
Hutch++: Optimal Stochastic Trace Estimation

Cameron Musco
University of Massachusetts Amherst

With: Raphael Meyer (NYU), Chris Musco (NYU), David Woodruff (CMU)

1

implicit trace estimation

• Given access to an n× n matrix A through matrix-vector
multiplication.

• Goal is to approximate tr(A) =
∑n

i=1 Aii.

Main question: How many matrix-vector multiplication
“queries” Ax1, . . . ,Axm are required to approximate tr(A)?

2

implicit trace estimation

Algorithms in this model are called matrix-free methods.

• Useful when A is not given explicitly, but we have an
efficient algorithm for multiplying A by a vector.

Example 1: Hessian/Jacobian matrix-vector products.

• For vector x, ∇f(y)x and ∇2f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation.

• Do not need to fully form ∇f(y) or ∇2f(y).

3

implicit trace estimation

Algorithms in this model are called matrix-free methods.

• Useful when A is not given explicitly, but we have an
efficient algorithm for multiplying A by a vector.

Example 1: Hessian/Jacobian matrix-vector products.

• For vector x, ∇f(y)x and ∇2f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation.

• Do not need to fully form ∇f(y) or ∇2f(y).

3

implicit trace estimation

Example 2: When A is a function of another (explicit) matrix B:

A = f(B)

• E.g., A = B3 requires n3 operations to form explicitly.
• Computing a matrix-vector product Ax = B3x requires just
3n2 operations – as B(B(Bx)).

4

implicit trace estimation

For more complex matrix functions, we can often compute
Ax = f(B)x efficiently using iterative methods:

• Conjugate gradient, MINRES, or any linear system solver:

A = B−1.

• Lanczos method, polynomial/rational approximation:

A = exp(B), A =
√
B, A = log(B), etc.

These methods run in n2 · C time, where C depends on
properties of B. Typically C≪ n so n2 · C≪ n3.

5

example applications

• Triangle counting in graphs. tr(B3) = 6 · (# triangles),
where B is the adjacency matrix.

• Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = logdet(B).

• Estrada index, a measure of protein folding degree and
more generally, network connectivity. tr(exp(B)).

• Information about the matrix eigenvalue spectrum, since
tr(A) =

∑n
i=1 λi, where λi is A’s ith eigenvalue.

• E.g., counting the number of eigenvalues in an interval,
spectral density estimation, matrix norms

• See e.g., [Ubaru, and Saad 2017].

6

naive exact algorithm

Naive matrix-free trace estimation:

• Set xi = ei for i = 1, . . . ,n.
• Return tr(A) =

∑n
i=1 xTi Axi.

Returns exact solution, but requires n matrix-vector multiplies.
We want≪ n multiplies. Will achieve this by allowing for
approximation.

7

hutchinson’s stochastic trace estimator

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as an approximation to tr(A).

• Can also let x1, . . . , xm ∈ Rn have i.i.d. Gaussian entries,
however the distinction isn’t important for this talk.

8

hutchinson’s stochastic trace estimator

Claim (Hanson, Wright ‘71, Avron, Toledo ‘11, Roosta, Ascher
‘15, Cortinovis, Kressner ‘20)
Let T̃ be the trace estimate returned by Hutchinson’s method.
If m ≈ 1

ϵ2
, then with ‘high probability’,∣∣∣T̃− tr(A)

∣∣∣ ≤ ϵ∥A∥F

If A is symmetric positive semidefinite (PSD) then

∥A∥F =

√√√√ n∑
i=1

λ2i ≤
n∑
i=1

λi = tr(A).

So for PSD A: (1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).
9

research question

Result: ≈ 1/ϵ2 matrix-vector multiplies suffice to return a trace
estimate for a PSD matrix satisfying:

(1− ϵ) tr(A) ≤ T̃ ≤ (1± ϵ) tr(A).

Research Question: Can this be improved?

10

research question

Broader line of work: Tight upper bounds and lower bounds
on complexity of basic linear algebra problems in
“matrix-vector query” model.

• Top eigenvector: Simchowitz, Alaoui, Recht, 2018.
• Least squares regression: Braverman, Hazan, Simchowitz,
Woodworth, 2020.

• Rank, symmetry test, and more: Sun, Woodruff, Yang, and
Zhang, 2019.

11

matrix-vector query model

The matrix-vector query model generalizes some of the most
common models of computation in linear algebra.

