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- Problem Set 3 is due 4/15 at 8pm.

- Project progress report due this Friday, 4/8. Submit a pdf
via email. 1-2 pages.

- Weekly quiz due next Tuesday at 8pm.



Last Week: Random sketching and subspace embedding.

- Subspace embedding via leverage score sampling. L —IX ]Cﬁ]

- Analysis via matrix concentration bounds.

- Spectral graph sparsification via leverage score sampling.



Last Week: Random sketching and subspace embedding.

- Subspace embedding via leverage score sampling.
- Analysis via matrix concentration bounds.

- Spectral graph sparsification via leverage score sampling.

Today:
- Finish spectral graph sparsification and physical interpretation
- Start on Markov chains and their analysis
- Markov chain based algorithms for 2-SAT and 3-SAT.

- Gambler’s ruin.



Spectral Graph Sparsification



Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)

For any A € R™9 with left singular vector matrix/U, lej <
i = Ui ll3 andp,_i‘ Let S € R™" have S n /}

independently set to F eT with probability p,

Then, if m = O (dlog(d/5)>, with probability >1— 6, S is an
e-subspace embeddm or A
O(J_ + b(l d

Matches oblmous random projection up to the logd factor
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Spectral Graph Sparsification
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vertex-edge
incidence matrix B

- Given a graph G, find a (weighted) subgraph G’ with many fewer
edges such that: (1—¢€)Llg = Lo < (1+¢€)Ls.

- Equivilantly, letting B € R™*" be the vertex-edge incidence
matrix of G, find a sampling matrixS_that is an e-subspace

Q\Q embedding for B. l.e, B'S'SB ~. BTBQ_ || SBXl, = ”654)1, X
Sampling edges according to their leverage scores in B gives an
e-spectral sparsifier with just O(nlogn/e®) edges.

- Can be used to approximate many properties of G, including the
size of all cuts. 5



Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/e?) edges can be ( .
constructed by sampling rows of the vertex-edge incidence matrix (& &“)
via their leverage scores. What are these leverage scores?



Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/e?) edges can be
constructed by sampling rows of the vertex-edge incidence matrix

via their leverage scores. Whgétheileverage scores?
S
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- View each edge as a 1-Ohm resistor.

-

- If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.
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Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/e?) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

*— A\

- View each edge as a 1-Ohm resistor.

- If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.

- We will show that the leverage score of each edge is exactly
equal to its effective resistance.



Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/e?) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

ﬂv—'\ -
- View each edge as a 1-Ohm resistor.

- If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.

- We will show tha@e leverage score of each edge is exactly
equal to its effective resista@

- Intuitively, to form a spectral sparsifier, we should sample high
resistance edges with high probability, since they are
‘bottlenecks’ 6



Electrical Flows

For a flow f € R™, the currents going into each node are given by Bf.
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Electrical Flows

For a flow f € R™, the currents going into each node are given by Bf.
BT f
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The electrical flow when one unit of current is sent from u to v is:

o

f¢=argmin||f].
f:BTf:bu,v

Since power (energy/time) is given by P = > - R.



Electrical Flows

For a flow f € R™, the currents going into each node are given by Bf.

RS BT f
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The electrical flow when one unit of current is sent from u to v is:

¢ =argmin||fl.-

—  [fBf=byy =

Since power (energy/tlme) is given by P= 1> - R.

F £y AF = WL :



Leverage Scores and Effective Resistance

¢ =argmin||fl,-
f'BTf_buv

By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f&, (since u,vis a unit resistor).



Leverage Scores and Effective Resistance

{: IUJE\K:L% f¢=argmin||f].
FBTF=bs

By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u, v is a unit resistor).

- To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".
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Leverage Scores and Effective Resistance

DE oy £ = argmin |If]..
f:BTf=bu,v
By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u, v is a unit resistor).

- To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".

- Then need to solve B'B¢ = b, . l.e, Lp = by, ¢ is unique up to

its component in the null—sﬁéce of L.
v



Leverage Scores and Effective Resistance
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¢ =argmin||fl,-
f:BTf=bu,y

By Ohm's law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u, v is a unit resistor).

