nothing is known beyond these techniques.

PRIOR WORK

o(n“) Time Algorithms — Two Main Approaches:

- Assumptions like bounded condition number or eigengaps
yield accurate algorithms for linear systems, more general
matrix functions, and eigenvector computation. Algorithms
are typically iterative and linearly convergent (i.e., with
log(1/€) error dependence).

- Coarser approximation methods give general solutions e.g.
for linear systems, eigenvalue computation, and low-rank
approximation, with poly(1/¢) dependence.

- Essentially nothing is known beyond these techniques.

- All known linear algebraic algorithms which work with high
accuracy on general matrices require full n x n x n matrix
multiplication (i.e. O(n®) time). Why?

PRIOR WORK

Lower Bounds (much less work here):

PRIOR WORK

Lower Bounds (much less work here):

- [Baur, Strassen ‘83] shows that an arithmetic circuit for the
determinant with M gates gives a circuit for matrix
inversion/multiplication with O(M) gates.

PRIOR WORK

Lower Bounds (much less work here):

- [Baur, Strassen ‘83] shows that an arithmetic circuit for the
determinant with M gates gives a circuit for matrix
inversion/multiplication with O(M) gates.

- No reduction known for uniform computation.

PRIOR WORK

Lower Bounds (much less work here):

- [Baur, Strassen ‘83] shows that an arithmetic circuit for the
determinant with M gates gives a circuit for matrix
inversion/multiplication with O(M) gates.

- No reduction known for uniform computation.

- An emerging line of work on reductions and hardness for
linear algebraic problems [Kyng, Zhang “17], [Backurs, Indyk,
Schmidt “17], [Musco, Woodruff “17].

THIS WORK

THIS WORK

Algorithms: Give o(n“) time approximation algorithms
(poly(1/€) dependence) for a many spectral summarization
tasks, like trace norm computation, SVD entropy, etc.

THIS WORK

Algorithms: Give o(n“) time approximation algorithms
(poly(1/€) dependence) for a many spectral summarization
tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly

accurate o(n“) time methods for many of these tasks by giving
reductions from matrix multiplication.

THIS WORK

Algorithms: Give o(n“) time approximation algorithms
(poly(1/€) dependence) for a many spectral summarization
tasks, like trace norm computation, SVD entropy, etc.

Lower Bounds: Show that it may be hard to find highly

accurate o(n“) time methods for many of these tasks by giving
reductions from matrix multiplication.

- Bounds extend to many natural problems like determinant,
trace inverse, effective resistance computation, etc.

SPECTRUM APPROXIMATION

Basic Question: Given a matrix A € R™", can we approximate,
in some useful way, its singular value spectrum

o1 > ... > op > 0 without performing a full SVD. l.e., in o(n*)
time, for the current value of w?

SPECTRUM APPROXIMATION

Basic Question: Given a matrix A € R™", can we approximate,
in some useful way, its singular value spectrum

o1 > ... > op > 0 without performing a full SVD. l.e., in o(n*)
time, for the current value of w?

Our algorithmic contribution: Show how to efficiently compute
an approximate histogram of the spectrum.

SPECTRUM APPROXIMATION

Basic Question: Given a matrix A € R™", can we approximate,
in some useful way, its singular value spectrum

o1 > ... > op > 0 without performing a full SVD. l.e., in o(n*)
time, for the current value of w?

Our algorithmic contribution: Show how to efficiently compute
an approximate histogram of the spectrum.

BEsT 2500
L

2000

1500

Frequency

1000

Singular value, o,

500

[9)
0 50 100 150

Singular Value, o

500 1000 1500 2000 2500 3000
Singular Value Index, i

APPLICATION: O(ﬂ‘”‘) TIME MATRIX NORMS

Use our histogram primitive to give the first algorithms for
approximating many matrix norms in o(n“) time.

APPLICATION: O(ﬂ‘”‘) TIME MATRIX NORMS

Use our histogram primitive to give the first algorithms for
approximating many matrix norms in o(n“) time.

