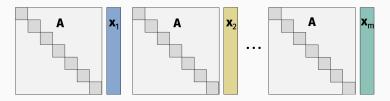
Hutch++: Optimal Stochastic Trace Estimation

Cameron Musco University of Massachusetts Amherst

With: Raphael Meyer (NYU), Chris Musco (NYU), David Woodruff (CMU)

IMPLICIT TRACE ESTIMATION

- Given access to an *n* × *n* matrix **A** through matrix-vector multiplication.
- Goal is to approximate $tr(A) = \sum_{i=1}^{n} A_{ii}$.



Main question: How many matrix-vector multiplication "queries" Ax₁,..., Ax_m are required to approximate tr(A)?

Algorithms in this model are called matrix-free methods.

• Useful when **A** is not given explicitly, but we have an efficient algorithm for multiplying **A** by a vector.

Algorithms in this model are called matrix-free methods.

• Useful when **A** is not given explicitly, but we have an efficient algorithm for multiplying **A** by a vector.

Example 1: Hessian/Jacobian matrix-vector products.

- For vector \mathbf{x} , $\nabla \mathbf{f}(\mathbf{y})\mathbf{x}$ and $\nabla^2 f(\mathbf{y})\mathbf{x}$ can often be computed efficiently using finite difference methods or explicit differentiation.
- Do not need to fully form $\nabla f(\mathbf{y})$ or $\nabla^2 f(\mathbf{y})$.

Example 2: When A is a function of another (explicit) matrix B:

A = f(B)

- E.g., $\mathbf{A} = \mathbf{B}^3$ requires n^3 operations to form explicitly.
- Computing a matrix-vector product $Ax = B^3x$ requires just $3n^2$ operations as B(B(Bx)).

For more complex matrix functions, we can often compute Ax = f(B)x efficiently using iterative methods:

• Conjugate gradient, MINRES, or any linear system solver:

$$\mathbf{A} = \mathbf{B}^{-1}.$$

• Lanczos method, polynomial/rational approximation:

$$A=\text{exp}(B),\,A=\sqrt{B},\,A=\text{log}(B),\,\,\text{etc.}$$

These methods run in $n^2 \cdot C$ time, where C depends on properties of **B**. Typically $C \ll n$ so $n^2 \cdot C \ll n^3$.

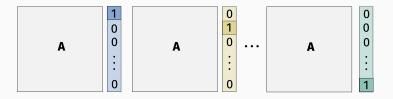
EXAMPLE APPLICATIONS

- Triangle counting in graphs. $tr(B^3) = 6 \cdot (\# triangles)$, where **B** is the adjacency matrix.
- Log-likelihood computation in Bayesian optimization, experimental design. tr(log(B)) = logdet(B).
- Estrada index, a measure of protein folding degree and more generally, network connectivity. tr(exp(B)).
- Information about the matrix eigenvalue spectrum, since $tr(A) = \sum_{i=1}^{n} \lambda_i$, where λ_i is A's *i*th eigenvalue.
- E.g., counting the number of eigenvalues in an interval, spectral density estimation, matrix norms
- See e.g., [Ubaru, and Saad 2017].

NAIVE EXACT ALGORITHM

Naive matrix-free trace estimation:

- Set $\mathbf{x}_i = \mathbf{e}_i$ for $i = 1, \ldots, n$.
- Return tr(A) = $\sum_{i=1}^{n} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{A} \mathbf{x}_{i}$.



Returns exact solution, but requires n matrix-vector multiplies. We want $\ll n$ multiplies. Will achieve this by allowing for approximation. Hutchinson 1991, Girard 1987:

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\tilde{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i^T \mathbf{A} \mathbf{x}_i$ as an approximation to tr(A).

• Can also let $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ have i.i.d. Gaussian entries, however the distinction isn't important for this talk.

HUTCHINSON'S STOCHASTIC TRACE ESTIMATOR

Claim (Hanson, Wright '71, Avron, Toledo '11, Roosta, Ascher '15, Cortinovis, Kressner '20)

Let \tilde{T} be the trace estimate returned by Hutchinson's method. If $m \approx \frac{1}{\epsilon^2}$, then with 'high probability',

$$\left| \widetilde{T} - \mathsf{tr}(\mathsf{A}) \right| \leq \epsilon \|\mathsf{A}\|_{F}$$

If A is symmetric positive semidefinite (PSD) then

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \lambda_i^2} \le \sum_{i=1}^n \lambda_i = tr(\mathbf{A}).$$

So for PSD A: $(1 - \epsilon) \operatorname{tr}(A) \leq \tilde{\tau} \leq (1 + \epsilon) \operatorname{tr}(A).$

Result: $\approx 1/\epsilon^2$ matrix-vector multiplies suffice to return a trace estimate for a PSD matrix satisfying:

$$(1-\epsilon)\operatorname{tr}(\mathsf{A}) \leq \tilde{\tau} \leq (1\pm\epsilon)\operatorname{tr}(\mathsf{A}).$$

Research Question: Can this be improved?

