COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 9

Logistics

- Problem Set 3 is due 4/15 at 8pm.
- Project progress report due this Friday, 4/8. Submit a pdf via email. 1-2 pages.
- · Weekly quiz due next Tuesday at 8pm.

Summary

Last Week: Random sketching and subspace embedding.

- · Subspace embedding via leverage score sampling.
- · Analysis via matrix concentration bounds.
- Spectral graph sparsification via leverage score sampling.

Summary

Last Week: Random sketching and subspace embedding.

- · Subspace embedding via leverage score sampling.
- · Analysis via matrix concentration bounds.
- Spectral graph sparsification via leverage score sampling.

Today:

- · Finish spectral graph sparsification and physical interpretation
- Start on Markov chains and their analysis
- · Markov chain based algorithms for 2-SAT and 3-SAT.
- · Gambler's ruin.

3

Spectral Graph Sparsification

Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)

For any $A \in \mathbb{R}^{n \times d}$ with left singular vector matrix U, let $\tau_i = \|U_{i,:}\|_2^2$ and $p_i = \frac{\tau_i}{\sum \tau_i}$. Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have $\mathbf{S}_{:,j}$ independently set to $\frac{1}{\sqrt{mp_i}} \cdot e_i^T$ with probability p_i .

Then, if $m = O\left(\frac{d \log(d/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 - \delta$, **S** is an ϵ -subspace embedding for A.

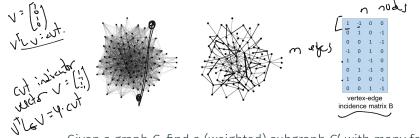
- 0 (5 + 10 (1/9))

Matches oblivious random projection up to the log d factor.

• Variational characterization: $\underline{\tau_i} = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{[A\mathbf{x}](i)^2}{\|A\mathbf{x}\|_2^2}$.

$$\lambda_1(A) = \max_{1 \le 1 \le 1} \frac{x^T A x}{\|x\|_{2}}$$

Spectral Graph Sparsification

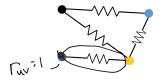


- Given a graph G, find a (weighted) subgraph G' with many fewer edges such that: $(1 \epsilon)L_G \leq L_{G'} \leq (1 + \epsilon)L_G$.
- Equivilantly, letting $B \in \mathbb{R}^{m \times n}$ be the vertex-edge incidence matrix of G, find a sampling matrix S that is an ϵ -subspace embedding for B. I.e, $B^TS^TSB \approx_{\epsilon} B^TB$.
- Sampling edges according to their leverage scores in B gives an ϵ -spectral sparsifier with just $O(n \log n/\epsilon^2)$ edges.
 - Can be used to approximate many properties of *G*, including the size of all cuts.

1 = BB

- · View each edge as a 1-Ohm resistor.
- If we fix a current of 1 between u, v, the voltage drop across the nodes, is known as the effective resistance between u and v.

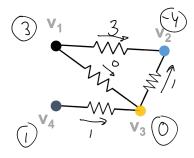
- View each edge as a 1-Ohm resistor.
- If we fix a current of 1 between *u*, *v*, the voltage drop across the nodes is known as the effective resistance between *u* and *v*.
- We will show that the leverage score of each edge is exactly equal to its effective resistance.

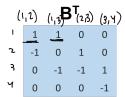


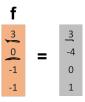
- · View each edge as a 1-Ohm resistor.
- If we fix a current of 1 between *u*, *v*, the voltage drop across the nodes is known as the effective resistance between *u* and *v*.
- We will show that the leverage score of each edge is exactly equal to its effective resistance.
- Intuitively, to form a spectral sparsifier, we should sample high resistance edges with high probability, since they are 'bottlenecks'.

Electrical Flows

For a flow $f \in \mathbb{R}^m$, the currents going into each node are given by $B^T f$.

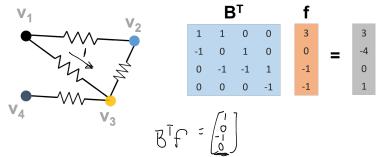






Electrical Flows

For a flow $f \in \mathbb{R}^m$, the currents going into each node are given by $B^T f$.



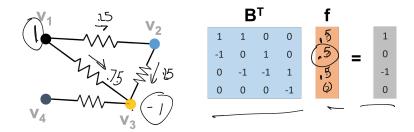
The electrical flow when one unit of current is sent from u to v is:

$$f^e = \underset{f:B^T f = b_{u,v}}{\operatorname{arg\,min}} \|f\|_2.$$

Since power (energy/time) is given by $P = I^2 \cdot R$.

Electrical Flows

For a flow $f \in \mathbb{R}^m$, the currents going into each node are given by $B^T f$.



