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masked low-rank approximation

argmin
{L:rank(L)=k}

∥A− L∥2F =
∑
i,j

(A− L)2(i,j).

Often want to perform low-rank approximation when some
entries in A are unknown or don’t follow low-rank structure.

A special case of weighted low-rank approximation. Depending
on W, captures many problems.
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masked lra examples

Low-Rank + Diagonal Approximation: Many matrices can be
well approximated by a low-rank component plus a diagonal
matrix.

Factor analysis (PCA with different noise variance in each
dimension), kernel matrix approximation, source separation, ...

• Given L, optimal D is just diag(A)− diag(L).
• L⋆ = argmin{L:rank(L)=k} ∥W ◦ (A− L)∥2F where W is zero on the
diagonal and ones everywhere else.
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masked lra examples

Low-Rank + Sparse Approximation/Robust PCA:

Significant attention since proposed by Candès et al. in 2009.
Approximation of matrices with a few corrupted entries or
non-low-rank components. E.g., background separation.

• L⋆ = argmin{L:rank(L)=k} ∥W ◦ (A− L)∥2F where W is zero at the
corrupted locations. Optimal S is just (1−W) ◦ (A− L⋆).

• Assume locations of corrupted entries are known.
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masked lra examples

Many other problems:

Low-rank plus banded.

Note: Masked low-rank approximation is closely related to
matrix completion, but goal is different: approximate the
unmasked entries, rather than recover the masked ones.
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masked lra examples

Many other problems: Low-rank plus block diagonal.

Note: Masked low-rank approximation is closely related to
matrix completion, but goal is different: approximate the
unmasked entries, rather than recover the masked ones.
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masked lra examples

Many other problems: Low-rank plus block sparse.

Note: Masked low-rank approximation is closely related to
matrix completion, but goal is different: approximate the
unmasked entries, rather than recover the masked ones.
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masked lra examples

Many other problems: Monotone missing data.

Note: Masked low-rank approximation is closely related to
matrix completion, but goal is different: approximate the
unmasked entries, rather than recover the masked ones.
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what’s known

• NP-hard in general. For some special cases (e.g., low-rank
plus diagonal) hardness is unresolved.

• Some can be solved provably via convex relaxation and
alternating minimization, under various incoherence
assumptions or random mask assumptions.

• See e.g., [Candès et al. 2009], [Chandrasekaran et al. 2011],
[Netrapalli et al. 2014].

• Provable approximation algorithms for the more general
weighted low-rank approximation problem are given in
[Razenshteyn, Song, and Woodruff 2016] .

• Run in Ω(2poly(rk/ϵ) · poly(n)) time, where r is some measure
of W’s complexity (e.g., rank, number of distinct columns).
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our contributions

We give polynomial time bicriteria approximation algorithms.
Return L′ with rank(L′) = k′ satisfying:

∥W ◦ (A− L′)∥2F ≤ min
{L:rank(L)=k}

∥W ◦ (A− L)∥2F + ϵ∥A∥2F.

• k′ ≥ k depends on the randomized communication
complexity of W ∈ {0, 1}n×n, when viewed as the two-player
communication matrix of a Boolean function f(a,b) with
a,b ∈ {0, 1}log n.

• k′ = k · poly(logn/ϵ) for all of the mentioned problems.
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the algorithm

Our guarantees are achieved by a simple heuristic:

Set L′ to the best rank-k′ approximation of A ◦W.
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proof idea

Proof Sketch: Show there is a rank-k′ approximation L̂ that:

1. Is exactly 0 wherever the mask W is zero.
2. Has ∥W ◦ (A− L̂)∥2F ≤ min{L:rank(L)=k} ∥W ◦ (A− L)∥2F + ϵ∥A∥2F.

• L̂ achieves 0 error in approximating the zeros in A ◦W.
• The best rank-k′ approximation to A ◦W (i.e., our output L′)
can only achieve worse error on these entries.

• So L′ must achieve better error on the remaining entries. I.e.,

∥W ◦ (A− L′)∥2F ≤ ∥W ◦ (A− L̂)∥2F ≤ OPT+ ϵ∥A∥2F.
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low rank approximation from communication complexity

How do we construct a good low-rank approximation L̂ that is
0 wherever W is 0?

Use a communication protocol for W!

• Deterministic communication complexity D(f) implies that W
can be partitioned into 2D(f) monochromatic combinatorial
rectangles.

