
spiking neural networks: an algorithmic
perspective

Nancy Lynch, Cameron Musco and Merav Parter

Massachusetts Institute of Technology, EECS.

Weizmann Institute of Science

BDA 2017.

0



Based on work in:

• Computational Tradeoffs in Biological Neural Networks:

Self-Stabilizing Winner-Take-All Networks. ITCS 2017.

• Neuro-RAM Unit with Applications to Similarity Testing and

Compression in Spiking Neural Networks. DISC 2017.

Full versions are available at: cameronmusco.com

1



Based on work in:

• Computational Tradeoffs in Biological Neural Networks:

Self-Stabilizing Winner-Take-All Networks. ITCS 2017.

• Neuro-RAM Unit with Applications to Similarity Testing and

Compression in Spiking Neural Networks. DISC 2017.

Full versions are available at: cameronmusco.com

1



neural circuits from an algorithmic view

High Level Goal: Understand how computation is performed in

biological neural networks at an algorithmic level.

• Biological Features: Noisy threshold gates, spiking neurons,

restricted connectivity structures/edge weights

• Tasks: Select single neuron out of group with strongest output

signal, test similarity of input patterns, etc.

We focus on fixed networks and do not (yet) consider how they are

learned. Our tasks are basic computational primitives rather than

more complex pattern recognition goals.

2



neural circuits from an algorithmic view

High Level Goal: Understand how computation is performed in

biological neural networks at an algorithmic level.

• Biological Features: Noisy threshold gates, spiking neurons,

restricted connectivity structures/edge weights

• Tasks: Select single neuron out of group with strongest output

signal, test similarity of input patterns, etc.

We focus on fixed networks and do not (yet) consider how they are

learned. Our tasks are basic computational primitives rather than

more complex pattern recognition goals.

2



neural circuits from an algorithmic view

High Level Goal: Understand how computation is performed in

biological neural networks at an algorithmic level.

• Biological Features: Noisy threshold gates, spiking neurons,

restricted connectivity structures/edge weights

• Tasks: Select single neuron out of group with strongest output

signal, test similarity of input patterns, etc.

We focus on fixed networks and do not (yet) consider how they are

learned. Our tasks are basic computational primitives rather than

more complex pattern recognition goals.

2



neural circuits from an algorithmic view

High Level Goal: Understand how computation is performed in

biological neural networks at an algorithmic level.

• Biological Features: Noisy threshold gates, spiking neurons,

restricted connectivity structures/edge weights

• Tasks: Select single neuron out of group with strongest output

signal, test similarity of input patterns, etc.

We focus on fixed networks and do not (yet) consider how they are

learned. Our tasks are basic computational primitives rather than

more complex pattern recognition goals.

2



guiding questions

• How do biological features affect computability, runtime

tradeoffs, and algorithm design?

• Is there interesting theory beyond what is known for other well

studied models of computation. E.g. deterministic threshold

circuits (perceptrons), Boltzmann machines, distributed

networks w/ message passing, etc.?

• Can this theory say anything interesting about computation in
real neural networks?

• E.g. role of noise and randomness, roll of inhibition and excitation,

recurring design patterns.

• Significantly influenced by the work of Wolfgang Maass on the

theory of spiking neural networks.

3



guiding questions

• How do biological features affect computability, runtime

tradeoffs, and algorithm design?

• Is there interesting theory beyond what is known for other well

studied models of computation. E.g. deterministic threshold

circuits (perceptrons), Boltzmann machines, distributed

networks w/ message passing, etc.?

• Can this theory say anything interesting about computation in
real neural networks?

• E.g. role of noise and randomness, roll of inhibition and excitation,

recurring design patterns.

• Significantly influenced by the work of Wolfgang Maass on the

theory of spiking neural networks.

3



guiding questions

• How do biological features affect computability, runtime

tradeoffs, and algorithm design?

• Is there interesting theory beyond what is known for other well

studied models of computation. E.g. deterministic threshold

circuits (perceptrons), Boltzmann machines, distributed

networks w/ message passing, etc.?

• Can this theory say anything interesting about computation in
real neural networks?