- To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".— Vd)’%’“

- Then need to solve B'B¢ = by . l.e, L = by . |s unique up to

its component in the null-space of L.
("o\/\\b ("V\\ b‘%@(\bv ) $ [J

‘e
S CcCog



Leverage Scores and Effective Resistance

f€ = argmin [f]>.
f:BTf:bu,v
By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u, v is a unit resistor).

- To solve for f, note that we can assume that fis in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".

- Then need to solve B'B¢ = b, . l.e, Lp = byyv. ¢ is unique up to
its component in the null-space of L.

-1
* (b == L+bu’\/. L b"")\{
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Leverage Scores and Effective Resistance
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By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective h i~
resistance) is simply the entry ¢, (since u, v is a unit resistor). Sy
=

- To solve for f, note that we can assume that fis in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".

A

- Then need to solve B'B¢ = b, . l.e, Lp = byyv. ¢ is unique up to
its component in the null-space of L.

* (b = L+bu’\/.
- Gives f¢ = BLTby,,. So f¢, is just b] ,LTby,, = by (B'B)*by,.
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Leverage Scores and Effective Resistance

The effective resist nce across edge (u,v) is given by
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,Vv) is given by

bu,v(BTB)+bu7v = eE,vB(BTB)ﬂBTeu,v-

by b,y B BT
10 1 0 1 0100 1-100 1100 o0
0 - 1 0 -1 0 -1 0 1 0 1
-1 = 01 -1 0 0 -1 -1 1 0
0 0 0 1 1 0 0 0 -1 0
Write B = UXV" in its SVD. I T
AN M-
eE’V\B/(f\TBi)iETe”’V = e, UZVI(VvE-2VI)VEU ey,
T T 1 -t T
vzJdzv en, VTS 7 Uew
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,Vv) is given by

bu,v(BTB)+bu7v = eE,vB(BTB)ﬂBTeu,v-

by b,y B BT
10 10 1 0100 1-100 110
0 - 1 0 -1 0 10 1

-1 - 01 -1 0 0 1 -1

0 0 0 1 1 0 0 0

Write B = UXV" in its SVD.
e, ,B(B'B)TB'e,, = e} UZV'(VE2VT)VEU e,

— QL—’VUUTQU’V

A B O O

o O = O



Leverage Scores and Effective Resistance

The effective resistance across edge (u,Vv) is given by

bu,v(BTB)+bu7v = eE,vB(BTB)ﬂBTeu,v-

b, by B BT
1 0 -1 0 1 0 1 0 0 1 -1 0 0 1 1 0 O 0
0o _ 10 1 0 4010 1
. . 01 -1 0 offll-1 1| o
0 00 1 -1 000 -1 0

Write B = UXV" in its SVD.

?——-

e, ,B(B'B)TB'e,, = e} UZV'(VE2VT)VEU e,

— €u7VUU eu’\/
LT B g
- Uu,vUUN - ||UU,V||2'
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Leverage Scores and Effective Resistance

The effective resistance across edge (u, V) is giv —n',ﬁy B

"
rggfm?; buu(B'B)"byy = e],B(B'B)"Bel,. |
by b,y B BT
10 41 0 17! 0100 1100 1100 o0
- \ o _ 1010 1010 1
| 01 -10 0-1-11 o0
0 00 1 -1 000-1 0
— e e

Write B = UV in its SVD.
e, ,B(B'B)TB'e,, = e} UZV'(VE2VT)VEU e,
— QL—’VUUTQU’V
= UE,qu,v = ||Uu,V||%~

l.e., the effective resistance is exactly the leverage score of the
corresponding row in B. ?



Markov Chains



Markov Chain Definition

- A discrete time stochastic process is a collection of
random variables Xg, X1, Xz, .

BRI

- A discrete time stochastic process is a Markov chain if is it

memoryless:
Pr(Xe = at|X¢—1 = at—1,...,Xo = Ao) = Pr(X¢ = a¢[X¢—1 = a¢_1)
’_\’—/ ~——————
= Pthw,Ot'
Think-Pair-Share: | kov chain, is X; independent of

X[727 Xf737 cee ,XO?

._>x~\ - T ) \NF ’/Z X. s ;Ab‘(lv\lu,\\' of ”\\) j» j:}:J
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Transition Matrix

A Markov chain Xp, X1, ... where each X; can take m possible
values, is specified by the transition matrix P € [0, 1]*™ with

Pir = Pr(Xips =RIX; = ).