Krylov subpace model:

• Compute Ax,A2x, . . . ,Amx for a single vector x.
• Lower bounds typically via approximation theoretic
arguments (understanding the limits of polynomials).

Matrix sketching model:

• Compute Ax1, . . . ,Axm where x1, . . . , xm are chosen
non-adaptively (usually randomly).

• Lower bounds typically via one-round communication
complexity. See e.g., [Woodruff ‘14].

12

matrix-vector query model

Merits of this model:

• Captures many algorithms that are used in practice.
• Allowing arbitrary adaptivity makes the model quite a bit
richer. Proving lower bounds seems harder but doable.

• Seems to be a “sweet spot” for understanding problem
complexity in linear algebra.

Limitation:

• Does not capture methods like stochastic gradient or
coordinate descent, certain sparse methods and
preconditioning approaches, etc.

13

our results

Upper bound: ≈ 1/ϵ matrix-vector multiplies suffice to return,
with high prob., a trace estimate for a PSD matrix satisfying:

(1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).
• Quadratic improvement over Hutchinson’s ≈ 1/ϵ2.
• Algorithm achieving bound is nearly as simple.
• Variants have been studied e.g. in [Gambhir, Stathopoulos,
Orginos ‘17] and [Lin ‘17].

• Performs much better experimentally.

Lower bound: ≳ 1/ϵ matrix-vector multiplies are necessary to
obtain such an approximation.

• Two different approaches: reduction from multi-round
communication complexity, and from hypothesis testing
for negatively spiked covariance matrices.

14

spectrum dependent bound

Observation: Hutchinson’s method performs much better
when A has a flat spectrum.

We have that: |T̃− tr(A)| ≤ ϵ∥A∥F ≤ ϵ tr(A), but when the
spectrum is flat ∥A∥F ≪ tr(A).

In the extreme case when λ1 = λ2 = . . . = λn, we have:

∥A∥F =

√√√√ n∑
i=1

λ2i =
1√
n

n∑
i=1

λi =
1√
n
tr(A).

15

steep spectrum

On the other hand, when A’s spectrum is decaying, we get a
good approximation by simply computing its top eigenvalues.

tr(A) =
n∑
i=1

λi ≈
k∑
i=1

λk = tr(AQQT)

where Q ∈ Rn×m is an orthonormal span for A’s top k
eigenvectors. .

16

steep spectrum

• Q itself can be computed with ≈ k matrix-vector
multiplication queries using block power method or a
Krylov method.

• Then tr(AQQT) = tr(QT (AQ)) can be computed with k
additional matrix-vector multiplies.

• Fairly common approach, employed e.g. by [Tsourakakis
‘08], [Lin Lin ‘17], [Gambhir, Stathopoulos, Orginos ‘17],
[Saibaba, Alexanderian, Ipsen, ‘18], and [Zhu, Li ‘20].

Our Observation: Every spectrum is either “flat enough” or
“decaying enough” to prove a better bound than ≈ 1/ϵ2.

17

hutch++

1. Find approximate span for top k eigenvectors Q.
2. Observe that tr(A) = tr(AQQT) + tr(A(I− QQT))
3. Approximate P̃ = tr(A(I− QQT)) using Hutchinson’s with ℓ

random query vectors.
4. Return T̃ = tr(AQQT) + P̃.

The only error is from the estimator for tr(A(I− QQT)), which
will have much lower variance if ∥A(I− QQT)∥F ≪ ∥A∥F.

18

sketching based low-rank approximation

Standard result in Randomized Numerical Linear Algebra:

Lemma (Sarlos 2006)
If S ∈ Rn×m is chosen with i.i.d. ±1 entries for m ≈ k, then
Q = orth(AS) satisfies with high probability,

∥A(I− QQT)∥F ≤ 2∥A− Ak∥F,

Here Ak is the optimal k-rank approximation to A, obtained by
projecting onto A’s top k eigenvectors.

Q can be viewed as the result of running a single step of block
power method on A.

19

final bound

Basic Fact: For any PSD matrix A:

∥A− Ak∥F ≤
1√
k
· tr(A)

So if
∥∥A(I− QQT)

∥∥
F ≤ 2 ∥A− Ak∥F, then with high probability,∣∣∣tr(A(I− QQT)− P̃

∣∣∣ ≲ 1√
ℓ

∥∥A(I− QQT)
∥∥
F ≤

1√
ℓ
· 2√

k
tr(A).