• E.g. role of noise and randomness, roll of inhibition and excitation,

recurring design patterns.

• Significantly influenced by the work of Wolfgang Maass on the

theory of spiking neural networks.

3



guiding questions

• How do biological features affect computability, runtime

tradeoffs, and algorithm design?

• Is there interesting theory beyond what is known for other well

studied models of computation. E.g. deterministic threshold

circuits (perceptrons), Boltzmann machines, distributed

networks w/ message passing, etc.?

• Can this theory say anything interesting about computation in
real neural networks?

• E.g. role of noise and randomness, roll of inhibition and excitation,

recurring design patterns.

• Significantly influenced by the work of Wolfgang Maass on the

theory of spiking neural networks.

3



guiding questions

• How do biological features affect computability, runtime

tradeoffs, and algorithm design?

• Is there interesting theory beyond what is known for other well

studied models of computation. E.g. deterministic threshold

circuits (perceptrons), Boltzmann machines, distributed

networks w/ message passing, etc.?

• Can this theory say anything interesting about computation in
real neural networks?

• E.g. role of noise and randomness, roll of inhibition and excitation,

recurring design patterns.

• Significantly influenced by the work of Wolfgang Maass on the

theory of spiking neural networks.

3



stochastic spiking neural networks

v t = 1 if neuron v spikes at time t, v t = 0 otherwise.

pot(v , t) =
∑
u∈N

ut−1 · w(u, v)

− b(v)

Pr
[
v t = 1

]
=

1

1 + e−pot(v ,t)

4



stochastic spiking neural networks

v t = 1 if neuron v spikes at time t, v t = 0 otherwise.

pot(v , t) =
∑
u∈N

ut−1 · w(u, v)

− b(v)

Pr
[
v t = 1

]
=

1

1 + e−pot(v ,t)

4



stochastic spiking neural networks

v t = 1 if neuron v spikes at time t, v t = 0 otherwise.

pot(v , t) =
∑
u∈N

ut−1 · w(u, v)

− b(v) Pr
[
v t = 1

]
=

1

1 + e−pot(v ,t)

4



stochastic spiking neural networks

v t = 1 if neuron v spikes at time t, v t = 0 otherwise.

pot(v , t) =
∑
u∈N

ut−1 · w(u, v)− b(v)

Pr
[
v t = 1

]
=

1

1 + e−pot(v ,t)

4



stochastic spiking neural networks

v t = 1 if neuron v spikes at time t, v t = 0 otherwise.

pot(v , t) =
∑
u∈N

ut−1 · w(u, v)− b(v) Pr
[
v t = 1

]
=

1

1 + e−pot(v ,t)

4



stochastic spiking neural networks

v t = 1 if neuron v spikes at time t, v t = 0 otherwise.

pot(v , t) =
∑
u∈N

ut−1 · w(u, v)− b(v) Pr
[
v t = 1

]
=

1

1 + e−pot(v ,t)

4



stochastic spiking neural networks

All neurons are strictly inhibitory or excitatory – i.e. w(u, v) ≥ 0

for all v or w(u, v) ≤ 0 for all v .

Ignore many other biological features. E.g. refractory period, spike

propagation delay, memory, noise on synapses etc. Some can be

simulated in our model.

5



stochastic spiking neural networks

All neurons are strictly inhibitory or excitatory – i.e. w(u, v) ≥ 0

for all v or w(u, v) ≤ 0 for all v .

Ignore many other biological features. E.g. refractory period, spike

propagation delay, memory, noise on synapses etc. Some can be

simulated in our model.

5



computational problems in our model

• n input neurons X each either always firing or not firing.

• m output neurons Y .

• Target function f : {0, 1}n → {0, 1}m (possibly multi-valued).

Goal: Design a compact network that rapidly converges to some

output firing pattern Y t ∈ f (X ) with high probability.

6



computational problems in our model

• n input neurons X each either always firing or not firing.

• m output neurons Y .

• Target function f : {0, 1}n → {0, 1}m (possibly multi-valued).

Goal: Design a compact network that rapidly converges to some

output firing pattern Y t ∈ f (X ) with high probability.

