Hutch++: Optimal Stochastic Trace Estimation

Cameron Musco
University of Massachusetts Amherst

With: Raphael Meyer (NYU), Chris Musco (NYU), David Woodruff (CMU)



IMPLICIT TRACE ESTIMATION

- Given access to an n x n matrix A through matrix-vector
multiplication.
- Goal is to approximate tr(A) = 7, Aji.

A A X, A

Main question: How many matrix-vector multiplication
“queries” Axq,...,Axy are required to approximate tr(A)?



IMPLICIT TRACE ESTIMATION

Algorithms in this model are called matrix-free methods.

- Useful when A is not given explicitly, but we have an
efficient algorithm for multiplying A by a vector.



IMPLICIT TRACE ESTIMATION

Algorithms in this model are called matrix-free methods.

- Useful when A is not given explicitly, but we have an
efficient algorithm for multiplying A by a vector.

Example 1: Hessian/Jacobian matrix-vector products.

- For vector x, Vf(y)x and V?f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation.

- Do not need to fully form Vf(y) or Vf(y).



IMPLICIT TRACE ESTIMATION

Example 2: When A is a function of another (explicit) matrix B:

A=1(B)

- Eg, A = B3 requires n? operations to form explicitly.

- Computing a matrix-vector product Ax = B3x requires just
3n? operations - as B(B(BXx)).



IMPLICIT TRACE ESTIMATION

For more complex matrix functions, we can often compute
Ax = f(B)x efficiently using iterative methods:

- Conjugate gradient, MINRES, or any linear system solver:
A=B"".
- Lanczos method, polynomial/rational approximation:
A = exp(B), A = VB, A = log(B), etc.

These methods run in n? - C time, where C depends on
properties of B. Typically C < nson?.C< nd.



EXAMPLE APPLICATIONS

- Triangle counting in graphs. tr(B®) = 6 - (# triangles),
where B is the adjacency matrix.

- Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = logdet(B).

- Estrada index, a measure of protein folding degree and
more generally, network connectivity. tr(exp(B)).

- Information about the matrix eigenvalue spectrum, since
tr(A) = Y7, \j, where ) is A’s ith eigenvalue.

- E.g, counting the number of eigenvalues in an interval,
spectral density estimation, matrix norms

- See e.g, [Ubaru, and Saad 2017].



NAIVE EXACT ALGORITHM

Naive matrix-free trace estimation:

- Setxj=ejfori=1,...,n.
* Return tr(A) = Y7, x/AX;.

=[]

Returns exact solution, but requires n matrix-vector multiplies.
We want < n multiplies. Will achieve this by allowing for
approximation.



HUTCHINSON'S STOCHASTIC TRACE ESTIMATOR

Hutchinson 1991, Girard 1987:

- Draw Xq,...,Xm € R" i.i.d. with random {+1, —1} entries.

- Return T= L 3~7 xTAx; as an approximation to tr(A).

+1 -1
+1 +1
A -1 A +1 ... A
-1 -1
+1 -1
+1 +1
- Can also let xq,...,Xm € R™ have i.i.d. Gaussian entries,

however the distinction isn't important for this talk.



HUTCHINSON'S STOCHASTIC TRACE ESTIMATOR

Claim (Hanson, Wright ‘71, Avron, Toledo “11, Roosta, Ascher
‘15, Cortinovis, Kressner ‘20)

Let T be the trace estimate returned by Hutchinson’s method.
If m= 27 then with ‘high probability,

[T —tr(a)| < clalle

If A is symmetric positive semidefinite (PSD) then

1Al =




RESEARCH QUESTION

Result: ~ 1/¢? matrix-vector multiplies suffice to return a trace
estimate for a PSD matrix satisfying:

(1T—e)tr(A) < T< (1£e)tr(A).

Research Question: Can this be improved?
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RESEARCH QUESTION

Broader line of work: Tight upper bounds and lower bounds
on complexity of basic linear algebra problems in
“matrix-vector query” model.

- Top eigenvector: Simchowitz, Alaoui, Recht, 2018.

- Least squares regression: Braverman, Hazan, Simchowitz,
Woodworth, 2020.

- Rank, symmetry test, and more: Sun, Woodruff, Yang, and
Zhang, 2019.
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MATRIX-VECTOR QUERY MODEL

The matrix-vector query model generalizes some of the most
common models of computation in linear algebra.

Krylov subpace model:

- Compute Ax, A%x, ..., A"x for a single vector x.
- Lower bounds typically via approximation theoretic
arguments (understanding the limits of polynomials).