- O(n”'%/¢’) time algorithm for approximating the nuclear
norm to 1+ € relative error. O(n>*/€*) time without fast

matrix mult. n
Al =" a;.
i=1

APPLICATION: O(ﬂ‘”‘) TIME MATRIX NORMS

Use our histogram primitive to give the first algorithms for
approximating many matrix norms in o(n“) time.

- O(n”'%/¢’) time algorithm for approximating the nuclear
norm to 1+ € relative error. O(n>*/€*) time without fast

matrix mult. n
Al =" a;.
i=1

O(n” - p/e’) time algorithm for approximating the Schatten
p-norm for any real p > 2

n 1/p
A, = (Z of) :
=1

APPLICATION: O(ﬂw) TIME MATRIX NORMS

Use our histogram primitive to give the first algorithms for
approximating many matrix norms in o(n“) time.

- O(n”'%/¢’) time algorithm for approximating the nuclear
norm to 1+ € relative error. O(n>*/€*) time without fast

matrix mult. n
Al =" a;.
i=1

O(n” - p/e’) time algorithm for approximating the Schatten
p-norm for any real p > 2

n 1/p
A, = (Z of) :
=1

- Results for general Schatten p-norms, SVD entropy, and
more general matrix norms of the form 3>, g(o;). 6

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

- For ||A||, for any p # 2, SVD entropy, tr(A™"), tr(exp(A)),
det(A), log(det(A)), all pairs effective resistances:

1+€ approximation [VW'10]

in O(n7e©) time, O(n2ly +4cl/3) time
even when Ais a ‘ ‘ Boolean matrix
well-conditioned multiplication
graph Laplacian

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

« For ||Al|, for any p # 2, SVD entropy, tr(A="), tr(exp(A)),
det(A), log(det(A)), all pairs effective resistances:

1+€ approximation [VW'10]

in O(n7e©) time, O(n2ly +4cl/3) time
even when Ais a ‘ ‘ Boolean matrix
well-conditioned multiplication
graph Laplacian

- Our O(n?/€®) time algorithm for ||A||3 would give faster
triangle detection if the e dependence was ~ a)ﬁ

LOWER BOUNDS

In contrast, we prove that higher accuracy approximation is in
some sense as hard as matrix multiplication.

« For ||Al|, for any p # 2, SVD entropy, tr(A="), tr(exp(A)),
det(A), log(det(A)), all pairs effective resistances:

1+€ approximation

in O(n7e©) time, [vw10] O(n2ly +4cl/3) time
even when Ais a ‘ ‘ Boolean matrix
well-conditioned multiplication
graph Laplacian

- Our O(n?/€®) time algorithm for ||A||3 would give faster
triangle detection if the e dependence was ~ 61%

- An O(n*79 . log(1/e€)) time algorithm gives O(n3%) time
triangle detection and O(n3~9/3) time matrix multiplication.

HIGH LEVEL VIEW

Fast, Approximate:
Slow: 6(n®) o(n»)/ecforc21/2
Matrix multiplication Linear systems
Matrix inversion Top eigenvalue
Eigendecomposition Low-rank approximation
Full SVD Schatten norms
SVD entropy

Fast, Accurate, No Assumptions:
o(n«)/e¢ for small ¢

Fast, With Assumptions: o(n log(1/€))
Linear systems Anything?
Eigenvectors/values Our results give negative
Low-rank approximation evidence for many
exp(A), A"/, etc. candidate problems.

ALGORITHMIC TECHNIQUES

2500

2000

1500

Frequency

1000

Singular value, o,

8

5 100 150
Singular Value, o,

o

500 1000 1500 2000 2500 3000
Singular Value Index, i

ALGORITHMIC TECHNIQUES

2500
2000

>
£ 1500
El

Singular value, o,

3
$ 1000
fs

500

50 100 150
Singular Value, o,

500 1000 1500 2000 2500 3000
Singular Value Index, i

Key Primitive: Approximately count the number of singular
values in each bucket.