The electrical flow when one unit of current is sent from u to v is:

$$f^e = \underset{\underline{f}:B^{\mathsf{T}}f = b_{u,v}}{\operatorname{arg\,min}} \|f\|_2.$$

Since power (energy/time) is given by $P = I^2 \cdot R$.

$$f^e = \underset{f:B^T f = b_{u,v}}{\operatorname{arg\,min}} \|f\|_2.$$

$$f^e = \underset{f:B^T f = b_{u,v}}{\operatorname{arg min}} \|f\|_2.$$

By Ohm's law, the voltage drop across (u, v) (i.e., the effective resistance) is simply the entry $f_{u,v}^e$ (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column span of B. Otherwise, it would not have minimal norm. So $f = B\phi$ for some vector $\phi \in \mathbb{R}^n$.

$$\mathcal{F}^{e} = \underset{f:B^{T}f = b_{u,v}}{\operatorname{arg\,min}} \|f\|_{2}.$$

- To solve for f, note that we can assume that f is in the column span of B. Otherwise, it would not have minimal norm. So $f = B\phi$ for some vector $\phi \in \mathbb{R}^n$.
- Then need to solve $\underline{B^T}B\phi = b_{u,v}$. I.e., $\underline{L}\phi = b_{v,v}$. $\underline{\phi}$ is unique up to its component in the null-space of \underline{L} .

$$f^{e} = \underset{f:B^{T}f = bu,v}{\arg\min} \|f\|_{2}. \qquad \left(\begin{array}{c} 1 & -1 \\ -1 & 1 \\ \vdots & \vdots \\ \vdots & \vdots \end{array}\right) = \left(\begin{array}{c} \phi(\mathbf{i}) - \phi(\mathbf{i}) \\ \phi(\mathbf{i}) - \phi(\mathbf{i}) \\ \vdots & \vdots \\ \phi(\mathbf{i}) - \phi(\mathbf{i}) \\ \vdots & \vdots$$

- To solve for f, note that we can assume that f is in the column span of B. Otherwise, it would not have minimal norm. So $f = B\phi$ for some vector $\phi \in \mathbb{R}^n$.
- Then need to solve $B^TB\phi=b_{u,v}$. I.e., $L\phi=b_{u,v}$. ϕ is unique up to its component in the null-space of L.

its component in the null-space of
$$L$$
.

Cank (null space (L)) = 1

L

1 -1 0 0

-1 3 -1 -1

0 -1 2 -1

0 -1 -1 2

$$f^e = \underset{f:B^T f = b_{u,v}}{\operatorname{arg\,min}} \|f\|_2.$$

- To solve for f, note that we can assume that f is in the column span of B. Otherwise, it would not have minimal norm. So $f = B\phi$ for some vector $\phi \in \mathbb{R}^n$.
- Then need to solve $B^T B \phi = b_{u,v}$. I.e., $L \phi = b_{u,v}$. ϕ is unique up to its component in the null-space of L.

$$\cdot \ \underline{\phi} = L^+ b_{u,v}. \qquad \qquad \Box^{\prime} b_{u,v}$$

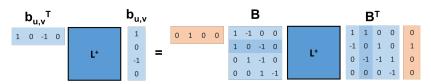
$$f^e = \underset{f:B^T f = b_{u,v}}{\operatorname{arg\,min}}$$

 $f^{e} = \underset{f:B^{T}f = b_{u,v}}{\operatorname{arg\,min}} \|f\|_{2}.$ $\int_{f:B^{T}f = b_{u,v}} \left(\int_{f:B_{u,v}} \int_{f:$ By Ohm's law, the voltage drop across (u, v) (i.e., the effective resistance) is simply the entry $f_{u,v}^e$ (since u,v is a unit resistor).

- To solve for f, note that we can assume that f is in the column span of B. Otherwise, it would not have minimal norm. So $\underline{f} = B\phi$ for some vector $\phi \in \mathbb{R}^n$.
- Then need to solve $B^TB\phi = b_{u,v}$. I.e., $L\phi = b_{u,v}$. ϕ is unique up to its component in the null-space of L.
- $\cdot \phi = L^+ b_{\mu,\nu}$
- Gives $\underline{f^e} = \underline{B}\underline{L^+}\underline{b_{u,v}}$. So $\underline{f^e_{u,v}}$ is just $\underline{b^T_{u,v}}\underline{L^+}\underline{b_{u,v}} = \underline{b_{u,v}}(\underline{B^T}\underline{B})^+\underline{b_{u,v}}$.