Matrix sketching model:

- Compute AXq,...,AXy, where X4, ..., Xy are chosen
non-adaptively (usually randomly).

- Lower bounds typically via one-round communication
complexity. See e.g., [Woodruff “14].

12



MATRIX-VECTOR QUERY MODEL

Merits of this model:

- Captures many algorithms that are used in practice.

- Allowing arbitrary adaptivity makes the model quite a bit
richer. Proving lower bounds seems harder but doable.

- Seems to be a “sweet spot” for understanding problem
complexity in linear algebra.

Limitation:

- Does not capture methods like stochastic gradient or
coordinate descent, certain sparse methods and
preconditioning approaches, etc.

13



OUR RESULTS

Upper bound: ~ 1/e matrix-vector multiplies suffice to return,
with high prob., a trace estimate for a PSD matrix satisfying:
(1—e)tr(A) < T < (1+€) tr(A).

- Quadratic improvement over Hutchinson'’s ~ 1/€?.

- Algorithm achieving bound is nearly as simple.

- Variants have been studied e.g. in [Gambhir, Stathopoulos,

Orginos ‘“17] and [Lin “17].
- Performs much better experimentally.

Lower bound: > 1/e matrix-vector multiplies are necessary to
obtain such an approximation.

- Two different approaches: reduction from multi-round
communication complexity, and from hypothesis testing

for negatively spiked covariance matrices.
14



SPECTRUM DEPENDENT BOUND

Observation: Hutchinson’s method performs much better
when A has a ﬂat spectrum
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We have that: |T— tr(A)| < €||Al|r < etr(A), but when the
spectrum is flat ||A||r < tr(A).
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In the extreme case when A\ = A\, = ... = \,, we have:
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STEEP SPECTRUM

On the other hand, when A’s spectrum is decaying, we get a
good approximation by simply computing its top eigenvalues.
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where Q € R"™™ is an orthonormal span for A’s top k
eigenvectors. .



STEEP SPECTRUM

- Q itself can be computed with ~ k matrix-vector
multiplication queries using block power method or a
Krylov method.

- Then tr(AQQ") = tr(Q' (AQ)) can be computed with k
additional matrix-vector multiplies.

- Fairly common approach, employed e.g. by [Tsourakakis
‘08], [Lin Lin “17], [Gambhir, Stathopoulos, Orginos ‘17],
[Saibaba, Alexanderian, Ipsen, 18], and [Zhu, Li 20].

Our Observation: Every spectrum is either “flat enough” or
“decaying enough” to prove a better bound than = 1/€?.




HUTCH++

1. Find approximate span for top k eigenvectors Q.
2. Observe that tr(A) = tr(AQQ") + tr(A(I — QQ"))
3

. Approximate P = tr(A(I — QQ")) using Hutchinson’s with ¢
random query vectors.
4. Return T = tr(AQQ') + P.
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(compute directly) (approximate with Hutchinson'’s)

The only error is from the estimator for tr(A(l — QQ")), which
will have much lower variance if |A(I — QQ")||r < ||Allf 18



SKETCHING BASED LOW-RANK APPROXIMATION

Standard result in Randomized Numerical Linear Algebra:

Lemma (Sarlos 2006)

If S € R"™M js chosen with i.i.d. &1 entries for m ~ k, then
Q = orth(AS) satisfies with high probability,

IA( = QQT)[lF < 2[|A — Acllr,

Here A, is the optimal k-rank approximation to A, obtained by
projecting onto A’'s top k eigenvectors.

Q can be viewed as the result of running a single step of block
power method on A.
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FINAL BOUND

Basic Fact: For any PSD matrix A:

1
A—Apllf < —-tr(A
A~ Axll < 7= -tr(A)

So if |[A(1 — QQ")||; < 2||A — Ag||, then with high probability,

‘tr(A(I—QQT) p QQ")||, <

( f A -
Setting £ = R =~ 1/e gives error etr(A) and thus:

‘tr( T‘ ‘tr (1—QQ’")) —

20



FINAL ALGORITHM

Theorem (Final Result)
If ¢ =k~ 1 and A is PSD then with high probability, Hutch++

uses 2k + £ queries and returns T satisfying:

(1—e)tr(A) < T < (1+ €)tr(A).