Broader line of work: Tight upper bounds and lower bounds on complexity of basic linear algebra problems in "matrix-vector query" model.

- Top eigenvector: Simchowitz, Alaoui, Recht, 2018.
- Least squares regression: Braverman, Hazan, Simchowitz, Woodworth, 2020.
- Rank, symmetry test, and more: Sun, Woodruff, Yang, and Zhang, 2019.

The matrix-vector query model generalizes some of the most common models of computation in linear algebra.

Krylov subpace model:

- Compute Ax, A^2x, \dots, A^mx for a single vector x.
- Lower bounds typically via approximation theoretic arguments (understanding the limits of polynomials).

Matrix sketching model:

- Compute Ax_1, \ldots, Ax_m where x_1, \ldots, x_m are chosen <u>non-adaptively</u> (usually randomly).
- Lower bounds typically via one-round communication complexity. See e.g., [Woodruff '14].

Merits of this model:

- Captures many algorithms that are used in practice.
- Allowing arbitrary adaptivity makes the model quite a bit richer. Proving lower bounds seems harder but doable.
- Seems to be a "sweet spot" for understanding problem complexity in linear algebra.

Limitation:

• Does not capture methods like stochastic gradient or coordinate descent, certain sparse methods and preconditioning approaches, etc.

OUR RESULTS

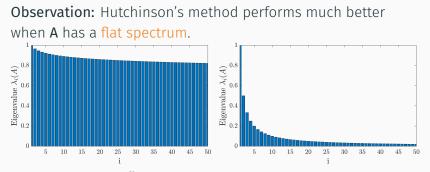
Upper bound: $\approx 1/\epsilon$ matrix-vector multiplies suffice to return, with high prob., a trace estimate for a PSD matrix satisfying: $(1 - \epsilon) \operatorname{tr}(\mathbf{A}) \leq \tilde{\tau} \leq (1 + \epsilon) \operatorname{tr}(\mathbf{A}).$

- Quadratic improvement over Hutchinson's $\approx 1/\epsilon^2$.
- Algorithm achieving bound is nearly as simple.
- Variants have been studied e.g. in [Gambhir, Stathopoulos, Orginos '17] and [Lin '17].
- Performs much better experimentally.

Lower bound: $\gtrsim 1/\epsilon$ matrix-vector multiplies are necessary to obtain such an approximation.

• Two different approaches: reduction from multi-round communication complexity, and from hypothesis testing for negatively spiked covariance matrices.

SPECTRUM DEPENDENT BOUND



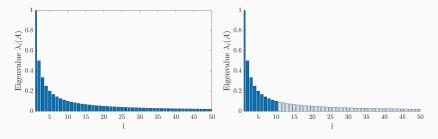
We have that: $|\tilde{T} - tr(A)| \le \epsilon ||A||_F \le \epsilon tr(A)$, but when the spectrum is flat $||A||_F \ll tr(A)$.

In the extreme case when $\lambda_1 = \lambda_2 = \ldots = \lambda_n$, we have:

$$\|\mathbf{A}\|_{F} = \sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \lambda_{i} = \frac{1}{\sqrt{n}} \operatorname{tr}(\mathbf{A}).$$

STEEP SPECTRUM

On the other hand, when **A**'s spectrum is decaying, we get a good approximation by simply computing its top eigenvalues.



$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i} \approx \sum_{i=1}^{k} \lambda_{k} = \operatorname{tr}(\mathbf{A}\mathbf{Q}\mathbf{Q}^{\mathsf{T}})$$

where $\mathbf{Q} \in \mathbb{R}^{n \times m}$ is an orthonormal span for **A**'s top *k* eigenvectors.

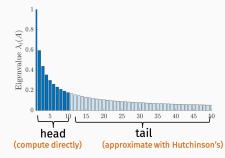
STEEP SPECTRUM

- Q itself can be computed with ≈ k matrix-vector multiplication queries using block power method or a Krylov method.
- Then $tr(AQQ^T) = tr(Q^T(AQ))$ can be computed with k additional matrix-vector multiplies.
- Fairly common approach, employed e.g. by [Tsourakakis '08], [Lin Lin '17], [Gambhir, Stathopoulos, Orginos '17], [Saibaba, Alexanderian, Ipsen, '18], and [Zhu, Li '20].

