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RESEARCH QUESTION

What non-trivial linear algebraic problems can be solved
deterministically in less than nω time on general n× n input

matrices?1

• For structured matrices (Toeplitz, low-rank, graph structured,
etc.) many fast deterministic methods are known.

• Randomized methods give fast approximation methods for
general input matrices for many problems (e.g., singular value
and eigenvalue estimation, low-rank approximation, etc.).

• But what about deterministic methods for unstructured input
matrices? Very little is known.

1Here ω ≈ 2.37 is the matrix multiplication exponent.
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EXAMPLE 1: COMPUTING THE SPECTRAL NORM

Problem: Given symmetric A ∈ Rn×n compute an approximation to
the spectral norm ∥A∥2 = maxx∈Rn

∥Ax∥2
∥x∥2

.

• Can compute ∥A∥2 up to small relative error in O(n2 · log n) time
by applying the power method (or Krylov methods) for O(log n)
iterations with a random start vector g ∈ Rn.

• Randomness is crucial here!

• If we pick g deterministically, in the worst-case it could be
orthogonal to A’s top singular vector(s), and we cannot ensure
any approximation guarantee.
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EXAMPLE 1: COMPUTING THE SPECTRAL NORM

Basic Open Question: Can any non-trivial approximation to ∥A∥2 be
computed deterministically in o(nω) time?

• What would a fast deterministic algorithm for this problem even
look like?

• We know e.g., that, unlike power method or Krylov methods, it
cannot be based solely on computing matrix-vector products
with A.
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EXAMPLE 2: MATRIX PRODUCT TESTING

Problem: Given A,B,C ∈ Rn×n check if AB = C.

• Can answer with high probability in O(n2) time via Freivald’s
algorithm. Pick random g ∈ Rn and check if ABg = Cg.

• Repeat multiple trials to boost confidence.

• No deterministic approach is known beyond directly computing
AB in nω time and comparing the output with C.

• As far as I am aware, no strong complexity theoretic
implications of derandomizing Freivald’s algorithm are known,
and thus doing so remains plausible.
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BROADER CONTEXT

Understanding the role of randomness in fast computation is central
in theoretical computer science.

• In many settings (e.g., sublinear time algorithms,
communication efficient algorithms), provable separations
between randomized and deterministic algorithms exist.

• For running time complexity, no known separations exist. In
fact, most complexity theorists believe that polynomial time
deterministic algorithms are just as powerful as polynomial
time randomized algorithms (i.e., that BQP = P).

• Given the prevalence of randomized methods in numerical
linear algebra today, it seems worth thinking about where/why
they are needed, and if they can be replaced with clever enough
deterministic approaches.
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OUR CONTRIBUTIONS
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MATRIX SPARSIFICATION

• Matrix sparsification is a key tool in randomized numerical
linear algebra [Achlioptas McSherry ‘07, Drineas Zouzias ‘11].

• For any A ∈ Rn×n, with ∥A∥∞ ≤ 1, if we form AS by randomly
sampling s = O(n log n

ϵ2 ) entries of A and scaling the sampled
entries by n2/s, then with high probability, ∥A− AS∥2 ≤ ϵ · n.

• Proven via standard matrix concentration bounds.

• AS can be used in place of A to efficiently approximate singular
values, compute a low-rank approximation, etc.
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UNIVERSAL SPARSIFIERS FOR PSD MATRICES

Main Result: The above matrix sparsification result can be fully
derandomized when A is positive semidefinite (PSD).

• There exists a fixed set S ⊂ [n]× [n] with |S| = O( n
ϵ2 ) such that

simultaneously for all PSD A ∈ Rn×n with ∥A∥∞ ≤ 1,
∥A− AS∥2 ≤ ϵ · n.

• We call S a universal sparsifier.

• The above result gives an O( n
ϵ2 ) time deterministic algorithm for

constructing AS satisfying ∥A− AS∥2 ≤ ϵn given any PSD
A ∈ Rn×n. The algorithm simply reads the entries of A
corresponding to the elements of S.

• These elements are fixed (and independent of A) and thus the
algorithm is deterministic.
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APPLICATION TO DETERMINISTIC SINGULAR VALUE APPROXIMATION

Corollary: There exists a O(n
2 log n
ϵ3 ) time deterministic algorithm that,

given PSD A with ∥A∥∞ ≤ 1, approximates ∥A∥2 to ±ϵn error .

• We can deterministically compute AS with just O( n
ϵ2 ) entries

such that ∥A− AS∥ ≤ ϵn.

• To approximate ∥A∥2 up to error ±ϵn, it suffices to approximate
∥AS∥2 up to error ±ϵn.

• Apply power method on AS with q iterations and a full
orthogonal basis of starting vectors in just nq mat-vecs
= O(n

2q
ϵ2 ) time.

• At least one of the starting vectors will converge in q = O( log nϵ )

iterations. So we obtain a O(n
2 log n
ϵ3 ) time deterministic algorithm

for approximating ∥AS∥2, and in turn ∥A∥2, to ±ϵn error.

• We actually show that we can approximate all singular values of
A to ±ϵn error deterministically in O(n

2 log n
ϵ6 ) time.
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UNIVERSAL SPARSIFIERS FOR NON-PSD MATRICES

For non-PSD matrices, we show the existence of a universal sparsifier
with |S| = O( n

ϵ4 ) entries achieving ∥A− AS∥2 ≤ ϵ ·max(n, ∥A∥1), where
∥A∥1 is the trace norm (the sum of A’s singular values).