1 [function T = hutchplusplus(A, m)

2 - S = 2xrandi(2,size(A,1),m/3);

BIE G = 2xrandi(2,size(A,1),m/3);

4 - [Q,~] = gr(AxS,0);

5 - G =G - Qx(Q'*G);

6 - T = trace(Q'xAxQ) + 1/size(G,2)*trace(G'*AxG);

7- end
Hutch++is , meaning that the choice of x; depends on
Axq,...,Ax;_4. We also give a non-adaptive method,

NA-Hutch++ that achieves the same bound, up to constants. 21



EXPERIMENTAL RESULTS
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Results on synthetic matrix A with spectrum \; = i—¢ for
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APPLICATIONS
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A = exp(B) for graph adjacency matrix B from linguistics
application. tr(A) is the well known Estrada Index or “natural
connectivity”, originally used in analyzing protein folding.
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APPLICATIONS

10°
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Relative error

10*
matrix-vector multiplication queries m

A = log(B + Al) for kernel matrix B from Gaussian process
regression. tr(A) = logdet(B), which is used in log likelihood
calculations for hyperparameter optimization.

Takeaway: For matrix functions that flatten B's spectrum,
Hutchinson's estimator performs far better than the ~ 1/¢?
bound predicts. Hutch++ doesn’t perform much worse. 2%



APPLICATIONS

Hutch++ works well empirically for many non-PSD matrices.

Let B be the adjacency matrix of an undirected graph G,
tr(B%)/6 is equal to the number of triangles in G.
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A = B? for arXiv.org citation network and Wikipedia voting
network. -



REAL APPLICATIONS

For non-PSD A, the projection step, A(I — QQ") approximately
removes A’s largest magnitude eigenvalues, which can still
reduce variance substantially.
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Spectrum of A = B2 for arXiv.org citation network.
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LOWER BOUND

Theorem
Any algorithm that accesses PSD matrix A via queries AXq, ..., AXnm,
where x4, ..., Xy are possibly adaptively chosen vectors with integer

entries in {—2°,...,2P}, needs

1 .
> 0
mz — b+ 102(1/2)] queries

to approximate tr(A) to multiplicative error (1 =+ e).

- Reduction to 2-party multi-round communication problem.
“Hard” input distribution will involve A with integer entries,
which is why we need the bit complexity bound b.

- Also have a tight lower bound in the of
computation.

27



GAP HAMMING PROBLEM

Problem (Gap Hamming)

Let Alice and Bob be communicating parties who hold vectors
s,t € {—1,1}", respectively. Must decide with few bits of
communication if:

(s,t) >/n or (s,t) < —v/n

Theorem (Chakrabarti, Regev 2012)
The randomized communication complexity for solving
Problem 1 with probability at least 2/3 is 2 n bits.

28



REDUCTION TO TRACE ESTIMATION

vn
L I_L_\ N
-1 -1+1/+1 -1 -11-11-1
-1 -1/+1}+1 +1 +1(-1+1
-1 -11-11-1 +1 +1/+1|+1
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S t

letZ=S+TandA=27Z
tr(A) = ||Z||F = [|s + t[|5 = 2n — 2(s, 1).

So if Alice and Bob estimate tr(A) up to error (14 1/4/n), then
they will solve the Gap Hamming problem. 29



REDUCTION TO TRACE ESTIMATION

Claim: Alice and Bob can simulate any m query algorithm for
estimating the trace of A = (S + T)7(S + T) with
~ m+/n(logn + b) bits of communication.

- Alice decides on x4, sends to Bob with v/n - log(2b) bits.

- Bob computes Tx;, sends to Alice with v/n - log(y/n2°) bits.
- Alice computes (S + T)x;.

- Repeat to multiply (S +T)x; by (S+T)'

- Alice decides on x,, process repeats m times.

So, by the = n lower bound for Gap Hamming, we have

NG 1
> — pr—
U iy ey e AU A
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FUTURE WORK

- Lower bounds for e.g, tr(A%), tr(exp(A)), tr(A~") showing
that Hutch++ combined with iterative matrix methods is
optimal in the matrix-vector query model.

- Conditional lower bounds for simple problems like
triangle counting in a more general computational model.

- Faster algorithms for spectral density estimation and
other problems by combining trace estimation with
randomized approximate matrix vector multiplication
(using e.g., entrywise sampling).

- Practical use cases and implementations of Hutch++.

- Recent applications include to quantum typicality
methods [Weinberg ‘21] and Hessian trace estimation in
optimization [Agrawal, Ali, Boyd 21]
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THANKS! QUESTIONS?



