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OUR DRIVING QUESTIONS

Are there inherent limitations on the power of low-dimensional
node embeddings in representing real world graphs?

• An Interpretable Graph Generative Model with Heterophily. Sudhanshu
Chanpuriya, Ryan Rossi, Anup Rao, Tung Mai, Nedim Lipka, Zhao Song,
and Cameron Musco. ArXiv.

• On the Power of Edge Independent Graph Models. Sudhanshu
Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and
Charalampos Tsourakakis. NeurIPS 2021.

• Node Embeddings and Exact Low-Rank Representations of Complex
Networks. Sudhanshu Chanpuriya, Cameron Musco, Konstantinos
Sotiropoulos, and Charalampos Tsourakakis. NeurIPS 2020.

Why exactly do ‘modern’ node embeddings outperform classic
methods, like spectral embeddings?

• InfiniteWalk: Deep Network Embeddings as Laplacian Embeddings with
a Nonlinearity. Sudhanshu Chanpuriya and Cameron Musco. KDD 2020.
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SUMMARY OF OUR RESULTS

• Starting Point: Seshadhri, Sharma, Stolman, and Goel (PNAS
2020) argue that low-dimensional node embeddings cannot
represent sparse, triangle-dense graphs. E.g., most social
networks.

• Positive Result: We show that in fact, low-dimensional node
embeddings can exactly represent any bounded-degree or
bounded arboricity graph, including triangle-dense graphs. As
long as each node is assigned two embeddings (as in DeepWalk,
node2vec, LINE, CELL, etc.)

• Negative Result: We show that, regardless of dimension,
edge-independent graph generative models (including NetGAN,
variational graph autoencoders, CELL, Graphite, etc.) cannot
generate triangle-dense graphs, unless they essentially
memorize a single graph.
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EMBEDDING MODEL

Consider a simple model for generating a random unweighted,
undirected graph G = (V, E) with n nodes.

• For each node, we compute an embedding xi ∈ Rk.

• We let pij = σ(⟨xi, xj⟩) be the probability of edge (i, j) appearing
in the graph. σ : R → [0, 1] is a non-linearity that outputs
probabilities. E.g., σ(z) = 1

1+e−z or σ(z) = max(0,min(z, 1)).

• We generate G by including each edge independently with
probability pij.

• Letting X ∈ Rn×k have rows equal to the embeddings, the
expected adjacency matrix of G is given by E[A] = σ(XXT).

• Will also consider a related model where each node has two
embeddings xi, yi and pij = σ(⟨xi, yj⟩). E.g., DeepWalk, LINE, CELL.
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EMBEDDING MODEL

• The embeddings are often trained using an input graph with
adjacency matrix A, with the goal of having A ≈ σ(XXT). I.e., a
sort of low-rank approximation of the adjacency matrix.

• Edge probabilities can be used for link prediction.

• Embeddings can be used directly for tasks like
node-classification, clustering, etc.
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IMPOSSIBILITY RESULT FOR TRIANGLE-DENSE NETWORKS

Empirical Observation: Many real-world social networks are both
sparse and triangle-dense. I.e., they have O(n) edges (equivalently,
O(1) average degree) but also Ω(n) triangles.

Impossibility Theorem: [Seshadhri et al. 2020] For any em-
bedding matrix X ∈ Rn×k and any constants c1, c2, if the graph
generated by σ(XXT) has c1n expected triangles incident to ver-
tices of expected degree c2, then k ≥ c3n/ log2 n.

I.e., any node-embedding that represents sparse, triangle-dense
graphs must have dimension scaling nearly linearly in n.

This is a significant and very surprising limitation on a very broad
class of embedding methods! How does it reconcile with the
popularity of these methods for modeling graphs in practice?
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IMPOSSIBILITY RESULT PROOF

Extremely Rough Proof Idea:

• Assume for simplicity that all embeddings x1, . . . , xn ∈ Rk have
the same Euclidean norm.

• In a sparse, triangle-dense graph, each wedge must be closed
with Θ(1) probability, since there are Θ(n) wedges and Θ(n)
triangles.

• To have such high probability edges, we must have
⟨xi, xj⟩ = Θ(1), and thus ∥xi∥2, ∥xj∥2 = Θ(1) by Cauchy-Schwarz.
Thus, tr(XXT) =

∑
i ∥xi∥22 = Θ(n).

• At the same time, since the expected graph is sparse,
∥XXT∥2F =

∑
i,j⟨xi, xj⟩2 ≲

∑
i,j⟨xi, xj⟩ = O(n).
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IMPOSSIBILITY RESULT PROOF

So Far: If XXT yields a sparse triangle-dense network, we must have:

tr(XXT) = Θ(n) and ∥XXT∥2F = O(n).

This directly gives a lower bound on the embedding dimension:

k = rank(XXT) ≥ tr(XXT)2

∥XXT∥2F
=

Θ(n2)

Θ(n) = Θ(n).
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BREAKING THE IMPOSSIBILITY RESULT

Many popular node embedding methods use two embeddings per
node, and thus produce an edge probability matrix σ(XYT).

tr(XYT) can be very small, even if the rows of X and Y have relatively
large norms! Thus the rank lower bound fails.

