
fast low-rank approximation and pca:
beyond sketching
.

Cameron Musco
June 20, 2016

Massachusetts Institute of Technology (currently at IBM Research Almaden)

0

overview

Why study low-rank approximation and PCA?

Both basically
boil down to singular value decomposition – aren’t these
solved problems?

1

overview

Why study low-rank approximation and PCA? Both basically
boil down to singular value decomposition – aren’t these
solved problems?

1

overview

∙ New matrices (not just larger)

∙ New parameter regimes (few top principal components vs.
full SVD)

∙ New accuracy metrics (driven by new applications)

∙ New tools (randomized methods)

2

overview

∙ New matrices (not just larger)

∙ New parameter regimes (few top principal components vs.
full SVD)

∙ New accuracy metrics (driven by new applications)

∙ New tools (randomized methods)

2

overview

∙ New matrices (not just larger)
∙ New parameter regimes (few top principal components vs.
full SVD)

∙ New accuracy metrics (driven by new applications)

∙ New tools (randomized methods)

2

overview

∙ New matrices (not just larger)
∙ New parameter regimes (few top principal components vs.
full SVD)

∙ New accuracy metrics (driven by new applications)

∙ New tools (randomized methods)

2

overview

∙ New matrices (not just larger)
∙ New parameter regimes (few top principal components vs.
full SVD)

∙ New accuracy metrics (driven by new applications)

ϵ >> ϵMACHINE

∙ New tools (randomized methods)

2

overview

∙ New matrices (not just larger)
∙ New parameter regimes (few top principal components vs.
full SVD)

∙ New accuracy metrics (driven by new applications)
∙ New tools (randomized methods)

 ±1 !
!±1 ±1!
!

±1 ±1 !
! ±1!
!±1 ±1!
! ±1!
! ±1 ±1!
!

±1 ±1!
! ±1 !
! ±1!
! ±1 !
!

Π Ã"A"

O(k/ε2)!

2

overview

∙ Lots of room for cross-fertilization between Numerical
Linear Algebra and Machine Learning.

∙ In this talk I will give three examples of this.

3

overview

∙ Lots of room for cross-fertilization between Numerical
Linear Algebra and Machine Learning.

∙ In this talk I will give three examples of this.

3

example 1

Randomized Block Krylov Methods for Stronger and Faster
Approximate Singular Value Decomposition. NIPS 2016.
Cameron Musco and Christopher Musco.

Random Sketching + Krylov Subspace Methods

4

example 1

Randomized Block Krylov Methods for Stronger and Faster
Approximate Singular Value Decomposition. NIPS 2016.
Cameron Musco and Christopher Musco.

Random Sketching + Krylov Subspace Methods

4

singular value decomposition

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd
n

d
 left singular vectors
 singular values
 right singular vectors

∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

Ak = argmin
B:rank(B)=k

∥A− B∥F

∙ Full SVD requires roughly O(nd2) time – much too slow.

5

singular value decomposition

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd
n

d
 left singular vectors
 singular values
 right singular vectors

∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

Ak = argmin
B:rank(B)=k

∥A− B∥F

∙ Full SVD requires roughly O(nd2) time – much too slow.

5

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

Ak = argmin
B:rank(B)=k

∥A− B∥F

∙ Full SVD requires roughly O(nd2) time – much too slow.

5

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

Ak = argmin
B:rank(B)=k

∥A− B∥2

∙ Full SVD requires roughly O(nd2) time – much too slow.

5

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

UkUTkA = argmin
B:rank(B)=k

∥A− B∥2

∙ Full SVD requires roughly O(nd2) time – much too slow.

5

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

UkUTkA = argmin
B:rank(B)=k

∥A− B∥2

∙ Full SVD requires roughly O(nd2) time – much too slow.
5

iterative svd

Traditional Solution: Iterative methods

Compute just k top singular vectors roughly in time:

O(nnz(A)k ·#iterations)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)

6

iterative svd

Traditional Solution: Iterative methods

Compute just k top singular vectors roughly in time:

O(nnz(A)k ·#iterations) << O(nd2)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)

6

iterative svd

Traditional Solution: Iterative methods

Compute just k top singular vectors roughly in time:

O(nnz(A)k ·#iterations) << O(nd2)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)

6

iterative svd

Traditional Solution: Iterative methods

∙ Typical accuracy guarantees of the form

∥ũi − ui∥2 ≤ ϵ.