Our Observation: Every spectrum is either "flat enough" or "decaying enough" to prove a better bound than $\approx 1/\epsilon^2$.

HUTCH++

- 1. Find approximate span for top k eigenvectors Q.
- 2. Observe that $tr(A) = tr(AQQ^{T}) + tr(A(I QQ^{T}))$
- 3. Approximate $\tilde{P} = tr(A(I QQ^T))$ using Hutchinson's with ℓ random query vectors.
- 4. Return $\tilde{T} = tr(AQQ^T) + \tilde{P}$.



The only error is from the estimator for tr($A(I - QQ^T)$), which will have much lower variance if $||A(I - QQ^T)||_F \ll ||A||_F$.

Standard result in Randomized Numerical Linear Algebra:

Lemma (Sarlos 2006)

If $S \in \mathbb{R}^{n \times m}$ is chosen with i.i.d. ± 1 entries for $m \approx k$, then Q = orth(AS) satisfies with high probability,

$$\|\mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^T)\|_F \leq 2\|\mathbf{A} - \mathbf{A}_k\|_F,$$

Here A_k is the optimal k-rank approximation to A, obtained by projecting onto A's top k eigenvectors.

Q can be viewed as the result of running a single step of block power method on A.

Basic Fact: For any PSD matrix A:

$$\|\mathbf{A}-\mathbf{A}_k\|_F \leq \frac{1}{\sqrt{k}} \cdot \operatorname{tr}(\mathbf{A})$$

So if $\|\mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^T)\|_F \le 2 \|\mathbf{A} - \mathbf{A}_R\|_F$, then with high probability,

$$\left| \operatorname{tr}(\mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}}) - \tilde{P} \right| \lesssim \frac{1}{\sqrt{\ell}} \left\| \mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}}) \right\|_{F} \leq \frac{1}{\sqrt{\ell}} \cdot \frac{2}{\sqrt{k}} \operatorname{tr}(\mathbf{A}).$$

Setting $\ell = k \approx 1/\epsilon$ gives error ϵ tr(A) and thus:

$$\left|\operatorname{tr}(\mathsf{A}) - \tilde{\mathsf{T}}\right| = \left|\operatorname{tr}(\mathsf{A}(\mathsf{I} - \mathsf{Q}\mathsf{Q}^{\mathsf{T}})) - \tilde{\mathsf{P}}\right| \leq \epsilon \operatorname{tr}(\mathsf{A}).$$

FINAL ALGORITHM

Theorem (Final Result)

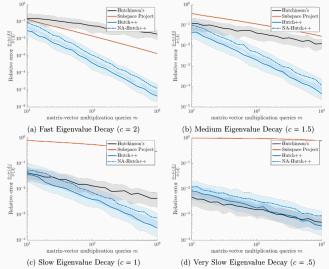
If $\ell = k \approx \frac{1}{\epsilon}$ and **A** is PSD then with high probability, Hutch++ uses $2k + \ell$ queries and returns \tilde{T} satisfying:

$$(1-\epsilon)\operatorname{tr}(\mathsf{A}) \leq \tilde{T} \leq (1+\epsilon)\operatorname{tr}(\mathsf{A}).$$

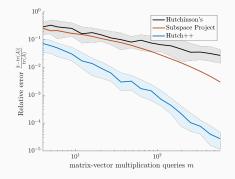
Hutch++ is adaptive, meaning that the choice of \mathbf{x}_i depends on $A\mathbf{x}_1, \ldots, A\mathbf{x}_{i-1}$. We also give a non-adaptive method, NA-Hutch++ that achieves the same bound, up to constants.

EXPERIMENTAL RESULTS

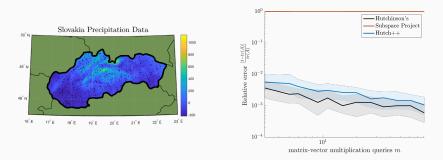
Results on synthetic matrix **A** with spectrum $\lambda_i = i^{-c}$ for different values of *c*.



APPLICATIONS



A = exp(B) for graph adjacency matrix B from linguistics
application. tr(A) is the well known Estrada Index or "natural connectivity", originally used in analyzing protein folding.

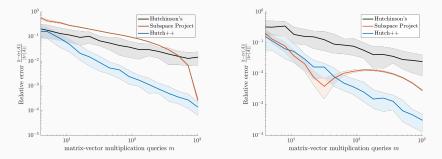


 $A = \log(B + \lambda I)$ for kernel matrix B from Gaussian process regression. tr(A) = log det(B), which is used in log likelihood calculations for hyperparameter optimization.