Exact Embedding Theorem: [Chanpuriya et al. 2020] Let A ∈
{0, 1}n×n be the adjacency matrix of a graph with maximum
degree D. Then for k = O(D) there exist X, Y ∈ Rn×k such that
A = σ(XYT).

I.e., we can exactly embed any graph with dimension proportional to
its maximum degree. This includes very sparse, triangle-dense
graphs.

This shows that the results of Seshhadri et al. critically hinge on the
use of a symmetric embedding model.
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AN EXTREME EXAMPLE

Consider a union of n/3 disjoint triangles. This graph has Θ(n)
edges and Θ(n) triangles.

Symmetric Embeddings: Require Θ(n/ log2 n) dimensions to
represent such a graph by the Seshhadri et al. result.

Asymmetric Embeddings: Require just O(1) dimensions to
represent this graph exactly!
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PROOF SKETCH

• Suffices to exhibit X, Y such that (XYT)ij < 0 whenever Aij = 0
and (XYT)ij > 0 whenever Aij = 1. Then, for some large enough
scaling factor c, we will have σ(c · XYT) = A.

• I.e., it suffices to bound the sign-rank of A, a well-studied
property in the communication complexity literature.

• This can be done via polynomial interpolation techniques.
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PROOF SKETCH

Let X be a Vandermonde matrix with Xab = ab−1 and YT be a
coefficient matrix.

• Each column of XYT is a degree k− 1 polynomial evaluated at
the integers 1, . . . ,n.

• We need this polynomial to be positive at the locations where
Aij = 1. There are at most D such locations, so this can be done
using a degree 2D polynomial.

• Thus, k = 2D+ 1 suffices to match the sign of A at all entries.
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EXTENSION TO BOUNDED ARBORICITY GRAPHS

We can extend our bound to show that when a graph has arboricity
α, it can be exactly embedded using k = O(α2) dimensions.

By the Nash-Williams theorem, the arboricity is the maximum
average degree of any induced subgraph, and is typically small for
sparse real-word networks, even when the maximum degree is large.

α =

⌈
max
S⊆V

E(S)
V(S)− 1

⌉
.
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EXACT EMBEDDINGS OF REAL-WORLD NETWORKS

In practice, we can find very low-rank exact embeddings
(sometimes substantially lower than our theoretical bounds)
via a simple logistic PCA model (i.e., σ is the logistic function)
trained with L-BFGS.
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TAKING A STEP BACK

Our exact embedding results demonstrate that low-dimensional,
asymmetric embeddings can in fact be very effective in representing
real-world networks. But how useful are these exact embeddings?

• Exact embeddings don’t yield interesting generative models: if
we generate a graph from the probability matrix σ(XYT) = A,
where A ∈ {0, 1}n×n is the adjacency matrix of the input graph,
it equals the input graph with probability 1.

• σ(XYT) will also be useless e.g., in link prediction tasks. No
‘generalization’. We find that the embeddings are also not
particularly useful in node classification, clustering, etc.

• Is there an inherent trade-off here? Does achieving sparsity +
high triangle density necessitate simply memorizing the input
graph?
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LIMITS ON EDGE INDEPENDENT GRAPH MODELS

Consider a probability matrix P ∈ [0, 1]n×n (e.g., P = σ(XYT)) and the
distribution G(P) on graphs where each edge is added
independently with probability Pij.

Let Ov(P) = EG1,G2∼G(P)|E(G1) ∩ E(G2)| be the expected number of
shared edges in two graphs drawn from G(P). The ‘overlap’.

Let ∆(G) be the number of triangles in G.

Theorem: [Chanpuriya et al. 2021]

EG∼G(P)|∆(G)| ≲ Ov(P)3/2.

E.g., if our model generates graphs with Θ(n) edges but just O(
√
n)

overlap, these graphs have O(n3/4) triangles in expectation.

An analog of the Seshadhri et al. result but without any requirement
that P is generated from low-dimensional embeddings!
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CONCLUSIONS

• We have demonstrated that asymmetric node embeddings can
be much more powerful than symmetric embeddings in
representing sparse, triangle-dense graphs.

• At the same time, we show that if these embeddings are used to
form an edge-independent generative model, they are still
limited, regardless of their dimensionality.

• They face a trade-off between memorization and
representation.

• This indicates a possible reason for preferring generative
models that incorporate dependencies between edges (e.g.,
graphRNNs) over edge-independent models (e.g., NetGAN, CELL,
variational graph autoencoders, Graphite, MolGAN)

17



OPEN QUESTIONS

• A key feature of the models we study is that A is approximated
by σ(XYT) – a low-rank approximation with a non-linearity
applied. Classic spectral embeddings do not use a nonlinearity.

• In our work on InfiniteWalk, we show that in a natural limit,
DeepWalk reduces to a classic spectral embedding method with
a simple non-linearity. Can we understand exactly why this
nonlinearity is so useful?

• Are there any applications of our exact embedding results
outside understanding representational power?

• Can we improve our bounds on edge-independent models and
extend them to simple classes of edge-dependent models?
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