ALGORITHMIC TECHNIQUES

W 2500
2000

>

£ 1500

El

F

1000

&

500

500 1000 1500 2000 2500 3000
Singular Value Index, i

Key Primitive: Approximately count the number of singular
values in each bucket.

- Combine randomized trace estimation, stochastic
optimization, polynomial approximation, and
preconditioning.

ALGORITHMIC TECHNIQUES

2500
2000

3

£ 1500

El

g

& 1000

Il

500

500 1000 1500 2000 2500 3000
Singular Value Index, i

Key Primitive: Approximately count the number of singular
values in each bucket.

- Combine randomized trace estimation, stochastic
optimization, polynomial approximation, and
preconditioning.

- Leverage stochastic gradient based system solvers, which
give better guarantees than the conjugate gradient method
for certain spectrums. Use these guarantees to give generic
speed ups. E.g, O(n?°) — O(n?33) for ||A|.

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm
estimation (almost).

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm
estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if
tr(A%) > 0, where A is the adjacency matrix. l.e, relative error
approximation to tr(A%) gives triangle detection.

IS

nonzeros = length-3 paths

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm
estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if
tr(A%) > 0, where A is the adjacency matrix. l.e, relative error
approximation to tr(A%) gives triangle detection.

IS

Ctr(AY) = 3L N(AY) = 3L A(A)

nonzeros = length-3 paths

REDUCTION SKETCH

Triangle detection naturally reduces to Schatten-3 norm
estimation (almost).

- Detecting a triangle in a graph is equivalent to testing if
tr(A%) > 0, where A is the adjacency matrix. l.e, relative error
approximation to tr(A%) gives triangle detection.

IS

(A% = S A(AY) = T A(A) £ 5 o (A) AL

nonzeros = length-3 paths

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L =D — A.

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L =D — A.

= Ni(L) > 0 foralli, so A\j(L) = oy(L).

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L =D — A.

Ai(L) > 0 forall i, so Aj(L) = oj(L).

LI _Z)\ tr(L%) = tr(D%) — 3tr(D?A) + 3tr(DA?)— tr(A%)

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L =D — A.

Ai(L) > 0 forall i, so Aj(L) = oj(L).

L3 _Z)\ tr(L%) = tr(D%) — 3tr(D?A) + 3tr(DA?)—tr(A”)

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L=D — A

Ai(L) > 0 forall i, so Aj(L) = oj(L).

||L||3_Z>\ tr(L%) = tr(D®) — 3tr(D?A) 4 3tr(DA?)—tr(A%)

4

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L=D — A

Ai(L) > 0 forall i, so Aj(L) = oj(L).

|L||3_Z>\ tr(L%) = tr(D®) — 3tr(D?A) 4 3tr(DA?)—tr(A%)

T

tr(D?) exactly computable in O(n?) time.

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L=D — A

Ai(L) > 0 forall i, so Aj(L) = oj(L).

|L||3_Z>\ tr(L%) = tr(D®) — 3tr(D?A) 4 3tr(DA?)—tr(A%)

Do

tr(D?) exactly computable in O(n?) time.
tr(D’A) = 0.

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L=D — A

Ai(L) > 0 forall i, so Aj(L) = oj(L).

||L||3_Z>\ tr(L%) = tr(D®) — 3tr(D?A) 4 3tr(DA?)—tr(A%)

T

tr(D?) exactly computable in O(n?) time.
tr(D?A) = 0.
tr(DAz) = tr(D?), exactly computable in O(n?) time.

1

REDUCTION SKETCH

Idea: Replace adjacency matrix with PSD Laplacian L=D — A

Ai(L) > 0 forall i, so Aj(L) = oj(L).

||L||3_Z>\ tr(L%) = tr(D®) — 3tr(D?A) 4 3tr(DA?)—tr(A%)

T

tr(D?) exactly computable in O(n?) time.
tr(D?A) = 0.
tr(DAz) = tr(D?), exactly computable in O(n?) time.