6



computational problems in our model

• n input neurons X each either always firing or not firing.

• m output neurons Y .

• Target function f : {0, 1}n → {0, 1}m (possibly multi-valued).

Goal: Design a compact network that rapidly converges to some

output firing pattern Y t ∈ f (X ) with high probability.

6



computational problems in our model

• n input neurons X each either always firing or not firing.

• m output neurons Y .

• Target function f : {0, 1}n → {0, 1}m (possibly multi-valued).

Goal: Design a compact network that rapidly converges to some

output firing pattern Y t ∈ f (X ) with high probability.

6



Questions so far?

7



Example Problem 1

8



winner-take-all (wta)

Binary WTA problem: Want to converge to a single firing

output, which corresponds to a firing input.

• Neural leader election. Very heavily studied in computational

neuroscience.

• Used in perceptual attention, competitive learning, etc. Powerful

‘nonlinear’ primitive [Maass ’99]

9



winner-take-all (wta)

Binary WTA problem: Want to converge to a single firing

output, which corresponds to a firing input.

• Neural leader election. Very heavily studied in computational

neuroscience.

• Used in perceptual attention, competitive learning, etc. Powerful

‘nonlinear’ primitive [Maass ’99]

9



winner-take-all (wta)

Binary WTA problem: Want to converge to a single firing

output, which corresponds to a firing input.

• Neural leader election. Very heavily studied in computational

neuroscience.

• Used in perceptual attention, competitive learning, etc. Powerful

‘nonlinear’ primitive [Maass ’99]

9



winner-take-all (wta)

Binary WTA problem: Want to converge to a single firing

output, which corresponds to a firing input.

• Neural leader election. Very heavily studied in computational

neuroscience.

• Used in perceptual attention, competitive learning, etc. Powerful

‘nonlinear’ primitive [Maass ’99]
9



simple solution with two inhibitors

Main idea: Inhibitors facilitate competition (or lateral inhibition)

between inputs, leading to a single ‘winner’.

• Convergence inhibitor zc fires whenever there are ≥ 2 competing

outputs and causes any competing output to stop firing at time

t + 1 with probability 1/2.

10



simple solution with two inhibitors

Main idea: Inhibitors facilitate competition (or lateral inhibition)

between inputs, leading to a single ‘winner’.

• Convergence inhibitor zc fires whenever there are ≥ 2 competing

outputs and causes any competing output to stop firing at time

t + 1 with probability 1/2.

10



simple solution with two inhibitors

• Stability inhibitor zs fires whenever there are ≥ 1 competing

outputs and prevents any output that didn’t fire at time t from

firing at time t + 1.

• Convergence inhibitor zc fires whenever there are ≥ 2 competing

outputs and causes any competing output to stop firing at time

t + 1 with probability 1/2.

10



simple solution with two inhibitors

• Stability inhibitor zs fires whenever there are ≥ 1 competing

outputs and prevents any output that didn’t fire at time t from

firing at time t + 1.

• Convergence inhibitor zc fires whenever there are ≥ 2 competing

outputs and causes any competing output to stop firing at time

t + 1 with probability 1/2.
10



simple solution with two inhibitors

• Roughly 1/2 of competing outputs stop firing at each time step.

With constant probability there is some time t ≤ log n such that

exactly one output fires at time t.

• After time t, this distinguished output continues to fire. Just zs

fires, preventing all other outputs from firing.
11



simple solution with two inhibitors

• Roughly 1/2 of competing outputs stop firing at each time step.

With constant probability there is some time t ≤ log n such that

exactly one output fires at time t.

• After time t, this distinguished output continues to fire. Just zs

fires, preventing all other outputs from firing.
11



simple solution with two inhibitors

• Roughly 1/2 of competing outputs stop firing at each time step.

With constant probability there is some time t ≤ log n such that

exactly one output fires at time t.

• After time t, this distinguished output continues to fire. Just zs

fires, preventing all other outputs from firing.
11



simple solution with two inhibitors

• Roughly 1/2 of competing outputs stop firing at each time step.

With constant probability there is some time t ≤ log n such that

exactly one output fires at time t.