∙ Runtime for block power method:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Often the dominant factor in runtime bound.

7

iterative svd

Traditional Solution: Iterative methods

∙ Typical accuracy guarantees of the form

∥ũi − ui∥2 ≤ ϵ.

∙ Runtime for block power method:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Often the dominant factor in runtime bound.

7

iterative svd

Traditional Solution: Iterative methods

∙ Typical accuracy guarantees of the form

∥ũi − ui∥2 ≤ ϵ.

∙ Runtime for block power method:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Often the dominant factor in runtime bound.

7

iterative svd

Traditional Solution: Iterative methods

∙ Typical accuracy guarantees of the form

∥ũi − ui∥2 ≤ ϵ.

∙ Runtime for block power method:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Often the dominant factor in runtime bound.

7

iterative svd

Traditional Solution: Iterative methods

∙ Typical accuracy guarantees of the form

∥ũi − ui∥2 ≤ ϵ.

∙ Runtime for block power method:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Often the dominant factor in runtime bound.

7

random sketching

Modern Solution: Sketching Methods

∙ Sparse Subspace Embeddings [Clarkson, Woodruff 2013]:

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)

 ±1 !
!±1 ±1!
!

±1 ±1 !
! ±1!
!±1 ±1!
! ±1!
! ±1 ±1!
!

±1 ±1!
! ±1 !
! ±1!
! ±1 !
!

Π Ã"A"

O(k/ε2)!

8

random sketching

Modern Solution: Sketching Methods

∙ Sparse Subspace Embeddings [Clarkson, Woodruff 2013]:

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)

 ±1 !
!±1 ±1!
!

±1 ±1 !
! ±1!
!±1 ±1!
! ±1!
! ±1 ±1!
!

±1 ±1!
! ±1 !
! ±1!
! ±1 !
!

Π Ã"A"

O(k/ε2)!

8

random sketching

Modern Solution: Sketching Methods

∙ Sparse Subspace Embeddings [Clarkson, Woodruff 2013]:

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)

 ±1 !
!±1 ±1!
!

±1 ±1 !
! ±1!
!±1 ±1!
! ±1!
! ±1 ±1!
!

±1 ±1!
! ±1 !
! ±1!
! ±1 !
!

Π Ã"A"

O(k/ε2)!

8

frobenius norm low-rank approximation

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Very different from classic ∥ui − ũi∥ ≤ ϵ guarantee.
∙ Still sufficient for many tasks (e.g. dimensionality reduction
for clustering)

∙ But can be weak.

9

frobenius norm low-rank approximation

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Very different from classic ∥ui − ũi∥ ≤ ϵ guarantee.

∙ Still sufficient for many tasks (e.g. dimensionality reduction
for clustering)

∙ But can be weak.

9

frobenius norm low-rank approximation

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Very different from classic ∥ui − ũi∥ ≤ ϵ guarantee.
∙ Still sufficient for many tasks (e.g. dimensionality reduction
for clustering)

∙ But can be weak.

9

frobenius norm low-rank approximation

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Very different from classic ∥ui − ũi∥ ≤ ϵ guarantee.
∙ Still sufficient for many tasks (e.g. dimensionality reduction
for clustering)

∙ But can be weak.

9

frobenius norm low-rank approximation

∥A− UkUTkA∥2F = ∥A− Ak∥2F =
∑d

i=k+1 σ
2
i

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i
0 5 10 15 20 25 30 35 40 45 50

2.5

3

3.5

4

4.5

5

5.5

6
20 Newsgroups

s
i
n
g
u
l
a
r

v
a
l
u
e

σ i

index i

Often ϵ∥A− UkU⊤
k A∥2F is bigger than even A’s largest singular

value and so guarantee isn’t meaningful. Literally any Ũk
would work!

10

frobenius norm low-rank approximation

∥A− UkUTkA∥2F = ∥A− Ak∥2F =
∑d

i=k+1 σ
2
i

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i
0 5 10 15 20 25 30 35 40 45 50

2.5

3

3.5

4

4.5

5

5.5

6
20 Newsgroups

s
i
n
g
u
l
a
r

v
a
l
u
e

σ i
index i

Often ϵ∥A− UkU⊤
k A∥2F is bigger than even A’s largest singular

value and so guarantee isn’t meaningful. Literally any Ũk
would work!