L _
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Transition Matrix

A Markov chain Xp, X1, ... where each X; can take m possible
values, is specified by the transition matrix P € [0, 1]*™ with

Pir = Pr(Xipq = RIX; = ).

Let g; € [0,1]™™ be the distribution of X;. Then g;4; = q;P.

[:5 .5 0°] B

P
B 5 0 0

25 25 5 0

1



Transition Matrix

A Markov chain Xp, X1, ... where each X; can take m possible
values, is specified by the transition matrix P € [0, 1]*™ with

Pir = Pr(Xipq = RIX; = ).

Let g; € [0,1]™™ be the distribution of X;. Then g;4; = q;P.

Xhi\\ \L;br, C)
/\DKU\\C \\.><9 Yo P q4
I’,C‘H’ 1 0 0 0 @ Cs) o 0o _ 5 5 0 o0
Q(k\ 25 25 5 0

1



Transition Matrix

A Markov chain Xp, X1, ... where each X; can take m possible
values, is specified by the transition matrix P € [0, 1]*™ with

Pj,}? = Pr(X,‘JH = [Q|Xl :])

Let g; € [0,1]™™ be the distribution of X;. Then g;4; = q;P.

4 P q2

.;5/ 5 0 0 S5 5 0 0 = 375 25 0
?/(_ )(‘L: \) (\/\\?\\ﬁ\‘ﬁ 25 5 0

ir\;/(ﬁ\:'o 4,‘?( 1

'3:\,1,'5?‘\ A ‘f)‘.'l,

o
o

0 5 5 0

' - 7;]5

1



Graph View

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each X; can take.

12



Graph View

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each X; can take.

The Markov chain is irreducible if the underlying graph consists of
single strongly connected component.

12



2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF
formula with n variables. %, :0 X *! PO

(X1 \/)_<2) N ()_(1 \/)_(3) A\ (X1 \/Xz) A\ (X4 \/)_<3) A\ (X4 \/)_ﬁ)

_

Gihavle oy b
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2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF
formula with n variables. X1 7 X = X3 =X4 20 X, = |

(X1 \/)_<2) N ()_(1 \/)_(3) N (X1 V X2 YN (X4\/)_<3) A\ (X4 \/)_ﬁ)

A simple ‘local search” algorithm: N Zﬁ \lnv's .

1. Start with an arbitrary assignment.

2. Repeat 2mn’ times, terminating if a satisfying assignment is
found:
- Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If avalid assignment is not found, return that the formula is
unsatisfiable.
_ >

WO X T aeed b e

Qem o T i
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2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF
formula with n variables.
(X1 \/)_<2) N ()_(1 \/)_(3) A\ (X1 \/Xz) A\ (X4 V )_<3) A\ (X4 \/)_ﬁ)

A simple ‘local search” algorithm:

1. Start with an arbitrary assignment.

2. Repeat 2mn? times, terminating if a satisfying assignment is

—_—

found:

< Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If avalid assignment is not found, return that the formula is
unsatisfiable.

Claim: If the formula is satisfiable, the algorithm finds a satisfying
assignment with probability > 1— 27", 13



Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let X; < n be the number of variables
that are assigned the same values as in S, at step i.

g\ E 6 assignment i
BRNG STE S0

- Xip1 = X; £ 1since we flip one variable in an unsatisfied clause.

—_—
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Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let X; < n be the number of variables
that are assigned the same values as in S, at step i.

1 0 1 0 0 0 1 1 XD><'><
VA B VA T

assignment i
1 0 0 1 1 0 1 1

- Xip1 = X; £ 1since we flip one variable in an unsatisfied clause.
P =X+ 1) =

—_— __—
S PrX =X -1 < 1 |

(X1 \/)_(2) A\ ()_(1 \/)_(3) A (X1 \/Xz) A (Xz, \/)_(3) A\ (X4 \/)_(1)

~——

X, 2, Xyt

14



Coupling to a Markov Chain

The number of correctly assigned variables at step i, X;, obeys

1 1

15



Coupling to a Markov Chain

The number of correctly assigned variables at step i, X;, obeys
1 1

Is Xo, X1, X5, ... @ Markov chain? MO

15



Coupling to a Markov Chain

The number of correctly assigned variables at step i, X;, obeys

1 1

Is Xo, X1, Xz, ... @ Markov chain? i
Define a Markov chain Yg, Y4, ... such that YO Xo and:
Pr(Yiss =1]Y;=0) =1
Pr(Yipn=j+1Y, =) =1/2for1<j<n-1
Pr(Yiqan=j—1Yj=j)=1/2for1<j<n-1
Pr(Yiqas=n|Yi=n)=1.