Setting ℓ = k ≈ 1/ϵ gives error ϵ tr(A) and thus:∣∣∣tr(A)− T̃
∣∣∣ = ∣∣∣tr(A(I− QQT))− P̃

∣∣∣ ≤ ϵ tr(A).

20

final algorithm

Theorem (Final Result)
If ℓ = k ≈ 1

ϵ and A is PSD then with high probability, Hutch++
uses 2k+ ℓ queries and returns T̃ satisfying:

(1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).

Hutch++ is adaptive, meaning that the choice of xi depends on
Ax1, . . . ,Axi−1. We also give a non-adaptive method,
NA-Hutch++ that achieves the same bound, up to constants. 21

experimental results

Results on synthetic matrix A with spectrum λi = i−c for
different values of c.

22

applications

A = exp(B) for graph adjacency matrix B from linguistics
application. tr(A) is the well known Estrada Index or “natural
connectivity”, originally used in analyzing protein folding.

23

applications

A = log(B+ λI) for kernel matrix B from Gaussian process
regression. tr(A) = log det(B), which is used in log likelihood

calculations for hyperparameter optimization.

Takeaway: For matrix functions that flatten B’s spectrum,
Hutchinson’s estimator performs far better than the ≈ 1/ϵ2

bound predicts. Hutch++ doesn’t perform much worse. 24

applications

Hutch++ works well empirically for many non-PSD matrices.

Let B be the adjacency matrix of an undirected graph G,
tr(B3)/6 is equal to the number of triangles in G.

A = B3 for arXiv.org citation network and Wikipedia voting
network. 25

real applications

For non-PSD A, the projection step, A(I− QQT) approximately
removes A’s largest magnitude eigenvalues, which can still
reduce variance substantially.

Spectrum of A = B3 for arXiv.org citation network.

26

lower bound

Theorem
Any algorithm that accesses PSD matrix A via queries Ax1, . . . ,Axm,
where x1, . . . , xm are possibly adaptively chosen vectors with integer
entries in {−2b, ..., 2b}, needs

m ≳ 1
ϵ · [b+ log(1/ϵ)] queries

to approximate tr(A) to multiplicative error (1± ϵ).

• Reduction to 2-party multi-round communication problem.
“Hard” input distribution will involve A with integer entries,
which is why we need the bit complexity bound b.

• Also have a tight lower bound in the real-RAM model of
computation.

27

gap hamming problem

Problem (Gap Hamming)

Let Alice and Bob be communicating parties who hold vectors
s, t ∈ {−1, 1}n, respectively. Must decide with few bits of
communication if:

⟨s, t⟩ ≥
√
n or ⟨s, t⟩ ≤ −

√
n

Theorem (Chakrabarti, Regev 2012)
The randomized communication complexity for solving
Problem 1 with probability at least 2/3 is ≳ n bits.

28

reduction to trace estimation

Let Z = S+ T and A = ZTZ.
tr(A) = ∥Z∥2F = ∥s+ t∥22 = 2n− 2⟨s, t⟩.

So if Alice and Bob estimate tr(A) up to error (1± 1/
√
n), then

they will solve the Gap Hamming problem. 29

reduction to trace estimation

Claim: Alice and Bob can simulate any m query algorithm for
estimating the trace of A = (S+ T)T(S+ T) with
≈ m

√
n(logn+ b) bits of communication.

• Alice decides on x1, sends to Bob with
√
n · log(2b) bits.

• Bob computes Tx1, sends to Alice with
√
n · log(

√
n2b) bits.

• Alice computes (S+ T)x1.
• Repeat to multiply (S+ T)x1 by (S+ T)T

• Alice decides on x2, process repeats m times.

So, by the ≳ n lower bound for Gap Hamming, we have

m ≳
√
n

logn+ b =
1

ϵ · (log 1/ϵ+ b) for ϵ = 1/
√
n.

30

future work

• Lower bounds for e.g., tr(A3), tr(exp(A)), tr(A−1) showing
that Hutch++ combined with iterative matrix methods is
optimal in the matrix-vector query model.

• Conditional lower bounds for simple problems like
triangle counting in a more general computational model.

• Faster algorithms for spectral density estimation and
other problems by combining trace estimation with
randomized approximate matrix vector multiplication
(using e.g., entrywise sampling).

• Practical use cases and implementations of Hutch++.
• Recent applications include to quantum typicality
methods [Weinberg ‘21] and Hessian trace estimation in
optimization [Agrawal, Ali, Boyd ‘21]

31

thanks! questions?

31