10

frobenius norm low-rank approximation

∥A− UkUTkA∥2F = ∥A− Ak∥2F =
∑d

i=k+1 σ
2
i

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i
0 5 10 15 20 25 30 35 40 45 50

2.5

3

3.5

4

4.5

5

5.5

6
20 Newsgroups

s
i
n
g
u
l
a
r

v
a
l
u
e

σ i
index i

Often ϵ∥A− UkU⊤
k A∥2F is bigger than even A’s largest singular

value and so guarantee isn’t meaningful. Literally any Ũk
would work!

10

frobenius norm low-rank approximation

∥A− UkUTkA∥2F = ∥A− Ak∥2F =
∑d

i=k+1 σ
2
i

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i
0 5 10 15 20 25 30 35 40 45 50

2.5

3

3.5

4

4.5

5

5.5

6
20 Newsgroups

s
i
n
g
u
l
a
r

v
a
l
u
e

σ i
index i

Often ϵ∥A− UkU⊤
k A∥2F is bigger than even A’s largest singular

value and so guarantee isn’t meaningful. Literally any Ũk
would work!

10

back to iterative methods

How to avoid tail noise?

Apply sketching method to Aq instead.
Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

11

back to iterative methods

How to avoid tail noise? Apply sketching method to Aq instead.

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

11

back to iterative methods

How to avoid tail noise? Apply sketching method to Aq instead.
Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

11

back to iterative methods

How to avoid tail noise? Apply sketching method to Aq instead.
Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

11

back to iterative methods

How to avoid tail noise? Apply sketching method to Aq instead.
Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

11

randomized block power method

∙ This is exactly what Block Power Method does!

Π → AΠ → A2Π → . . . → AqΠ.

∙ ‘Denoising’ analysis gives new ‘gap-independent’ bounds for
block power method (with randomized start vectors):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)

12

randomized block power method

∙ This is exactly what Block Power Method does!

Π → AΠ → A2Π → . . . → AqΠ.

∙ ‘Denoising’ analysis gives new ‘gap-independent’ bounds for
block power method (with randomized start vectors):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)

12

randomized block power method

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014

13

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

14

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

14

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

14

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

14

polynomial acceleration

Key Idea: Better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

15

polynomial acceleration

Key Idea: Better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

15

polynomial acceleration

Key Idea: Better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

15

polynomial acceleration

Key Idea: Better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

15

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail.

∙ But we can’t compute it explicitly – parameters depend on
A’s (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

K =
[
Π,AΠ,A2Π, . . . ,AqΠ

]︸ ︷︷ ︸
Krylov subspace

Best solution in the span of K is only better than Tq(A)Π.

16

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail.
∙ But we can’t compute it explicitly – parameters depend on
A’s (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

K =
[
Π,AΠ,A2Π, . . . ,AqΠ

]︸ ︷︷ ︸
Krylov subspace

Best solution in the span of K is only better than Tq(A)Π.

16

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail.
∙ But we can’t compute it explicitly – parameters depend on
A’s (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

K =
[
Π,AΠ,A2Π, . . . ,AqΠ

]︸ ︷︷ ︸
Krylov subspace

Best solution in the span of K is only better than Tq(A)Π.

16

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail.
∙ But we can’t compute it explicitly – parameters depend on
A’s (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

K =
[
Π,AΠ,A2Π, . . . ,AqΠ

]︸ ︷︷ ︸
Krylov subspace

Best solution in the span of K is only better than Tq(A)Π.

16

rayleigh-ritz post-processing

What is the best solution?

Traditionally, use Rayleigh-Ritz
method:

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k) .

∙ But classic Lanczos/Krylov analysis requires convergence to
the true singular vectors to show the effectiveness of
Rayleigh-Ritz.

17

rayleigh-ritz post-processing

What is the best solution? Traditionally, use Rayleigh-Ritz
method:

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k) .

∙ But classic Lanczos/Krylov analysis requires convergence to
the true singular vectors to show the effectiveness of
Rayleigh-Ritz.

17

rayleigh-ritz post-processing

What is the best solution? Traditionally, use Rayleigh-Ritz
method:

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k) .

∙ But classic Lanczos/Krylov analysis requires convergence to
the true singular vectors to show the effectiveness of
Rayleigh-Ritz.