The effective resistance across edge $(\underline{u}, \underline{v})$ is given by $\underline{b_{u,v}}(\underline{B^TB})^+\underline{b_{u,v}} = e_{u,v}^TB(B^TB)^+B^Te_{u,v}.$ $\mathbf{b_{u,v}}^T \qquad \mathbf{b_{u,v}} \qquad \mathbf{B} \qquad \mathbf{B^T}$ $\mathbf{b_{u,v}}^T \qquad \mathbf{b_{u,v}} \qquad \mathbf{b_{u,v}$

The effective resistance across edge (u, v) is given by $b_{u,v}(B^TB)^+b_{u,v} = e_{u,v}^TB(B^TB)^+B^Te_{u,v}.$



Write
$$B = U\Sigma V^T$$
 in its SVD. I

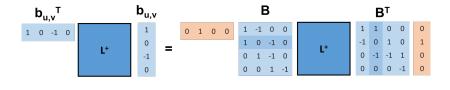
$$e_{u,v}^T B(B^T B)^+ B^T e_{u,v} = e_{u,v}^T U\Sigma V^T (V\Sigma^{-2}V^T)V\Sigma U^T e_{u,v}$$

$$V\Sigma V^T V^T \qquad e_{u,v}^T UV^T e_{u,v}$$

$$e_{u,v}^T UV^T e_{u,v}$$

The effective resistance across edge (u, v) is given by

$$b_{u,v}(B^TB)^+b_{u,v} = e_{u,v}^TB(B^TB)^+B^Te_{u,v}.$$

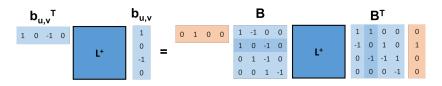


Write $B = U\Sigma V^T$ in its SVD.

$$e_{u,v}^T B(B^T B)^+ B^T e_{u,v} = e_{u,v}^T U \Sigma V^T (V \Sigma^{-2} V^T) V \Sigma U^T e_{u,v}$$
$$= e_{u,v}^T U U^T e_{u,v}$$

The effective resistance across edge (u, v) is given by

$$b_{u,v}(B^TB)^+b_{u,v} = e_{u,v}^TB(B^TB)^+B^Te_{u,v}.$$



Write $B = U\Sigma V^T$ in its SVD.

$$e_{u,v}^{\mathsf{T}}B(B^{\mathsf{T}}B)^{+}B^{\mathsf{T}}e_{u,v} = e_{u,v}^{\mathsf{T}}U\Sigma V^{\mathsf{T}}(V\Sigma^{-2}V^{\mathsf{T}})V\Sigma U^{\mathsf{T}}e_{u,v}$$

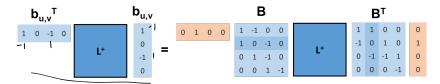
$$= e_{u,v}^{\mathsf{T}}UU^{\mathsf{T}}e_{u,v}$$

$$= U_{u,v}^{\mathsf{T}}U_{u,v} = ||U_{u,v}||_{2}^{2}.$$

$$||U_{u,v}||_{2}^{2}.$$

The effective resistance across edge
$$(u, v)$$
 is given by B

$$b_{u,v}(B^TB)^+b_{u,v} = e_{u,v}^TB(B^TB)^+B^Te_uv.$$



Write $B = U\Sigma V^T$ in its SVD.

$$\begin{aligned} e_{u,v}^{\mathsf{T}} B(B^{\mathsf{T}} B)^{+} B^{\mathsf{T}} e_{u,v} &= e_{u,v}^{\mathsf{T}} U \Sigma V^{\mathsf{T}} (V \Sigma^{-2} V^{\mathsf{T}}) V \Sigma U^{\mathsf{T}} e_{u,v} \\ &= e_{u,v}^{\mathsf{T}} U U^{\mathsf{T}} e_{u,v} \\ &= U_{u,v}^{\mathsf{T}} U_{u,v} = \|U_{u,v}\|_{2}^{2}. \end{aligned}$$

I.e., the effective resistance is exactly the leverage score of the corresponding row in *B*.

Markov Chains

Markov Chain Definition

- A discrete time stochastic process is a collection of random variables X₀, X₁, X₂,...,
- A discrete time stochastic process is a Markov chain if is it memoryless:

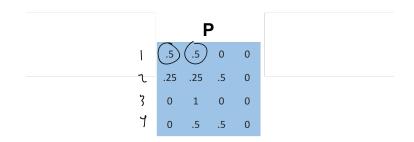
$$\Pr(\underline{X_t = a_t | X_{t-1} = a_{t-1}, \dots, X_0 = a_0}) = \Pr(X_t = a_t | \underline{X_{t-1} = a_{t-1}})$$

= P_{a_{t-1}, a_t} .