• Observe that this is weaker in both ϵ dependence and error
guarantee than our result for PSD matrices, and than known
randomized results for non-PSD matrices.

• We show that this loss is neccesary for deterministic algorithms
– both the 1/ϵ4 dependence and max(n, ∥A∥1) scaling in the
error cannot be improved.

Wait....how is this even possible...
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HARD CASE

• Consider A which is 0 on all entries sampled by S and 1
everywhere else.

• ∥A− AS∥2 = ∥A∥2 ≈ n. Very bad approximation.

• Since we have claimed error bounded by ϵmax(n, ∥A∥1), this
means that we must have n ≤ ϵmax(n, ∥A∥1), so ∥A∥1 ≥ n/ϵ.

• One can check that this will indeed be the case. If the 0’s in A
are sufficiently well-spread, A will have one singular value near
n, but must also many small singular values and thus large
nuclear norm.
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PROOF OF THE PSD CASE
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DETERMINISTIC SAMPLING VIA EXPANDER GRAPHS

• Intuitively, our universal sparsifier S should be ‘well-spread’. It
should ‘look random’.

• Concretely, in order for AS to approximate any PSD A, S should at
least place roughly s

n2 · RC samples in any R× C submatrix.

• We will let S be the edge set of a Ramanujan expander graph.
I.e., a d-regular graph whose second largest adjacency matrix
eigenvalue is bounded by 2

√
d− 1.

• These graphs have the fastest random walk mixing times
amongst all d-regular graphs and are important tools in spectral
graph theory and pseudorandomness/derandomization.

• Efficient algebraic constructions have been known since the 80s
[Lubotzky, Phillips, Sarnak ‘88 and Margulis ‘88].
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EXPANDER GRAPHS AS APPROXIMATIONS TO THE COMPLETE GRAPH

Expander graphs can be thought of as optimal sparse
approximations to the complete graph.

• Algebraically, letting G be the adjacency matrix of a Ramanujan
graph scaled by n

d , and 1 be the all ones matrix,

∥1− G∥2 ≤
n
d · 2

√
d− 1.

• Setting d = O(1/ϵ2), we have ∥1− G∥2 ≤ ϵn.
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EXPANDER GRAPHS AS UNIVERSAL SPARSIFIERS

For any PSD A ∈ Rn×n, we can write our deterministically sparsified
matrix as AS = A ◦ G.

• Thus, we can write A− AS = A ◦ (1− G).
• We want to show that ∥A− AS∥2 ≤ ϵn. I.e., for any unit x,
xT(A− AS)x ≤ ϵn.

• xT(A− AS)x = xT(A ◦ (1− G))x

=
∑n

i=1 λixT(vivTi ◦ (1− G))x.

• We observe that, letting Di ∈ Rn×n be diagonal with entries
corresponding to vi, we can rewrite the above as:

xT(A− AS)x =
n∑
i=1

λixTDi(1− G)Dix

≤ ϵn ·
n∑
i=1

λixTD2
i x.
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EXPANDER GRAPHS AS UNIVERSAL SPARSIFIERS

So Far: xT(A− AS)x ≤ ϵn ·
∑n

i=1 λixTD2
i x.

It suffices to bound
∑n

i=1 λixTD2
i x ≤ 1.

n∑
i=1

λixTD2
i x =

n∑
i=1

λi

n∑
j=1

x(j)2vi(j)2

=
n∑
j=1

x(j)2
n∑
i=1

λivi(j)2

=
n∑
j=1

x(j)2Ai,i

≤
n∑
j=1

x(j)2 = 1.
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NOTE ON THE PROOF

• Our original proof (appearing in the current arXiv version) was
much more complex and explicitly used the fact that G has
roughly d

n · RC edges in any R× C submatrix.

• We also gave a non-constructive proof with tight ϵ
dependencies based on showing that a random S
simultaneously sparsifies all PSD A with high probability.

• We only recently came upon this much simpler proof, which
gives an asymptotically tight bound of O(n/ϵ2) samples and
applies to any Ramanujan graph sampling scheme.
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NEXT STEPS
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NEXT STEPS

• Broadly, there seem to be many interesting questions related to
the role of randomness in fast linear algebraic computation.

• Can we achieve a relative error approximation to ∥A∥2 in < nω

time deterministically?

• Our universal sparsifiers are both deterministic and data
oblivious. I.e., S does not depend on the input matrix A. Are
there fast deterministic algorithms that inspect the entries of A
to do better?

• Notably, for PSD A with ∥A∥∞ ≤ 1, there are randomized
methods based on Nyström approximation that output Ã with
∥A−Ã∥2 ≤ ϵn using just O(n log n

ϵ ) queries to A [Musco, Musco ‘17].

• Can we match this complexity with a deterministic algorithm?

• We have shown that we can in the very special case when A is
binary, using a weaker (but still strong enough) family of
expander graphs. 17



NEXT STEPS

• Can we prove that derandomizing Freivald’s algorithm is unlikely
under some reasonable complexity theoretic assumption?

• We can show reductions – e.g. that derandomizing input
sparsity time low-rank approximation or regression would imply
derandomizing Freivald’s and vice-versa.
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THANKS! QUESTIONS?
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