15



Coupling to a Markov Chain

The number of correctly assigned variables at step i, X;, obeys

1 1
Pr(X,-+1 == X,‘ + 1) Z E and Pr(XH,] = X ) < 5

e U
s Xo, X1, X2, . .. @ Markov chain? <7<| 4 y?,)
Define a Markov chain Yq,Yq,... such that Yo = Xo and
Pr(Yips =1lYi=0) =1
PriYir=j+1Yi=))=1/2for1<j<n-—1
. —_
Pr(Yip :/—1\Y,—j)—1/2 for1<j<n-—1
Pr(Yipr =nlYj=n) =
- Our algorithm terminates as soon as X; = n. We expect to reach

this point only more slowly with Y;. So it suffices to argue that
Y; = n with high probability for large enough i.

Formally could use a coupling argument (see Chapter 11 of
Mitzenmacher Upfal.) 5



Simple Markov Chain Analysis

Want to bound the expected time required to have Y; = n.

1/2 1/

1 112 112 2
77 N TN TN N
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1/2
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Simple Markov Chain Analysis

Want to bound the expected time required to have Y; = n.

1/2 1/2 1/

NSNS N
oy 1
IS G K
1/2 1/2 1/2 1/2

Let h; be the expected number of steps to reach n when starting at
node j (i.e, the expected termination time when j variables are
assigned correctly.)

16



Simple Markov Chain Analysis

Want to bound the expected time required to have Y; = n.

I

. e °>1
\_/

Let h; be the expected number of steps to reach n when starting at

node j (i.e, the expected termination time when j variables are
assigned correctly.)

hy =0
ho =hy;+1
hi—y  h;
h,-:1711L j2+1+1f0r1<j<ﬂ—1

-—

16



Simple Markov Chain Analysis

Claim: hj = hiy1 +2j + 1.

s Se———
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Simple Markov Chain Analysis

Claim: h; = h; 4 4+ 2j + 1. Can prove via induction on j.
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Simple Markov Chain Analysis

Claim: h; = hjy; +\2é+ 1. Can prove via induction on J.

- hg = hy + 1, satisfying the claim in the base case.
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Simple Markov Chain Analysis

Claim: h; = h; 4 4+ 2j + 1. Can prove via induction on j.

- hg = hy + 1, satisfying the claim in the base case.

(=t 2 iyt 2 hy U0

2 2 T
h, .
:§’+(/;_1)+%+’7“+1
\Q;) \,Jz\ ’ 1 ’
Ny
2
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Simple Markov Chain Analysis

Claim: h; = h; 4 4+ 2j + 1. Can prove via induction on j.

- hg = hy + 1, satisfying the claim in the base case.

hir  hi
=5 —i-iz +
J ; J+1
=Jy(-1)+=-+ L 41
SN+
hi  h; 1
_ J+1 co
=S+ tity

- Rearranging gives: h; = hj;, +2j +1.

17



Simple Markov Chain Analysis

Claim: h; = h; 4 4+ 2j + 1. Can prove via induction on j.

- hg = hy + 1, satisfying the claim in the base case.

- Rearranging gives: h; = hj;, +2j +1.

So in total we have:
ho:h1+1:h2+3+1:...:2(2j+1)

17



Simple Markov Chain Analysis

Claim: h; = h; 4 4+ 2j + 1. Can prove via induction on j.

- hg = hy + 1, satisfying the claim in the base case.

- Rearranging gives: h; = hj;, +2j +1.

So in total we have:
ho=hi+1=h+3+1=...=> 2+1)=n"

17



Simple Markov Chain Analysis

Upshot: Consider the Markov chain Yg,Ys,..., and let /* be the
minimum i such Y = n. Then E[i*] < n?.

18



Simple Markov Chain Analysis

Upshot: Consider the Markov chain Yg,Ys,..., and let /* be the
minimum i such Y = n. Then E[i*] < n?.