• After time t, this distinguished output continues to fire. Just zs

fires, preventing all other outputs from firing.
11



simple solution with two inhibitors

• Roughly 1/2 of competing outputs stop firing at each time step.

With constant probability there is some time t ≤ log n such that

exactly one output fires at time t.

• After time t, this distinguished output continues to fire. Just zs

fires, preventing all other outputs from firing.
11



simple solution with two inhibitors

• Roughly 1/2 of competing outputs stop firing at each time step.

With constant probability there is some time t ≤ log n such that

exactly one output fires at time t.

• After time t, this distinguished output continues to fire. Just zs

fires, preventing all other outputs from firing.
11



simple solution with two inhibitors

Upshot: Convergence to valid winner in O(log n) time in

expectation.

• More than two inhibitors can be used to give faster convergence

(see full paper for results characterizing this tradeoff.)

• Can be used to solve non-binary WTA. Goal here is to select the

input with the highest firing rate.

12



simple solution with two inhibitors

Upshot: Convergence to valid winner in O(log n) time in

expectation.

• More than two inhibitors can be used to give faster convergence

(see full paper for results characterizing this tradeoff.)

• Can be used to solve non-binary WTA. Goal here is to select the

input with the highest firing rate.

12



simple solution with two inhibitors

Upshot: Convergence to valid winner in O(log n) time in

expectation.

• More than two inhibitors can be used to give faster convergence

(see full paper for results characterizing this tradeoff.)

• Can be used to solve non-binary WTA. Goal here is to select the

input with the highest firing rate.

12



computational principles

Two features of any near-optimal WTA circuit (show up in both

upper and corresponding lower bounds).

1. Inhibitors fall into two classes – convergence and stability

neurons. Inhibition is often viewed as a stability mechanism in

the brain. In our networks, it has two roles: maintaining stability

and driving computation.

2. Inhibitors behave nearly deterministically. Randomness is used

solely for symmetry breaking between outputs. Highlights dual

nature of randomness – can be a powerful computational

resource but can also slow down computation by leading to noisy

behavior.

13



computational principles

Two features of any near-optimal WTA circuit (show up in both

upper and corresponding lower bounds).

1. Inhibitors fall into two classes – convergence and stability

neurons.

Inhibition is often viewed as a stability mechanism in

the brain. In our networks, it has two roles: maintaining stability

and driving computation.

2. Inhibitors behave nearly deterministically. Randomness is used

solely for symmetry breaking between outputs. Highlights dual

nature of randomness – can be a powerful computational

resource but can also slow down computation by leading to noisy

behavior.

13



computational principles

Two features of any near-optimal WTA circuit (show up in both

upper and corresponding lower bounds).

1. Inhibitors fall into two classes – convergence and stability

neurons. Inhibition is often viewed as a stability mechanism in

the brain. In our networks, it has two roles: maintaining stability

and driving computation.

2. Inhibitors behave nearly deterministically. Randomness is used

solely for symmetry breaking between outputs. Highlights dual

nature of randomness – can be a powerful computational

resource but can also slow down computation by leading to noisy

behavior.

13



computational principles

Two features of any near-optimal WTA circuit (show up in both

upper and corresponding lower bounds).

1. Inhibitors fall into two classes – convergence and stability

neurons. Inhibition is often viewed as a stability mechanism in

the brain. In our networks, it has two roles: maintaining stability

and driving computation.

2. Inhibitors behave nearly deterministically. Randomness is used

solely for symmetry breaking between outputs.

Highlights dual

nature of randomness – can be a powerful computational

resource but can also slow down computation by leading to noisy

behavior.

13



computational principles

Two features of any near-optimal WTA circuit (show up in both

upper and corresponding lower bounds).

1. Inhibitors fall into two classes – convergence and stability

neurons. Inhibition is often viewed as a stability mechanism in

the brain. In our networks, it has two roles: maintaining stability

and driving computation.

2. Inhibitors behave nearly deterministically. Randomness is used

solely for symmetry breaking between outputs. Highlights dual

nature of randomness – can be a powerful computational

resource but can also slow down computation by leading to noisy

behavior.