Tight if log-rank conjecture holds.
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low rank approximation from communication complexity

Deterministic communication complexity D(f) =⇒ W can be
partitioned into 2D(f) monochromatic rectangles.

Let Li be the optimal rank-k approximation on the ith 1-rectangle and
0 elsewhere. Let L̂ =

∑
Li.

• L̂ is exactly 0 wherever the mask W is zero.
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randomized communication complexity

Upshot: L′ = argmin{L:rank(L)=k} ∥A ◦W− L∥2F achieves
∥W ◦ (A− L′)∥2F ≤ OPT with rank k′ = k · 2D(f).

• But, e.g., when W has zeros the diagonal, D(f) = logn. Comm.
complexity of (IN)EQUALITY on logn bit inputs.

• k′ = k · 2log n = k · n, which is vacuous.

• Will get much better bounds with randomized
communication complexity.
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randomized communication complexity

INEQUALITY admits a randomized communication protocol
using log2(1/ϵ) + 5 bits that outputs the incorrect answer on
any positive instance (i.e., a ̸= b) with probability ≤ ϵ.

• Randomly hash the inputs to O(log2(1/ϵ)) bits then compare.
Returns a false negative when two different inputs have the
same hash.
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randomized communication complexity

This randomized protocol partitions W into 2log2(1/ϵ)+5 = 32
ϵ

monochromatic rectangles.

• In expectation, the ‘uncovered entries’ of A ◦W have
Frobenius norm ϵ∥A∥2F.

• Pick any protocol achieving this expected error. Let L̂ be sum
of optimal rank-k approximations on each 1-rectangle.

• ∥W ◦ (A− L̂)∥2F ≤ min{L:rank(L)=k} ∥W ◦ (A− L)∥2F + ϵ∥A∥2F.
• L has rank k′ = k · 2log2(1/ϵ)+5 = 32k

ϵ .
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main theorem

Main Theorem: Given mask W with ϵ 1-sided error ran-
domized communication Rϵ(f), let k′ = k · 2Rϵ(f).
L′ = argmin{L:rank(L)=k′} ∥A ◦W− L∥2F achieves:

∥W ◦ (A− L′)∥2F ≤ min
{L:rank(L)=k}

∥W ◦ (A− L)∥2F + ϵ∥A∥2F.

• k′ = O(k/ϵ) for low-rank plus (block) diagonal (INEQUALITY)

• k′ = O(kt/ϵ) for low-rank plus (block) t-sparse (variant of
INEQUALITY)

• Also give bounds that hold for 2-sided error protocols.

• k′ = k · poly(logn/ϵ) for low-rank plus banded and monotone
missing data (variants of GREATER-THAN).
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• k′ = k · poly(logn/ϵ) for low-rank plus banded and monotone
missing data (variants of GREATER-THAN).
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open questions

Question 1: Is the connection between masked low-rank
approximation and communication complexity tight?

Original goal: Show that no algorithm can give additive error
ϵ∥A∥2F for ϵ = Θ(1) with polynomial runtime and bicriteria rank
k′ = 2o(Rϵ(f)).

Why it fails:

• For some instances, simple exact algorithms are known. E.g.,
k = 1 and W = I.

• Some matrices can be approximately partitioned into few
monochromatic rectangles, even when their communication
complexity is high. Recent refutation of the log approximate
rank conjecture by Chattopadhyay, Mande, and Sherif.
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open questions

Modified Question 1: Is the connection between masked
low-rank approximation and communication complexity tight
for at least a broad set of problems?

• We show that when L is required to have a binary or
non-negative factorization, no polynomial time algorithm
can achieve rank k′ = 2o(D(f)) for a weight matrix based on a
graph coloring problem.

• Holds in a regime (k = 3) where binary/non-negative
low-rank approximation is polynomial time. Thus hardness
comes from adding the mask.

• Assumes that we cannot nγ-color a 3-colorable graph in
polynomial time.
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open questions

Question 2: Are there other interesting applications between
communication complexity and linear algebraic problems?

We show:

• Multiparty communication complexity =⇒ bicriteria
masked tensor low-rank approximation.

• Nondeterministic communication complexity =⇒ bicriteria
masked Boolean low-rank approximation.

• 1-way communication complexity =⇒ masked row-subset
selection and tentatively some regression problems with
missing/corrupted data.
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Thanks! Questions?
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