- Thus, by Markov's inequality, with probability > 1/2, our
2-SAT algorithms finds a satisfying assignment within 2n
steps.

18



Simple Markov Chain Analysis

Upshot: Consider the Markov chain Yg,Ys,..., and let /* be the
minimum i such Y = n. Then E[i*] < n?.

- Thus, by Markov's inequality, with probability > 1/2, our
2-SAT algorithms finds a satisfying assignment within 2n
steps.

_ - : . T

- Splitting our 2nm total steps into m periods of 2n steps

each, we fail to find a satisfying assignment in all m

periods with probability at most 1/2™.

18



Simple Markov Chain Analysis

Upshot: Consider the Markov chain Yg,Ys,..., and let /* be the
minimum i such Y = n. Then E[i*] < n?.

——

- Thus, by Markov's inequality, with probability > 1/2, our
2-SAT algorithms finds a satisfying assignment within n©
steps.

_ L . .
- Splitting our 2nm total steps into m periods of 2n)'steps
each, we fail to find a satisfying assignment in all m

periods with probability at most 1/2m
'T/\QJ f}B/\

ck= fon: U | 2

\ —\,\\L }‘Y o~ 0
M aflle \‘\\j:e \|)1: " HTZH)'I . O(\J/I—>

—_ 18



3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF
formula with n variables.

(X1 V Xo \/)_(3)/\ ()_<1 V X3 \/X4) N (X1 V X \/)_(3).

19



3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF
formula with n variables.

(X1 V Xo \/)_(3)/\ ()_(1 V X3 \/X4) N (X1 V X \/)_(3).

* 3-SAT is famously NP-hard. What is the naive deterministic
runtime required to solve 3-SAT? (;Lﬁ bk\j 8\1%3\/5 N ”\55()?*4)5

19



3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF
formula with n variables.

(X1 V Xo \/)_(3)/\ ()_(1 V X3 \/X4) N (X1 V X \/)_(3).

- 3-SAT is famously NP-hard. What is the naive deterministic
runtime required to solve 3-SAT? Qf\

_ —
(The current best known runtime is 0(1.307") [Hansen, Kaplan
ir, Zwick, 2019].

0®
0@ see that our simple Markov chain approach gives an
0(1 3334") time algorithm.
| —

&“0 z (DDOq: \ "\f‘\

(i)%f\“ 190,000

3
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3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF
formula with n variables.

(X1 V Xo \/)_(3)/\ ()_(1 V X3 \/X4) N (X1 V X \/)_(3).

—_—

- 3-SAT is famously NP-hard. What is the naive deterministic

runtime required to solve 3-SAT?

- The current best known runtime is O(1.307") [Hansen, Kaplan

Zamir, Zwick, 2019].

- Will see that our simple Markov chain approach gives an

0(1.3334") time algorithm.

- Note that the exponential time hypothesis conjectures that

Q(c") is needed to solve 3-SAT for some constant ¢ > 1. The

E&trong exponential time hypothesis conjectures that for k — oo,

solving R-SAT requires O(2") time.

19



Randomized 3-SAT Algorithm

1. Start with an arbitrary assignment.

2. Repeat m times, terminating if a satisfying assignment is
found:
- Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If avalid assignment is not found, return that the formula
is unsatisfiable.

20



Randomized 3-SAT Analysis

As in the 2-SAT setting, let X; be the number of correctly assigned
variables at step i. We have:

CON e~ - b ] o) '/

(X) V XV )<1)> Er(xi =X+ > 1D
Nseack .o b Pr(Xi = X1 = 1) < 7_/5
N —

AN —

21



Randomized 3-SAT Analysis

As in the 2-SAT setting, let X; be the number of correctly assigned
variables at step i. We have:

Pr(X = X, ¢ +1) >

Pr(Xi =Xi_1 — 1) <

Define the coupled Markov chain Yo, Y;, ... as before, but with
Y; =Y;_1+ 1 with probability 1/3and Y; = Y;_1 — 1= 2/3.

1 13 13 113 13

AQ/\ ) Aﬂ/\ S
amnm 1

2/3 2/3 2/3 2/3
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Randomized 3-SAT Analysis

As in the 2-SAT setting, let X; be the number of correctly assigned
variables at step i. We have:

Pr(X = X, ¢ +1) >

Pr(Xi =Xi_1 — 1) <

Define the coupled Markov chain Yo, Y;, ... as before, but with
Y; =Y;_1+ 1 with probability 1/3and Y; = Y;_1 — 1= 2/3.