Think-Pair-Share: In a Markov chain, is X_t independent of $X_{t-2}, X_{t-3}, \ldots, X_0$? $X_t = \frac{1}{2} | \text{w.p.} | / 2 | X_t | \text{is independent of all } \text{j.j.} \text{j.j.} \text{j.j.}$ $X_t = \frac{1}{2} | \text{m.m.} \text{w.p.} \text{is independent of all } \text{j.j.} \text{j.j.} \text{j.j.}$ $X_t = \frac{1}{2} | \text{m.m.} \text{w.p.} \text{is independent of all } \text{j.j.} \text{j.j.} \text{j.j.}$

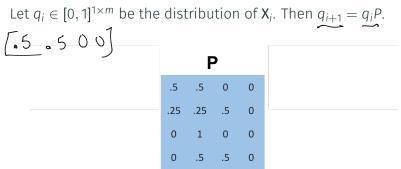
A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$\underline{P_{j,k}} = \Pr(\underline{X_{i+1}} = \underline{k} | \underline{X_i} = \underline{j}).$$



A Markov chain X_0, X_1, \dots where each X_i can take m possible values, is specified by the transition matrix $P \in [0,1]^{m \times m}$ with

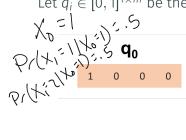
$$P_{j,k} = \Pr(\mathbf{X}_{i+1} = k | \mathbf{X}_i = j).$$



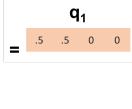
A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

$$P_{j,k} = \Pr(\mathbf{X}_{i+1} = k | \mathbf{X}_i = j).$$

Let $q_i \in [0,1]^{1 \times m}$ be the distribution of X_i . Then $q_{i+1} = q_i P$.



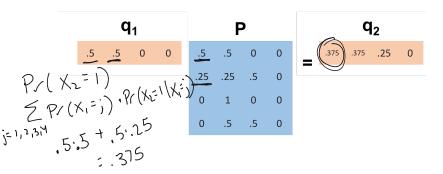
Р					
(3	(.5)	0	0		
.25	.25	.5	0		
0	1	0	0		
0	.5	.5	0		



A Markov chain $X_0, X_1, ...$ where each X_i can take m possible values, is specified by the transition matrix $P \in [0, 1]^{m \times m}$ with

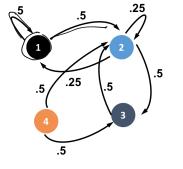
$$P_{j,k} = \Pr(\mathbf{X}_{i+1} = k | \mathbf{X}_i = j).$$

Let $q_i \in [0,1]^{1 \times m}$ be the distribution of X_i . Then $q_{i+1} = q_i P$.



Graph View

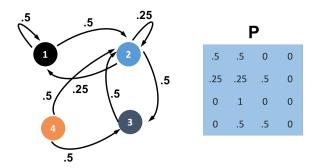
Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_i can take.



Р					
.5	.5	0	0		
.25	.25	.5	0		
0	1	0	0		
0	.5	.5	0		

Graph View

Often viewed as an underlying state transition graph. Nodes correspond to possible values that each X_i can take.



The Markov chain is **irreducible** if the underlying graph consists of single strongly connected component.

2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF formula with n variables. $X_1 = 0$ $X_2 = 1$ $X_3 = 1$ $X_3 = 1$ $X_4 = 1$ $X_5 = 1$ X_5

2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF $X_1 = X_2 = X_3 = X_4 = 0$ $X_1 = 1$ formula with n variables.

$$(x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$$
'local search' algorithm:

A simple 'local search' algorithm:

- 1. Start with an arbitrary assignment.
- 2. Repeat 2mn² times, terminating if a satisfying assignment is found:
 - Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
- 3. If a valid assignment is not found, return that the formula is unsatisfiable.

defin Xi, I need to forman

Motivating Example: Find a satisfying assignment for a 2-CNF formula with *n* variables.

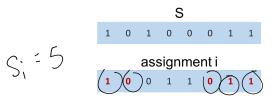
$$(x_1 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee \overline{x}_3) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x}_3) \wedge (x_4 \vee \overline{x}_1)$$

A simple 'local search' algorithm:

- 1. Start with an arbitrary assignment.
- 2. Repeat 2mn² times, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
- 3. If a valid assignment is not found, return that the formula is unsatisfiable.

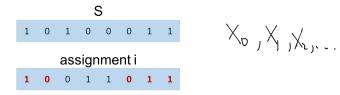
Claim: If the formula is satisfiable, the algorithm finds a satisfying assignment with probability $\geq 1 - 2^{-m}$.

Fix a satisfying assignment S. Let $X_i \le n$ be the number of variables that are assigned the same values as in S, at step i.



• $X_{i+1} = X_i \pm 1$ since we flip one variable in an unsatisfied clause.

Fix a satisfying assignment S. Let $X_i \le n$ be the number of variables that are assigned the same values as in S, at step i.



• $X_{i+1} = X_i \pm 1$ since we flip one variable in an unsatisfied clause.

$$\begin{array}{c} \cdot \ \operatorname{Pr}(X_{i+1} = X_i + 1) \geq \ | / \mathcal{I} \\ \cdot \ \operatorname{Pr}(X_{i+1} = X_i - 1) \leq \ | / \mathcal{I} \\ (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1) \end{array}$$

The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(X_{i+1} = X_i + 1) \ge \frac{1}{2}$$
 and $\Pr(X_{i+1} = X_i - 1) \le \frac{1}{2}$.