Takeaway: For matrix functions that <u>flatten</u> B's spectrum, Hutchinson's estimator performs far better than the $\approx 1/\epsilon^2$ bound predicts. Hutch++ doesn't perform much worse.

Hutch++ works well empirically for many non-PSD matrices.

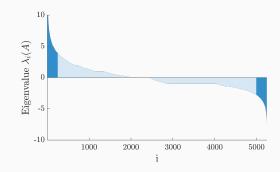
Let **B** be the adjacency matrix of an undirected graph *G*, tr(**B**³)/6 is equal to the number of triangles in *G*.



 $\mathbf{A} = \mathbf{B}^3$ for arXiv.org citation network and Wikipedia voting network.

REAL APPLICATIONS

For non-PSD **A**, the projection step, $A(I - QQ^T)$ approximately removes **A**'s <u>largest magnitude</u> eigenvalues, which can still reduce variance substantially.



Spectrum of $A = B^3$ for arXiv.org citation network.

LOWER BOUND

Theorem

Any algorithm that accesses PSD matrix **A** via queries Ax_1, \ldots, Ax_m , where x_1, \ldots, x_m are possibly adaptively chosen vectors with integer entries in $\{-2^b, ..., 2^b\}$, needs

$$m \gtrsim rac{1}{\epsilon \cdot [b + \log(1/\epsilon)]}$$
 queries

to approximate tr(A) to multiplicative error $(1 \pm \epsilon)$.

- Reduction to 2-party multi-round communication problem. "Hard" input distribution will involve A with integer entries, which is why we need the bit complexity bound b.
- Also have a tight lower bound in the real-RAM model of computation.

Problem (Gap Hamming)

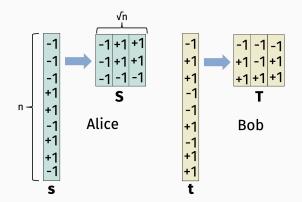
Let Alice and Bob be communicating parties who hold vectors $s, t \in \{-1, 1\}^n$, respectively. Must decide with few bits of communication if:

$$\langle \mathbf{s}, \mathbf{t} \rangle \geq \sqrt{n}$$
 or $\langle \mathbf{s}, \mathbf{t} \rangle \leq -\sqrt{n}$

Theorem (Chakrabarti, Regev 2012)

The randomized communication complexity for solving Problem 1 with probability at least 2/3 is \gtrsim n bits.

REDUCTION TO TRACE ESTIMATION



Let Z = S + T and $A = Z^T Z$.

$$tr(A) = ||Z||_F^2 = ||s + t||_2^2 = 2n - 2\langle s, t \rangle.$$

So if Alice and Bob estimate tr(A) up to error $(1 \pm 1/\sqrt{n})$, then they will solve the Gap Hamming problem.

Claim: Alice and Bob can simulate any *m* query algorithm for estimating the trace of $\mathbf{A} = (\mathbf{S} + \mathbf{T})^T (\mathbf{S} + \mathbf{T})$ with $\approx m\sqrt{n}(\log n + b)$ bits of communication.

- Alice decides on \mathbf{x}_1 , sends to Bob with $\sqrt{n} \cdot \log(2^b)$ bits.
- Bob computes Tx_1 , sends to Alice with $\sqrt{n} \cdot \log(\sqrt{n}2^b)$ bits.
- \cdot Alice computes $(S + T)x_1$.
- Repeat to multiply $(S+T)x_1$ by $(S+T)^{\text{T}}$
- Alice decides on **x**₂, process repeats *m* times.

So, by the $\gtrsim n$ lower bound for Gap Hamming, we have

$$m \gtrsim \frac{\sqrt{n}}{\log n + b} = \frac{1}{\epsilon \cdot (\log 1/\epsilon + b)}$$
 for $\epsilon = 1/\sqrt{n}$.

FUTURE WORK

- Lower bounds for e.g., tr(A³), tr(exp(A)), tr(A⁻¹) showing that Hutch++ combined with iterative matrix methods is optimal in the matrix-vector query model.
- Conditional lower bounds for simple problems like triangle counting in a more general computational model.
- Faster algorithms for spectral density estimation and other problems by combining trace estimation with randomized approximate matrix vector multiplication (using e.g., entrywise sampling).
- Practical use cases and implementations of Hutch++.
- Recent applications include to quantum typicality methods [Weinberg '21] and Hessian trace estimation in optimization [Agrawal, Ali, Boyd '21]

THANKS! QUESTIONS?