13



Example Problem 2

14



similarity testing

Similarity Testing: Given two input firing patterns X1 and X2,

distinguish whether X1 = X2 or if they are far from being equal.

I.e. if d(X1,X2) ≥ εn.

• After convergence, the output neuron should fire continuously if

the inputs are equal and not fire if they are far from equal.

• Natural sub-problem for pattern recognition and other tasks.

15



similarity testing

Similarity Testing: Given two input firing patterns X1 and X2,

distinguish whether X1 = X2 or if they are far from being equal.

I.e. if d(X1,X2) ≥ εn.

• After convergence, the output neuron should fire continuously if

the inputs are equal and not fire if they are far from equal.

• Natural sub-problem for pattern recognition and other tasks.

15



similarity testing

Similarity Testing: Given two input firing patterns X1 and X2,

distinguish whether X1 = X2 or if they are far from being equal.

I.e. if d(X1,X2) ≥ εn.

• After convergence, the output neuron should fire continuously if

the inputs are equal and not fire if they are far from equal.

• Natural sub-problem for pattern recognition and other tasks.

15



similarity testing

Similarity Testing: Given two input firing patterns X1 and X2,

distinguish whether X1 = X2 or if they are far from being equal.

I.e. if d(X1,X2) ≥ εn.

• After convergence, the output neuron should fire continuously if

the inputs are equal and not fire if they are far from equal.

• Natural sub-problem for pattern recognition and other tasks.

15



algorithmic approach

Simple (non-neural) sublinear time algorithm:

Sample

O
(
log n
ε

)
random positions and check if X1 and X2 match at these

positions.

If X1 = X2, then S1 = S2. If d(X1,X2) ≥ εn, the S1 6= S2 with

high probability.

16



algorithmic approach

Simple (non-neural) sublinear time algorithm: Sample

O
(
log n
ε

)
random positions and check if X1 and X2 match at these

positions.

If X1 = X2, then S1 = S2. If d(X1,X2) ≥ εn, the S1 6= S2 with

high probability.

16



algorithmic approach

Simple (non-neural) sublinear time algorithm: Sample

O
(
log n
ε

)
random positions and check if X1 and X2 match at these

positions.

If X1 = X2, then S1 = S2. If d(X1,X2) ≥ εn, the S1 6= S2 with

high probability.

16



algorithmic approach

Simple (non-neural) sublinear time algorithm: Sample

O
(
log n
ε

)
random positions and check if X1 and X2 match at these

positions.

If X1 = X2, then S1 = S2. If d(X1,X2) ≥ εn, the S1 6= S2 with

high probability.
16



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module

: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



how to implement neurally?

• Equality check of S1 and S2 is straightforward.

• Sampling random positions requires an indexing module: given

an index encoded by the firing pattern of a set of neurons, select

the appropriate value of X1 or X2.

• After convergence, the output neuron should fire continously if

and only if X (Z ) is firing.

• Simulates an excitatory connection from X (Z ) to y .

17



indexing problem

At first glance indexing may not seem very ‘neural.’

More neural motivation:

• Uses information contained in a small set of neurons (the index)

to access information from a much larger data store X .

• This seems to be an important primitive in many computations

beyond our similarity testing application. E.g. a smell or sight

triggering a memory.

18



indexing problem

At first glance indexing may not seem very ‘neural.’

More neural motivation:

• Uses information contained in a small set of neurons (the index)

to access information from a much larger data store X .

• This seems to be an important primitive in many computations

beyond our similarity testing application. E.g. a smell or sight

triggering a memory.

18



indexing problem

At first glance indexing may not seem very ‘neural.’

More neural motivation:

• Uses information contained in a small set of neurons (the index)

to access information from a much larger data store X .

• This seems to be an important primitive in many computations

beyond our similarity testing application. E.g. a smell or sight

triggering a memory.

18



indexing problem

At first glance indexing may not seem very ‘neural.’

More neural motivation:

• Uses information contained in a small set of neurons (the index)

to access information from a much larger data store X .

• This seems to be an important primitive in many computations

beyond our similarity testing application. E.g. a smell or sight

triggering a memory.