The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(X_{i+1}=X_i+1)\geq \frac{1}{2}\quad\text{and}\quad \Pr(X_{i+1}=X_i-1)\leq \frac{1}{2}.$$
 Is X_0,X_1,X_2,\ldots a Markov chain?

The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(X_{i+1} = X_i + 1) \ge \frac{1}{2}$$
 and $\Pr(X_{i+1} = X_i - 1) \le \frac{1}{2}$.

Is X_0, X_1, X_2, \ldots a Markov chain?

Define a Markov chain Y_0, Y_1, \ldots such that $\underline{Y_0} = X_0$ and:

$$Pr(Y_{i+1} = 1 | Y_i = 0) = 1$$

$$Pr(Y_{i+1} = j + 1 | Y_j = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

$$Pr(Y_{i+1} = j - 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

$$Pr(Y_{i+1} = n | Y_i = n) = 1.$$

The number of correctly assigned variables at step i, X_i , obeys

$$\Pr(\mathbf{X}_{i+1} = \mathbf{X}_i + 1) \ge \frac{1}{2} \quad \text{and} \quad \Pr(\mathbf{X}_{i+1} = \mathbf{X}_i - 1) \le \frac{1}{2}.$$
Is $\mathbf{X}_0, \mathbf{X}_1, \mathbf{X}_2, \dots$ a Markov chain?
$$\left(\begin{array}{c} \mathbf{X}_1 & \mathbf{V} & \mathbf{X}_3 \\ \mathbf{X}_1 & \mathbf{V} & \mathbf{X}_3 \end{array} \right)$$

Define a Markov chain Y_0, Y_1, \ldots such that $Y_0 = X_0$ and:

$$Pr(Y_{i+1} = 1 | Y_i = 0) = 1$$

$$Pr(Y_{i+1} = j + 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

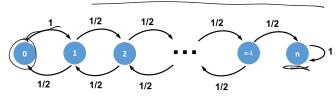
$$Pr(Y_{i+1} = j - 1 | Y_i = j) = 1/2 \text{ for } 1 \le j \le n - 1$$

$$Pr(Y_{i+1} = n | Y_i = n) = 1.$$

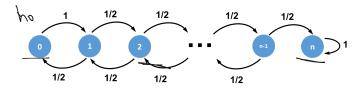
• Our algorithm terminates as soon as $X_i = n$. We expect to reach this point only more slowly with Y_i . So it suffices to argue that $Y_i = n$ with high probability for large enough i.

Formally could use a coupling argument (see Chapter 11 of Mitzenmacher Upfal.)

Want to bound the expected time required to have $Y_i = n$.

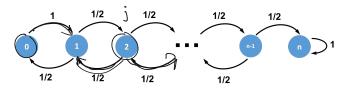


Want to bound the expected time required to have $Y_i = n$.



Let h_j be the expected number of steps to reach n when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)

Want to bound the expected time required to have $Y_i = n$.



Let h_j be the expected number of steps to reach n when starting at node j (i.e., the expected termination time when j variables are assigned correctly.)

$$h_n = 0$$

$$h_0 = h_1 + 1$$

$$h_j = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 \text{ for } 1 \le j \le n-1$$

Claim:
$$h_j = h_{j+1} + 2j + 1$$
.

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$\begin{bmatrix}
h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1 & h_{j-1} = \frac{h_{j}}{2} + 2(j-1) + 1 \\
= \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1 \\
= \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

$$\underbrace{h_{j}}_{2} = \underbrace{h_{j+1}}_{2} + j + \underbrace{1}_{2}.$$

$$h_{j} = h_{j+1} + 2j + 1$$

$$h_{j} = h_{j+1} + 2j + 1$$

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$= \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$= \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

• Rearranging gives: $h_j = h_{j+1} + 2j + 1$.

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$= \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$= \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

• Rearranging gives: $h_i = h_{i+1} + 2j + 1$.

So in total we have:

$$h_0 = h_1 + 1 = h_2 + 3 + 1 = \dots = \sum_{j=0}^{m-1} (2j+1)$$

Claim: $h_j = h_{j+1} + 2j + 1$. Can prove via induction on j.

• $h_0 = h_1 + 1$, satisfying the claim in the base case.

$$h_{j} = \frac{h_{j-1}}{2} + \frac{h_{j+1}}{2} + 1$$

$$= \frac{h_{j}}{2} + (j-1) + \frac{1}{2} + \frac{h_{j+1}}{2} + 1$$

$$= \frac{h_{j}}{2} + \frac{h_{j+1}}{2} + j + \frac{1}{2}.$$

• Rearranging gives: $h_j = h_{j+1} + 2j + 1$.

So in total we have:

$$h_0 = h_1 + 1 = h_2 + 3 + 1 = \dots = \sum_{j=0}^{n-1} (2j+1) = n^2.$$

Upshot: Consider the Markov chain $Y_0, Y_1, ...,$ and let i^* be the minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \le n^2$.