1 13 13 113 13

TN T )

06 6 0 - © o
" EE 1
2/3 2/3 2/3 2/3

How many steps do you expect are needed to reach Y; = n?
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Randomized 3-SAT Analysis

Letting h; be the expected number of steps to reach n when
starting at node J,

hn:O
ho = hy+1
2h;_ h; .
h; = é1+%+1 for1<j<n-—1

B —
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Randomized 3-SAT Analysis

Letting h; be the expected number of steps to reach n when
starting at node J,

hn:O
ho = hy+1
2h;_ h; .
h; = é1+jTM+1 fort<j<n-—1

- We can prove via induction that h; = h; ., + 22 _3andin
turn, hg = 2"*t2 — 4 — 3n. —_—
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Randomized 3-SAT Analysis

Letting h; be the expected number of steps to reach n when
starting at node J,

hn:O
ho = hy+1
2h;_ h; .
h; = é1+jTM+1 fort<j<n-—1

- We can prove via induction that h; = h; ., + 22 _3andin
turn, hg = 2"*+2 — 4 — 3n.
- Thus, in expectation, our algorithm takes at most ~ 2+2
steps to find a satisfying assignment if there is one, .
\ : ﬁlJ,, e
T & ~acdim vl anan i )
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Randomized 3-SAT Analysis

Letting h; be the expected number of steps to reach n when
starting at node J,

hn:O
ho = hy+1
2h;_ h; .
h; = éu'jTMJ” fort<j<n-—1

- We can prove via induction that h; = h;,, +2*2 —3 and in
turn, hg = 2"*+2 — 4 — 3n.

- Thus, in expectation, our algorithm takes at most ~ 2+2
steps to find a satisfying assignment if there is one.

- Is this an interesting result?

ot Ahan 2
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Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we
will have E[Xo] = n/2. With very small, but still non-negligible
probability, Xo will be much larger, and our random walk will be more
likely to find a satisfying assignment.
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Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we
will have E[Xo] = n/2. With very small, but still non-negligible
probability, X, will be much larger, and our random walk will be more
likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:
é Repe \mes, terminating if a satisfying assignment is found:

1. Pick a uniform random assignment for the variables.
2. Repeat 3n times, terminating if a satisfying assignment is found:

- Chose an arbitrary unsatisfied clause.
- Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is

unsatisfiable.
23



Modified 3-SAT Analysis

Consider a single random assignment with Xo = n — . lL.e,, we need to
. . . . . _\__
correct j variables to find a satisfying assignment.

24



Modified 3-SAT Analysis

Consider a single random assignment wit@ l.e., we need to
correct j variables to find a satisfying assignment.

Letrnge a lower bound on the success probability in this case. Since
j < nand since we run the search process for 3n steps,

G = PriXsn = nj
> Pr[X; = n]
—_————
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Modified 3-SAT Analysis

Consider a single random assignment with Xo = n — . lL.e,, we need to
correct j variables to find a satisfying assignment.

Let g; be a lower bound on the success probability in this case. Since
j < nand since we run the search process for 3n steps,

q; = Pr[Xs, = n|
> Pr[X; = n]
> Pr[take exactly 2j steps forward and j steps back in 3j steps]

& O O B
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Modified 3-SAT Analysis

Consider a single random assignment with Xo = n — . lL.e,, we need to
correct j variables to find a satisfying assignment.

Let g; be a lower bound on the success probability in this case. Since
j < nand since we run the search process for 3n steps,

q; = Pr[Xs, = n|
> Pr[Xs; =n]
> Pr[take exactly 2j steps forward and j steps back in 3j steps]
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Modified 3-SAT Analysis

Consider a single random assignment with Xo = n — . lL.e,, we need to
correct j variables to find a satisfying assignment.