18



main algorithmic result

Theorem

For any t ≤
√
n, there is an SNN solving the indexing problem with

O(n/t) auxiliary neurons that converges in t time steps with high

probability. For t =
√
n, the circuit uses O(

√
n) auxiliary neurons.

• Gives an O
(√

n log n
ε

)
(i.e., sublinear) sized circuit for the

similarity testing problem.

19



main algorithmic result

Theorem

For any t ≤
√
n, there is an SNN solving the indexing problem with

O(n/t) auxiliary neurons that converges in t time steps with high

probability. For t =
√
n, the circuit uses O(

√
n) auxiliary neurons.

• Gives an O
(√

n log n
ε

)
(i.e., sublinear) sized circuit for the

similarity testing problem. 19



lower bound

• Lower bound via VC-dimension-based arguments show that

convergence time cannot be improved by more than a log2 n

factor.

• The same upper bound can be achieved with linear threshold

gates (i.e. perceptrons)

• So our spiking model, and importantly the availability of

randomness, does not help much for this problem.

• Also separates our model from sigmoidal gates with real valued

outputs which can implement indexing with O(
√
n) neurons

converging in O(1) steps.

20



lower bound

• Lower bound via VC-dimension-based arguments show that

convergence time cannot be improved by more than a log2 n

factor.

• The same upper bound can be achieved with linear threshold

gates (i.e. perceptrons)

• So our spiking model, and importantly the availability of

randomness, does not help much for this problem.

• Also separates our model from sigmoidal gates with real valued

outputs which can implement indexing with O(
√
n) neurons

converging in O(1) steps.

20



lower bound

• Lower bound via VC-dimension-based arguments show that

convergence time cannot be improved by more than a log2 n

factor.

• The same upper bound can be achieved with linear threshold

gates (i.e. perceptrons)

• So our spiking model, and importantly the availability of

randomness, does not help much for this problem.

• Also separates our model from sigmoidal gates with real valued

outputs which can implement indexing with O(
√
n) neurons

converging in O(1) steps.

20



lower bound

• Lower bound via VC-dimension-based arguments show that

convergence time cannot be improved by more than a log2 n

factor.

• The same upper bound can be achieved with linear threshold

gates (i.e. perceptrons)

• So our spiking model, and importantly the availability of

randomness, does not help much for this problem.

• Also separates our model from sigmoidal gates with real valued

outputs which can implement indexing with O(
√
n) neurons

converging in O(1) steps.

20



takeaways

• Our result can be seen in two ways:

• Indexing can be implemented with a compact spiking networks.

• Any compact indexing network must converge slowly, and thus

seems somewhat unlikely as a neural implementation.

• Is general indexing machinery actually implemented in the brain?

• Our similarity testing algorithm is a simple application of
randomized compression.

• Other randomized compression schemes like Johnson-Lindenstrauss

projection have been considered as possible neural algorithms.

• To what extent are these schemes implemented via random

connectivity and to what extent do they require indexing operations?

21



takeaways

• Our result can be seen in two ways:

• Indexing can be implemented with a compact spiking networks.

• Any compact indexing network must converge slowly, and thus

seems somewhat unlikely as a neural implementation.

• Is general indexing machinery actually implemented in the brain?

• Our similarity testing algorithm is a simple application of
randomized compression.

• Other randomized compression schemes like Johnson-Lindenstrauss

projection have been considered as possible neural algorithms.

• To what extent are these schemes implemented via random

connectivity and to what extent do they require indexing operations?

21



takeaways

• Our result can be seen in two ways:

• Indexing can be implemented with a compact spiking networks.

• Any compact indexing network must converge slowly, and thus

seems somewhat unlikely as a neural implementation.

• Is general indexing machinery actually implemented in the brain?

• Our similarity testing algorithm is a simple application of
randomized compression.

• Other randomized compression schemes like Johnson-Lindenstrauss

projection have been considered as possible neural algorithms.

• To what extent are these schemes implemented via random

connectivity and to what extent do they require indexing operations?

21



takeaways

• Our result can be seen in two ways:

• Indexing can be implemented with a compact spiking networks.

• Any compact indexing network must converge slowly, and thus

seems somewhat unlikely as a neural implementation.