Upshot: Consider the Markov chain $Y_0, Y_1, ...,$ and let i^* be the minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \le n^2$.

• Thus, by Markov's inequality, with probability \geq 1/2, our 2-SAT algorithms finds a satisfying assignment within 2n steps.

Upshot: Consider the Markov chain $Y_0, Y_1, ...,$ and let i^* be the minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \le n^2$.

- Thus, by Markov's inequality, with probability ≥ 1/2, our 2-SAT algorithms finds a satisfying assignment within 2n steps.
- Splitting our 2nm total steps into m periods of 2n steps each, we fail to find a satisfying assignment in all m periods with probability at most $1/2^m$.

Upshot: Consider the Markov chain Y_0, Y_1, \ldots , and let i^* be the minimum i such $Y_{i^*} = n$. Then $\mathbb{E}[i^*] \leq n^2$.

- Thus, by Markov's inequality, with probability ≥ 1/2, our 2-SAT algorithms finds a satisfying assignment within 2n² steps.
- Splitting our 2nm total steps into m periods of 2n steps each, we fail to find a satisfying assignment in all m periods with probability at most $1/2^m$.

Check-in Question: For a fixed i, what roughly is E[V]?

Candom ! | walle EV; = 0

on wo infide line EV; = i E[V] = O(V;)

3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1\vee \bar{x}_2\vee \bar{x}_3)\wedge (\bar{x}_1\vee \bar{x}_3\vee x_4)\wedge (x_1\vee x_2\vee \bar{x}_3).$$

3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3).$$

• 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT? 2 by grashy will assign the naive deterministic

3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x}_3).$$

· 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT? 2^n

The current best known runtime is $O(1.307^n)$ [Hansen, Kaplan,

Zamir, Zwick, 2019].

Will see that our simple Markov chain approach gives an $O(1.3334^n)$ time algorithm.

$$\frac{2}{2} = 1000 = 141$$

$$\left(\frac{4}{3}\right)^{40} = 100,000$$

More Challenging Problem: Find a satisfying assignment for a 3-CNF formula with *n* variables.

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_3} \vee x_4) \wedge (x_1 \vee x_2 \vee \overline{x_3}).$$

- 3-SAT is famously NP-hard. What is the naive deterministic runtime required to solve 3-SAT?
- The current best known runtime is $O(1.307^n)$ [Hansen, Kaplan, Zamir, Zwick, 2019].
- Will see that our simple Markov chain approach gives an $O(1.3334^n)$ time algorithm.
- Note that the exponential time hypothesis conjectures that $O(c^n)$ is needed to solve 3-SAT for some constant c>1. The strong exponential time hypothesis conjectures that for $k\to\infty$, solving k-SAT requires $O(2^n)$ time.

Randomized 3-SAT Algorithm

- 1. Start with an arbitrary assignment.
- 2. Repeat <u>m times</u>, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.
- 3. If a valid assignment is not found, return that the formula is unsatisfiable.

As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

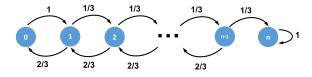
$$(X_{1} \vee X_{2} \vee X_{3})$$
 $Pr(X_{i} = X_{i-1} + 1) \geq 1/3$

As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

$$\Pr(X_i = X_{i-1} + 1) \geq$$

$$\text{Pr}(X_i = X_{i-1} - 1) \leq$$

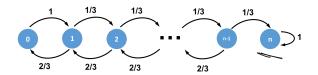
Define the coupled Markov chain $Y_0, Y_1, ...$ as before, but with $Y_i = Y_{i-1} + 1$ with probability 1/3 and $Y_i = Y_{i-1} - 1 = 2/3$.



As in the 2-SAT setting, let X_i be the number of correctly assigned variables at step i. We have:

$$Pr(X_i = X_{i-1} + 1) \ge Pr(X_i = X_{i-1} - 1) \le$$

Define the coupled Markov chain $Y_0, Y_1, ...$ as before, but with $Y_i = Y_{i-1} + 1$ with probability 1/3 and $Y_i = Y_{i-1} - 1 = 2/3$.



How many steps do you expect are needed to reach $Y_i = n$?

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_{n} = 0$$

$$h_{0} = h_{1} + 1$$

$$h_{j} = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$$

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$

 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$

• We can prove via induction that $h_j = h_{j+1} + 2^{j+2} - 3$ and in turn, $h_0 = 2^{n+2} - 4 - 3n$.