17

our solution

∙ Rayleigh-Ritz method gives provably optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relies on converting very small Frobenius
norm error to stronger spectral norm error!

Modern denoising analysis gives new insight into the practical
effectiveness of Rayleigh-Ritz projection.

18

our solution

∙ Rayleigh-Ritz method gives provably optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relies on converting very small Frobenius
norm error to stronger spectral norm error!

Modern denoising analysis gives new insight into the practical
effectiveness of Rayleigh-Ritz projection.

18

our solution

∙ Rayleigh-Ritz method gives provably optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relies on converting very small Frobenius
norm error to stronger spectral norm error!

Modern denoising analysis gives new insight into the practical
effectiveness of Rayleigh-Ritz projection.

18

final comments

Main Takeaway: First gap independent bound for Krylov
methods. ∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2.

O
(
nnz(A)k · logd√

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · logd√

ϵ

)

Open Questions

∙ Full stability analysis – similar to power method analysis in
[Hardt, Price 2014], [Balcan, Du, Wang, Yu 2016]

∙ ‘Master’ potential function for gap independent results.
∙ Analysis for small space/restarted block Krylov methods?
∙ O(nnz(A) + poly(k, ϵ)) time for spectral norm error?

19

final comments

Main Takeaway: First gap independent bound for Krylov
methods. ∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2.

O
(
nnz(A)k · logd√

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · logd√

ϵ

)

Open Questions

∙ Full stability analysis – similar to power method analysis in
[Hardt, Price 2014], [Balcan, Du, Wang, Yu 2016]

∙ ‘Master’ potential function for gap independent results.
∙ Analysis for small space/restarted block Krylov methods?
∙ O(nnz(A) + poly(k, ϵ)) time for spectral norm error?

19

example 2

Faster Eigenvector Computation via Shift-and-Invert
Preconditioning. ICML 2016. Garber, Hazan, Jin, Kakade, Musco,
Netrapalli, and Sidford.

Stochastic Gradient Descent + Inverse Iteration

20

example 2

Faster Eigenvector Computation via Shift-and-Invert
Preconditioning. ICML 2016. Garber, Hazan, Jin, Kakade, Musco,
Netrapalli, and Sidford.

Stochastic Gradient Descent + Inverse Iteration

20

stochastic optimization methods

Key Idea: Accelerate iterative methods by replacing full matrix
multiplications with single row updates.

Per iteration cost
nnz(A) → d.

∙ Implementable in streaming setting using just O(d) space.

21

stochastic optimization methods

Key Idea: Accelerate iterative methods by replacing full matrix
multiplications with single row updates. Per iteration cost
nnz(A) → d.

∙ Implementable in streaming setting using just O(d) space.

21

stochastic optimization methods

Key Idea: Accelerate iterative methods by replacing full matrix
multiplications with single row updates. Per iteration cost
nnz(A) → d.

∙ Implementable in streaming setting using just O(d) space.

21

stochastic optimization for pca

∙ Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun
2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]

∙ Analyze stochastic convex optimization methods applied to
non-convex top singular vector problem.

∙ Alternative idea: reduce singular vector computation to
most well-studied convex problem, linear system solving.

Shift-and-Invert Preconditioning

22

stochastic optimization for pca

∙ Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun
2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]

∙ Analyze stochastic convex optimization methods applied to
non-convex top singular vector problem.

∙ Alternative idea: reduce singular vector computation to
most well-studied convex problem, linear system solving.

Shift-and-Invert Preconditioning

22

stochastic optimization for pca

∙ Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun
2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]

∙ Analyze stochastic convex optimization methods applied to
non-convex top singular vector problem.

∙ Alternative idea: reduce singular vector computation to
most well-studied convex problem, linear system solving.

Shift-and-Invert Preconditioning

22

stochastic optimization for pca

∙ Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun
2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]

∙ Analyze stochastic convex optimization methods applied to
non-convex top singular vector problem.

∙ Alternative idea: reduce singular vector computation to
most well-studied convex problem, linear system solving.

Shift-and-Invert Preconditioning

22

shift-and-invert preconditioning with stochastic methods

∙ Key Idea: Power Method on (σI− A)−1 converges extremely
quickly when σ ≈ σ1(A).

σ1
(
(σI− A)−1

)
>> σ2

(
(σI− A)−1

)
.