• Is general indexing machinery actually implemented in the brain?

• Our similarity testing algorithm is a simple application of
randomized compression.

• Other randomized compression schemes like Johnson-Lindenstrauss

projection have been considered as possible neural algorithms.

• To what extent are these schemes implemented via random

connectivity and to what extent do they require indexing operations?

21



takeaways

• Our result can be seen in two ways:

• Indexing can be implemented with a compact spiking networks.

• Any compact indexing network must converge slowly, and thus

seems somewhat unlikely as a neural implementation.

• Is general indexing machinery actually implemented in the brain?

• Our similarity testing algorithm is a simple application of
randomized compression.

• Other randomized compression schemes like Johnson-Lindenstrauss

projection have been considered as possible neural algorithms.

• To what extent are these schemes implemented via random

connectivity and to what extent do they require indexing operations?

21



future work

Concrete Next Steps:

• k-WTA, better understanding of WTA with non-binary inputs,

sparse coding/renaming

• More biologically plausible models: refractory period, history,

asynchrony, learning and dynamic synapse weights

• Theoretical abstractions that let us handle biological complexity.

• What features of our model can be generalized? E.g. can we

prove results for a wider class of activation functions beyond the

sigmoid?

22



future work

Concrete Next Steps:

• k-WTA, better understanding of WTA with non-binary inputs,

sparse coding/renaming

• More biologically plausible models: refractory period, history,

asynchrony, learning and dynamic synapse weights

• Theoretical abstractions that let us handle biological complexity.

• What features of our model can be generalized? E.g. can we

prove results for a wider class of activation functions beyond the

sigmoid?

22



future work

Concrete Next Steps:

• k-WTA, better understanding of WTA with non-binary inputs,

sparse coding/renaming

• More biologically plausible models: refractory period, history,

asynchrony, learning and dynamic synapse weights

• Theoretical abstractions that let us handle biological complexity.

• What features of our model can be generalized? E.g. can we

prove results for a wider class of activation functions beyond the

sigmoid?

22



future work

Concrete Next Steps:

• k-WTA, better understanding of WTA with non-binary inputs,

sparse coding/renaming

• More biologically plausible models: refractory period, history,

asynchrony, learning and dynamic synapse weights

• Theoretical abstractions that let us handle biological complexity.

• What features of our model can be generalized? E.g. can we

prove results for a wider class of activation functions beyond the

sigmoid?

22



future work

Concrete Next Steps:

• k-WTA, better understanding of WTA with non-binary inputs,

sparse coding/renaming

• More biologically plausible models: refractory period, history,

asynchrony, learning and dynamic synapse weights

• Theoretical abstractions that let us handle biological complexity.

• What features of our model can be generalized? E.g. can we

prove results for a wider class of activation functions beyond the

sigmoid?

22



High-Level Directions

• How do networks for simple computational primitives arise? Can

they be ‘learned’? Are they preprogramed in some way?

• How do fixed network motifs such as WTA and similarity testing

circuits interact with more flexible ‘learning’ networks?

• More generally, would like to develop a theory for composing

spiking neural networks to solve complex problems.

23



High-Level Directions

• How do networks for simple computational primitives arise? Can

they be ‘learned’? Are they preprogramed in some way?

• How do fixed network motifs such as WTA and similarity testing

circuits interact with more flexible ‘learning’ networks?

• More generally, would like to develop a theory for composing

spiking neural networks to solve complex problems.

23



High-Level Directions

• How do networks for simple computational primitives arise? Can

they be ‘learned’? Are they preprogramed in some way?

• How do fixed network motifs such as WTA and similarity testing

circuits interact with more flexible ‘learning’ networks?

• More generally, would like to develop a theory for composing

spiking neural networks to solve complex problems.

23



High-Level Directions

• How do networks for simple computational primitives arise? Can

they be ‘learned’? Are they preprogramed in some way?

• How do fixed network motifs such as WTA and similarity testing

circuits interact with more flexible ‘learning’ networks?

• More generally, would like to develop a theory for composing

spiking neural networks to solve complex problems.

23



Thanks!

24