Letting h_i be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$

 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$

- We can prove via induction that $h_i = h_{i+1} + 2^{j+2} 3$ and in turn, $h_0 = 2^{n+2} - 4 - 3n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$

steps to find a satisfying assignment if there is one

Take a random well on an infinite live

$$E(Y_1 = \frac{1}{3}) = \exp(-hx_3)$$
 $\exp(-hx_3)$
 $\exp(-hx_3)$

Letting h_j be the expected number of steps to reach n when starting at node j,

$$h_n = 0$$

 $h_0 = h_1 + 1$
 $h_j = \frac{2h_{j-1}}{3} + \frac{h_{j+1}}{3} + 1 \text{ for } 1 \le j \le n-1$

- We can prove via induction that $h_j = h_{j+1} + 2^{j+2} 3$ and in turn, $h_0 = 2^{n+2} 4 3n$.
- Thus, in expectation, our algorithm takes at most $\approx 2^{n+2}$ steps to find a satisfying assignment if there is one.

Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}[X_0] = n/2$. With very small, but still non-negligible probability, X_0 will be much larger, and our random walk will be more likely to find a satisfying assignment.

Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we will have $\mathbb{E}[X_0] = n/2$. With very small, but still non-negligible probability, X_0 will be much larger, and our random walk will be more likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:

Repeat *m* times, terminating if a satisfying assignment is found:

- 1. Pick a uniform random assignment for the variables.
- 2. Repeat 3*n* times, terminating if a satisfying assignment is found:
 - · Chose an arbitrary unsatisfied clause.
 - Pick one of the variables in the clause uniformly at random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is unsatisfiable.

Modified 3-SAT Analysis

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Modified 3-SAT Analysis

Consider a single random assignment with $X_0 = n - \int$ I.e., we need to correct j variables to find a satisfying assignment.

Let $\underline{q_i}$ be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

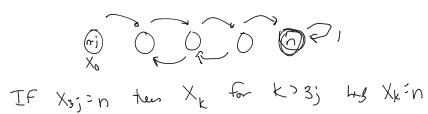
$$\underline{q_j} = \underbrace{\Pr[\mathbf{X}_{3n} = n]}_{\geq \Pr[\mathbf{X}_{3j} = n]}$$

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$q_j = \Pr[X_{3n} = n]$$

 $\geq \Pr[X_{3j} = n]$
 $\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}]$



Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct j variables to find a satisfying assignment.

Let q_j be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$\begin{aligned} q_j &= \Pr[\mathbf{X}_{3n} = n] \\ &\geq \Pr[\mathbf{X}_{3j} = n] \\ &\geq \Pr[\text{take exactly } 2j \text{ steps forward and } j \text{ steps back in } 3j \text{ steps}] \\ &= \left(\frac{3j}{j}\right) \left(\frac{2}{3}\right)^j \cdot \left(\frac{1}{3}\right)^{2j}. \end{aligned}$$

Consider a single random assignment with $X_0 = n - j$. I.e., we need to correct *i* variables to find a satisfying assignment.

Let q_i be a lower bound on the success probability in this case. Since $j \le n$ and since we run the search process for 3n steps,

$$\underline{q_j} = \Pr[\mathbf{X}_{3n} = n]$$
$$\geq \Pr[\mathbf{X}_{3j} = n]$$

≥ Pr[take exactly 2*j* steps forward and *j* steps back in 3*j* steps]

$$= \binom{3j}{j} \left(\frac{2}{3}\right)^j \cdot \left(\frac{1}{3}\right)^{2j}.$$

Via Stirling's approximation,
$$\binom{3j}{j} \ge \frac{1}{\sqrt{j}} \cdot \frac{3^{3j-2}}{2^{2j-2}}$$
, giving:
$$q_j \ge \frac{2^2}{3^2 \sqrt{j}} \cdot \frac{3^{3j}}{2^{2j}} \cdot \frac{2^j}{3^3} \approx \frac{1}{\sqrt{j} \cdot 2^j} \ge \frac{1}{\sqrt{n} \cdot 2^j}.$$

$$\underline{q} \ge \sum_{j=0}^{n} \underline{\Pr[X_0 = n - j]} \cdot q_j$$

$$q \ge \sum_{j=0}^{n} \Pr[\mathbf{X}_{0} = n - j] \cdot q_{j}$$
$$\ge \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^{n}} \cdot \frac{1}{\sqrt{n} \cdot 2^{j}}$$

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^j} \qquad \left(\left| \frac{1}{2} \right|^n \right)$$

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} \binom{n}{j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=1}^{n} \binom{n}{j} \cdot \frac{1}{2^j}$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n$$

$$q \ge \sum_{j=0}^{n} \Pr[X_0 = n - j] \cdot q_j$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^n} \cdot \frac{1}{\sqrt{n} \cdot 2^j}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^n} \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^j}$$

$$= \frac{1}{\sqrt{n} \cdot 2^n} \cdot \left(\frac{3}{2}\right)^n \le \frac{1}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n.$$

