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example 1

Randomized Block Krylov Methods for Stronger and Faster
Approximate Singular Value Decomposition. NIPS 2016.
Cameron Musco and Christopher Musco.

Random Sketching + Krylov Subspace Methods
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singular value decomposition

A
 =
 U
 Σ
 VT


σ1

σ2


σd-1

σd
n


d
 left singular vectors
  singular values
 right singular vectors


∙ Key primitive for dimensionality reduction, low-rank
approximation, PCA, etc.

Ak = argmin
B:rank(B)=k

∥A− B∥F

∙ Full SVD requires roughly O(nd2) time – much too slow.
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iterative svd

Traditional Solution: Iterative methods

Compute just k top singular vectors roughly in time:

O(nnz(A)k ·#iterations)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)
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iterative svd

Traditional Solution: Iterative methods

∙ Typical accuracy guarantees of the form

∥ũi − ui∥2 ≤ ϵ.

∙ Runtime for block power method:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Often the dominant factor in runtime bound.
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random sketching

Modern Solution: Sketching Methods

∙ Sparse Subspace Embeddings [Clarkson, Woodruff 2013]:

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)
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frobenius norm low-rank approximation

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Very different from classic ∥ui − ũi∥ ≤ ϵ guarantee.
∙ Still sufficient for many tasks (e.g. dimensionality reduction
for clustering)

∙ But can be weak.
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frobenius norm low-rank approximation

∥A− UkUTkA∥2F = ∥A− Ak∥2F =
∑d

i=k+1 σ
2
i
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back to iterative methods

How to avoid tail noise?

Apply sketching method to Aq instead.
Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.
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randomized block power method

∙ This is exactly what Block Power Method does!

Π → AΠ → A2Π → . . . → AqΠ.

∙ ‘Denoising’ analysis gives new ‘gap-independent’ bounds for
block power method (with randomized start vectors):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)
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randomized block power method

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014
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randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.
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polynomial acceleration

Key Idea: Better polynomials than Aq for “denoising” A.
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ϵ).
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krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail.

∙ But we can’t compute it explicitly – parameters depend on
A’s (unknown) singular values.

Traditional Solution: Produce a Krylov Subspace:

K =
[
Π,AΠ,A2Π, . . . ,AqΠ

]︸ ︷︷ ︸
Krylov subspace

Best solution in the span of K is only better than Tq(A)Π.
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rayleigh-ritz post-processing

What is the best solution?

Traditionally, use Rayleigh-Ritz
method:

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k) .

∙ But classic Lanczos/Krylov analysis requires convergence to
the true singular vectors to show the effectiveness of
Rayleigh-Ritz.

17



rayleigh-ritz post-processing

What is the best solution? Traditionally, use Rayleigh-Ritz
method:

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k) .

∙ But classic Lanczos/Krylov analysis requires convergence to
the true singular vectors to show the effectiveness of
Rayleigh-Ritz.

17



rayleigh-ritz post-processing

What is the best solution? Traditionally, use Rayleigh-Ritz
method:

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k) .

∙ But classic Lanczos/Krylov analysis requires convergence to
the true singular vectors to show the effectiveness of
Rayleigh-Ritz.

17



our solution

∙ Rayleigh-Ritz method gives provably optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relies on converting very small Frobenius
norm error to stronger spectral norm error!

Modern denoising analysis gives new insight into the practical
effectiveness of Rayleigh-Ritz projection.
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final comments

Main Takeaway: First gap independent bound for Krylov
methods. ∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2.

O
(
nnz(A)k · logd√

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · logd√

ϵ

)

Open Questions

∙ Full stability analysis – similar to power method analysis in
[Hardt, Price 2014], [Balcan, Du, Wang, Yu 2016]

∙ ‘Master’ potential function for gap independent results.
∙ Analysis for small space/restarted block Krylov methods?
∙ O(nnz(A) + poly(k, ϵ)) time for spectral norm error?
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example 2

Faster Eigenvector Computation via Shift-and-Invert
Preconditioning. ICML 2016. Garber, Hazan, Jin, Kakade, Musco,
Netrapalli, and Sidford.

Stochastic Gradient Descent + Inverse Iteration
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stochastic optimization methods

Key Idea: Accelerate iterative methods by replacing full matrix
multiplications with single row updates.

Per iteration cost
nnz(A) → d.

∙ Implementable in streaming setting using just O(d) space.
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stochastic optimization for pca

∙ Lots of recent success: [Shamir 2015, 2016], [Sa, Ré, Olukotun
2015], [Jain, Jin, Kakade, Netrapalli, Sidford 2016]

∙ Analyze stochastic convex optimization methods applied to
non-convex top singular vector problem.

∙ Alternative idea: reduce singular vector computation to
most well-studied convex problem, linear system solving.

Shift-and-Invert Preconditioning
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shift-and-invert preconditioning with stochastic methods

∙ Key Idea: Power Method on (σI− A)−1 converges extremely
quickly when σ ≈ σ1(A).

σ1
(
(σI− A)−1

)
>> σ2

(
(σI− A)−1

)
.

∙ We can apply stochastic system solvers black box (almost) to
accelerate iterations and implement them in
streaming/online setting.

∙ Give a significantly more robust analysis of shift-and-invert
preconditioning, which handles approximate solvers.
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up shot

Õ
(
nnz(A) · 1√gap

)
→ Õ

(
nnz(A) + d2

gap2

)
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example 3

Principal Component Projection Without Principal Component
Analysis. ICML 2016. Roy Frostig, Cameron Musco, Christopher
Musco, Aaron Sidford.

Regularized Regression + Polynomial Approximation
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principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26



principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26



principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26



principal component projection

Instead of returning Uk we often just want to compute UkUTky
for some input vector.

∙ Useful in many applications like principal component
regression (PCR).

∙ It’s very often more efficient to apply a matrix function once
than compute it explicitly.

∙ Aqx, A−1x, exp(A) . . . many more.

26



step function approximation

∙ For symmetric A, UkUTky = s(A)y = Us(Σ)UTy where s(x) = 0
for x ≤ σk and s(x) = 1 for x ≥ σk.
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σi(A)
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1

σi(s(A))

∙ Our Method: Coarsely approximate the step function using
ridge regression.

27



step function approximation

∙ For symmetric A, UkUTky = s(A)y = Us(Σ)UTy where s(x) = 0
for x ≤ σk and s(x) = 1 for x ≥ σk.

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))

∙ Our Method: Coarsely approximate the step function using
ridge regression.

27



step function approximation

∙ For symmetric A, UkUTky = s(A)y = Us(Σ)UTy where s(x) = 0
for x ≤ σk and s(x) = 1 for x ≥ σk.

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))

∙ Our Method: Coarsely approximate the step function using
ridge regression.

27



applying ridge regression

Main Observation: The step function removes small principal
components. Ridge regression dampens them.

(A+ σkI)−1Ay ≈ s(A)y.

x
x+ σk

≈

0 for x << σk

1 for x >> σk
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sharpening the approximation

0 100 200 300 400 500 600 700 800 900 1000
σi(A)

0

0.2

0.4

0.6

0.8

1

σi(s(A))
σi((A+ σkI)

−1
A)

∙ Sharpen this coarse approximation using a low-degree
polynomial approximation to a symmetric step function

∙ Symmetric step/sign function approximation is well-studied
in numerical analysis, but again we give a significantly more
robust analysis.
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upshot

Direct method for principal component projection that doesn’t
require computing the top singular vectors of A.

∙ Faster PCA by not doing PCA at all.
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Thank you!

(And thanks to my collaborators!)
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