Let g; be a lower bound on the success probability in this case. Since
j < nand since we run the search process for 3n steps,
_q; = Pr[Xsp = n]
> Pl’[X3] = n]

> Pr[take exactly 2j steps forward and j steps back in 3j steps]

-0)0.6)

Via Stirlings a prOX|mat|on ( ) > 1. 32—:‘5 giving:
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

n
92D Po=n—]l-q
j=0
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

n
qg=>» PrXo=n-j]-q

j=0

n
n 1 1
> ‘= .
—,_ZO</>_3 NGEY

p—
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

n
qg=>» PrXo=n-j]-q

j=0

=2(0) 77

\m1. on ;(7) ' % (Pfil)ﬂ
S~/

S)

Y
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

n
qg=>» PrXo=n-j]-q

j=0

‘Z<1> n \ﬁ1-2f

n 1
2”,.2_1:(1)'2/

>
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

n
qg=>» PrXo=n-j]-q

j=0

—Z<,> 5 v \\
"b\/\ervnl\ “\N'Dfa/\
=50) 3
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Z
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

n
qg=>» PrXo=n-j]-q

j=0

%) 5 7
2@2,26)2

e () < G

Thus, if we repeat form = 0 (ﬁ (g)n) = 0(1.33334") trials, with
very high probability, we will find a satisfying assignment if there is
one.
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Gambler’s Ruin



Gambler's Ruin

- You and ‘a friend’ repeatedly toss a fair coin. If it hits heads, you
give your friend $1. If it hits tails, they give you $1.

- You start with $4; and your friend starts with $¢,. When either of
you runs out of money the game terminates.

- What is the probability that you win $¢,?
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Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at step

i. Xo = 0 and:
P_ti—ey = Pop, =1

Pijz1=Pjjor=1/2 for =l <j< by
1/;

2 1/2 1/2
N TN
-Q® 00>
N

1/2 1/2

1/2
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Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at step

i. Xo = 0 and:
P_ti—ey = Pop, =1

Pj,jJr’l = Pj7}',1 = 1/2 for —61 <].<€2

1/2 1/2
nm

7 N N\ he
< 0® - O 0

N
1/2

1/2 1/2

- ¢y and ¢, are absorbing states.
- Allj with —¢; < j < £, are transient states. l.e,
PriX; =j forsome " > i|X;=j] <.
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Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at step

i. Xo = 0 and:
P_ti—ey = Pop, =1

Pj,jJr’l = Pj7}',1 = 1/2 for —61 <].<€2

1/2 1/2
nm

7 N N\ he
< 0® - O 0

N
1/2

1/2 1/2

- ¢y and ¢, are absorbing states.
- Allj with —¢; < j < £, are transient states. l.e,
PriX; =j forsome " > i|X;=j] <.

Observe that this Markov chain is also a Martingale since

E[Xi1[Xi] = X. -



Gambler’s Ruin Analysis

Let Xo, X1, ... be the Markov chain where X; is your profit at step I.
Xo = 0 and:
P_¢,—¢, =P, 0, =1

'Dj,j+1 = Pj7j71 = 1/2 for — 61 < j < éz

We want to compute g = lim;j_ o, Pr[X; = £].

28



Gambler’s Ruin Analysis

Let Xo, X1, ... be the Markov chain where X; is your profit at step I.
Xo = 0 and:
P_¢,—¢, =P, 0, =1

'Dj,j+1 = Pj7j71 = 1/2 for — 61 < j < éz
We want to compute g = lim;j_ o, Pr[X; = £].

By linearity of expectation, for any i, E[X;] = 0. Further, for
g = limj_, Pr[X; = ¢,], since —¢;, ¢, are the only non-transient states,

lim E[Xj] = g+ —¢,(1—q) = 0.
i— 00
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Gambler’s Ruin Analysis

Let Xo, X1, ... be the Markov chain where X; is your profit at step I.
Xo = 0 and:
P_¢,—¢, =P, 0, =1

'Dj,j+1 = Pj7j71 = 1/2 for — 61 < j < éz
We want to compute g = lim;j_ o, Pr[X; = £].

By linearity of expectation, for any i, E[X;] = 0. Further, for
g = limj_, Pr[X; = ¢,], since —¢;, ¢, are the only non-transient states,

lim E[Xj] = g+ —¢,(1—q) = 0.
i— 00

4
L1+ "

Solving for g, we have g =

28



Gambler’'s Ruin Thought Exercise

What if you always walk away as soon as you win just $1. Then
what is your probability of winning, and what are your
expected winnings?
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