Our overall probability of success in a single trial is then lower bounded by:

$$q \ge \sum_{j=0}^{n} \Pr[\mathbf{X}_{0} = n - j] \cdot q_{j}$$

$$\ge \sum_{j=0}^{n} {n \choose j} \cdot \frac{1}{2^{n}} \cdot \frac{1}{\sqrt{n} \cdot 2^{j}}$$

$$\ge \frac{1}{\sqrt{n} \cdot 2^{n}} \sum_{j=1}^{n} {n \choose j} \cdot \frac{1}{2^{j}}$$

$$= \frac{1}{\sqrt{n} \cdot 2^{n}} \cdot \left(\frac{3}{2}\right)^{n} \le \frac{1}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^{n}.$$

Thus, if we repeat for $m = O\left(\sqrt{n} \cdot \left(\frac{4}{3}\right)^n\right) = O\left(\frac{1.33334^n}{4}\right)$ trials, with very high probability, we will find a satisfying assignment if there is one.

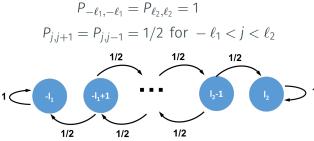
Gambler's Ruin

Gambler's Ruin

- You and 'a friend' repeatedly toss a fair coin. If it hits heads, you give your friend \$1. If it hits tails, they give you \$1.
- You start with $$\ell_1$$ and your friend starts with $$\ell_2$$. When either of you runs out of money the game terminates.
- What is the probability that you win ℓ_2 ?

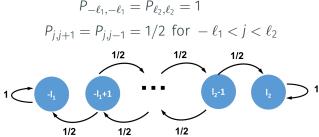
Gambler's Ruin Markov Chain

Let $X_0, X_1, ...$ be the Markov chain where X_i is your profit at step i. $X_0 = 0$ and:



Gambler's Ruin Markov Chain

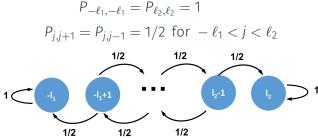
Let $X_0, X_1, ...$ be the Markov chain where X_i is your profit at step i. $X_0 = 0$ and:



- ℓ_1 and ℓ_2 are absorbing states.
- All j with $-\ell_1 < j < \ell_2$ are transient states. I.e., $\Pr[\mathbf{X}_{i'} = j \text{ for some } i' > i \mid \mathbf{X}_i = j] < 1$.

Gambler's Ruin Markov Chain

Let $X_0, X_1, ...$ be the Markov chain where X_i is your profit at step i. $X_0 = 0$ and:



- ℓ_1 and ℓ_2 are absorbing states.
- All j with $-\ell_1 < j < \ell_2$ are transient states. I.e., $\Pr[\mathbf{X}_{i'} = j \text{ for some } i' > i \, | \, \mathbf{X}_i = j] < 1$.

Observe that this Markov chain is also a Martingale since $\mathbb{E}[X_{i+1}|X_i] = X_i$.

Gambler's Ruin Analysis

Let $X_0, X_1, ...$ be the Markov chain where X_i is your profit at step i. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

 $P_{j,j+1} = P_{j,j-1} = 1/2 \text{ for } -\ell_1 < j < \ell_2$

We want to compute $q = \lim_{i \to \infty} \Pr[X_i = \ell_2]$.

Gambler's Ruin Analysis

Let $X_0, X_1,...$ be the Markov chain where X_i is your profit at step i. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

 $P_{j,j+1} = P_{j,j-1} = 1/2 \text{ for } -\ell_1 < j < \ell_2$

We want to compute $q = \lim_{i \to \infty} \Pr[X_i = \ell_2]$.

By linearity of expectation, for any i, $\mathbb{E}[X_i] = 0$. Further, for $q = \lim_{i \to \infty} \Pr[X_i = \ell_2]$, since $-\ell_1, \ell_2$ are the only non-transient states,

$$\lim_{i\to\infty}\mathbb{E}[X_i]=\ell_2q+-\ell_1(1-q)=0.$$

Gambler's Ruin Analysis

Let $X_0, X_1,...$ be the Markov chain where X_i is your profit at step i. $X_0 = 0$ and:

$$P_{-\ell_1,-\ell_1} = P_{\ell_2,\ell_2} = 1$$

 $P_{j,j+1} = P_{j,j-1} = 1/2 \text{ for } -\ell_1 < j < \ell_2$

We want to compute $q = \lim_{i \to \infty} \Pr[X_i = \ell_2]$.

By linearity of expectation, for any i, $\mathbb{E}[X_i] = 0$. Further, for $q = \lim_{i \to \infty} \Pr[X_i = \ell_2]$, since $-\ell_1, \ell_2$ are the only non-transient states,

$$\lim_{i\to\infty} \mathbb{E}[X_i] = \ell_2 q + -\ell_1 (1-q) = 0.$$

Solving for q, we have $q = \frac{\ell_1}{\ell_1 + \ell_2}$.

Gambler's Ruin Thought Exercise

What if you always walk away as soon as you win just \$1. Then what is your probability of winning, and what are your expected winnings?