∙ We can apply stochastic system solvers black box (almost) to
accelerate iterations and implement them in
streaming/online setting.

∙ Give a significantly more robust analysis of shift-and-invert
preconditioning, which handles approximate solvers.

23

shift-and-invert preconditioning with stochastic methods

∙ Key Idea: Power Method on (σI− A)−1 converges extremely
quickly when σ ≈ σ1(A).

σ1
(
(σI− A)−1

)
>> σ2

(
(σI− A)−1

)
.

∙ We can apply stochastic system solvers black box (almost) to
accelerate iterations and implement them in
streaming/online setting.

∙ Give a significantly more robust analysis of shift-and-invert
preconditioning, which handles approximate solvers.

23

shift-and-invert preconditioning with stochastic methods

∙ Key Idea: Power Method on (σI− A)−1 converges extremely
quickly when σ ≈ σ1(A).

σ1
(
(σI− A)−1

)
>> σ2

(
(σI− A)−1

)
.

∙ We can apply stochastic system solvers black box (almost) to
accelerate iterations and implement them in
streaming/online setting.

∙ Give a significantly more robust analysis of shift-and-invert
preconditioning, which handles approximate solvers.

23

up shot

Õ
(
nnz(A) · 1√gap

)
→ Õ

(
nnz(A) + d2

gap2

)

24

example 3

Principal Component Projection Without Principal Component
Analysis. ICML 2016. Roy Frostig, Cameron Musco, Christopher
Musco, Aaron Sidford.

Regularized Regression + Polynomial Approximation

25

example 3

Principal Component Projection Without Principal Component
Analysis. ICML 2016. Roy Frostig, Cameron Musco, Christopher
Musco, Aaron Sidford.

Regularized Regression + Polynomial Approximation

25

principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26

principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26

principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26

principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26

step function approximation

∙ For symmetric A, UkUTky = s(A)y = Us(Σ)UTy where s(x) = 0
for x ≤ σk and s(x) = 1 for x ≥ σk.

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))

∙ Our Method: Coarsely approximate the step function using
ridge regression.

27

step function approximation

∙ For symmetric A, UkUTky = s(A)y = Us(Σ)UTy where s(x) = 0
for x ≤ σk and s(x) = 1 for x ≥ σk.

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))

∙ Our Method: Coarsely approximate the step function using
ridge regression.

27

step function approximation

∙ For symmetric A, UkUTky = s(A)y = Us(Σ)UTy where s(x) = 0
for x ≤ σk and s(x) = 1 for x ≥ σk.

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))

∙ Our Method: Coarsely approximate the step function using
ridge regression.

27

applying ridge regression

Main Observation: The step function removes small principal
components. Ridge regression dampens them.

(A+ σkI)−1Ay ≈ s(A)y.

x
x+ σk

≈

0 for x << σk

1 for x >> σk

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

28

applying ridge regression

Main Observation: The step function removes small principal
components. Ridge regression dampens them.

(A+ σkI)−1Ay ≈ s(A)y.

x
x+ σk

≈

0 for x << σk

1 for x >> σk

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

28

applying ridge regression

Main Observation: The step function removes small principal
components. Ridge regression dampens them.

(A+ σkI)−1Ay ≈ s(A)y.

x
x+ σk

≈

0 for x << σk

1 for x >> σk

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

28

applying ridge regression

Main Observation: The step function removes small principal
components. Ridge regression dampens them.

(A+ σkI)−1Ay ≈ s(A)y.

x
x+ σk

≈

0 for x << σk

1 for x >> σk

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

28

sharpening the approximation

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

∙ Sharpen this coarse approximation using a low-degree
polynomial approximation to a symmetric step function

∙ Symmetric step/sign function approximation is well-studied
in numerical analysis, but again we give a significantly more
robust analysis.

29

sharpening the approximation

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

∙ Sharpen this coarse approximation using a low-degree
polynomial approximation to a symmetric step function

∙ Symmetric step/sign function approximation is well-studied
in numerical analysis, but again we give a significantly more
robust analysis.

29

upshot

Direct method for principal component projection that doesn’t
require computing the top singular vectors of A.

∙ Faster PCA by not doing PCA at all.

30

upshot

Direct method for principal component projection that doesn’t
require computing the top singular vectors of A.

∙ Faster PCA by not doing PCA at all.

30

Thank you!

(And thanks to my collaborators!)

31