Thus, additive § < 1 approximation to ||L|3 gives additive § < 1

approximation to tr(A%) and triangle detection.
1

REDUCTION SKETCH

Additive § < 1 approximation to ||L||3 gives additive § < 1
approximation to tr(A®) and triangle detection.

REDUCTION SKETCH

Additive § < 1 approximation to ||L||3 gives additive § < 1
approximation to tr(A®) and triangle detection.

“ |IL|3 < 8n* for unweighted graphs.

REDUCTION SKETCH

Additive § < 1 approximation to ||L||3 gives additive § < 1
approximation to tr(A®) and triangle detection.

“ |IL|3 < 8n* for unweighted graphs.

- So multiplicative (1+ €) approximation for e < # gives
triangle detection.

REDUCTION SKETCH

Additive § < 1 approximation to ||L||3 gives additive § < 1
approximation to tr(A®) and triangle detection.

“ |IL|3 < 8n* for unweighted graphs.

- So multiplicative (1+ €) approximation for e < # gives
triangle detection.

+ Computing (1 £ ¢€)||L[)3 in O(n” - e7€) time gives triangle
detection in O(n7+4) time.

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse,
trace exponential, etc. via Taylor expansion.

13

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse,
trace exponential, etc. via Taylor expansion.

C o = Limo(=X)"

||
a+oay|=| i |- oA g+ AZ -1 AL
||

13

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse,
trace exponential, etc. via Taylor expansion.

C o = Limo(=X)"

(1 + 5A)"| = - sl 4

- Traces of large terms can again be computed exactly.

13

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse,
trace exponential, etc. via Taylor expansion.

C o = Limo(=X)"

(1 + 5A)"| = diszac |

- Traces of large terms can again be computed exactly.
- After subtracting out these terms, tr(6°A%) dominates
tr((14 6A)~") (we set 6 = 1/ poly(n)). So fine enough

approximation gives triangle detection.

13

EXTENDING TO OTHER SPECTRAL SUMMARIES

Extend reduction to other matrix norms, logdet, trace inverse,
trace exponential, etc. via Taylor expansion.

C o = Limo(=X)"

(1 + 5A)"| = diszac |

- Traces of large terms can again be computed exactly.
- After subtracting out these terms, tr(6°A%) dominates
tr((14 6A)~") (we set 6 = 1/ poly(n)). So fine enough

approximation gives triangle detection.
- Bound for determinant is similar, by expanding out

det(l + 6A) = [T,(1+ 6Ai(A)). .

OPEN QUESTIONS (A SMALL SUBSET)

- Can any natural linear algebraic problem be solved in o(n“)
time for general matrices with high accuracy? (e.g. log(1/e)
dependence on the error).

- Can we compute even a constant factor approximation to
det(A) in o(n“) time?

- Can the our reductions from matrix multiplication (through
triangle detection) be tightened?

14

OPEN QUESTIONS (A SMALL SUBSET)

- Can any natural linear algebraic problem be solved in o(n“)
time for general matrices with high accuracy? (e.g. log(1/e)
dependence on the error).

- Can we compute even a constant factor approximation to
det(A) in o(n“) time?

- Can the our reductions from matrix multiplication (through
triangle detection) be tightened?

- Can we deterministically approximate o4(A) without
computing a full SVD (i.e. in o(n®) time).

- If we could solve any PSD linear system in O(n?) time, would
this imply anything about how fast we can solve matrix
multiplication?

14

OPEN QUESTIONS (A SMALL SUBSET)

- Can any natural linear algebraic problem be solved in o(n“)
time for general matrices with high accuracy? (e.g. log(1/e)
dependence on the error).

- Can we compute even a constant factor approximation to
det(A) in o(n“) time?

- Can the our reductions from matrix multiplication (through
triangle detection) be tightened?

- Can we deterministically approximate o4(A) without
computing a full SVD (i.e. in o(n®) time).

- If we could solve any PSD linear system in O(n?) time, would
this imply anything about how fast we can solve matrix
multiplication?

Thanks! Questions?

14

