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- | released Problem Set 3 on Monday - it is due 4/15 at 8pm.

- Project progress report due next Friday, 4/8. Submit via
email.

- Weekly quiz due next Tuesday at 8pm.



Last Week: Random sketching and subspace embedding.

- Subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an e-net argument.

- Application to fast over-constrained linear regression.
- Proof of distributional JL via the Hanson-Wright inequality.

- You'll see two more applications of subspace embeddings on
the problem set, along with problems practicing the use of
e-nets and the Hanson-Wright inequality.

Today:

- Subspace embedding via sampling.
- The matrix leverage scores.
- Analysis via matrix concentration bounds.

- Spectral graph sparsifiers. 3



Quiz Review

Question 4

Not complete

Consider applying linear sketching in the streaming setting. There is some BN IE
underlying matrix A € R™d, initially zero. In each step you receive an update of the ¥ Flag question
form (i, j, v) which modifies A;; by adding v to it. You pick a random sketching <3 Elern
matrix .S € R"™" and maintain the sketch .SA over the updates of A. Storing this
sketch requires storing only m X d entries, as opposed to 1 X d for storing all of A

What is the runtime required to update .S'A to reflect a single entry update to A?

O a. O(mn)
O b. O(m)
O c. oM
O d. O(d)

O e. O(nd)



Quiz Review

Question 6

Not complete
Which of the following concentration bounds can be apply to show that, for a RGeS
random x € R” with i.i.d. +1 entries, and some fixed A € R"™", that xT Ax is ¥ Flag question

i £ Edit question
concentrated around its mean? Select all that apply. Fauest

[J a. Chebyshev inequality
[ b. Hanson-Wright Inequality
O c. Markov bound

[J d. Bernstein bound



Subspace Embedding

S € R™" is an e-subspace embedding for A € R"*9, if for all x € RY,
(1= lAX] < [ISAx[]2 < (1 + €)[|AX][2.

mxn nxd mxd
+1/ym +1/ym +1/ym +1/ym
+1/ym t1/¥m +1/ym £1/ym ‘
S
A

Last Time: If Sis a random sign matrix, and m = O (%) then

mXxn

Wy

forany A, S is an e-subspace embedding with probability > 1— 4.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc. 6



Problem Reformulation

For Ae R™4 let A= UXV' be its SVD. U € R"*Mank(4) 'y ¢ Rd*rank(A)
are orthonormal, and ¥ e R@nkA)xrank(4) js nositive diagonal.)

nxd orthonormal  positive diagonal orthonormal
o vi
a2 vl
b3 A
—| wmu
A - U i Or-1 o
oy vy

- Forany x € RY let z= ¥ V'x. Observe that: ||Ax|, = ||Uz||; and
ISAll2 = [[SUz]2.

- Thus, to prove that S is an e-subspace embedding for A, it
suffices to show that it is an e-subspace embedding for U.

- le, it suffices to show that for any x € R,
(1= )llUx]lz < ISUX[Iz < (1+ e)|Ux]3. 7



Loewner Ordering

Suffices to show that for any x € RY,
(=) XI5 < ISUXII3 < (1+e)lixI = (1—e)xIx < XTUTSTSUX < (1+e)XIx.
This condition is typically denoted by (1—¢€)l =< UTSTSU =< (1 + €)I.
M < Niff vx € RY xX'Mx < x'"Nx (Loewner Order)
When (1—€)N <M =< (14 ¢)N, | will write M =, N as shorthand.

(1—¢€)l = U'S'SU =< (1+ €)l is equivilant to all eigenvalues of U'S'SU
lying in [1—¢,1+¢€].



Sampling from U

So Far: We have an orthonormal matrix U € R"*9 and we want
to sample rows so that U'STSU ~, I. What are some possible
sampling strategies?



Leverage Score Sampling

- 7 = ||U;.|13 is known as the it" leverage score of U.
- Letpj = =—.
Pi=srm—

- LetS.; = el - —— with probability p;.

T

m
E[U'S'SU] = = "E[U'S];S, ;U]
j=1

n
22 1 1
j—— 8 (W "')(\/W i)
m
= lUTU:
Z m
J=1
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Matrix Concentration

We want to show that USTSU is close to E[UTS'SU] = I. Need to
apply a matrix concentration bound.

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1y ..oy Xm € RIX9 with X; = 0, Amax(X;) <R and X =3""". X;. Let
M = E[X]. Then:

PriAmin(X) < (1= €)Amin(M)] < d - [

e—e /\mm(M)/R
U 6)“5}

e Amin(M)/R
Pr [)‘max(x) > (1 + E)AmaX(M)] <d- [(’]_;'_G)W-ke}

n



Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

Xty ..oy Xm € RIX9 with X; = 0, Amax(X;) <R and X =3""". X;. Let
M = E[X]. Then:

ee :|>\mm(M)/R

Pridmax(X) > (1+ €)Amax(M)] < d - [W

- In our setting, X; = U'ST'S.;U. X; = U] U; . with probability p;.
- M=E[X] =
cR=
m/d 5
- PrlU'sS’SU = (1+¢€)l] < d- {(H } <d.e-<m/d

- Ifwesetm=0 (M) we have Pr[U'STSU = (1+¢€)l] < 6.
12



Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)
For any A € R"™9 with left singular vector matrix U, let

i = ||U;.|13 and p; = s Let S € R™" have S
independently set to \/r%*p,- : e/-T with probability p;.

Then, ifm =0 (M), with probability >1— 6, S is an
e-subspace embedding for A.

Matches oblivious random projection up to the logd factor.

13



Leverage Score Intuition



Check-In

Check-in Question: Would row-norm sampling from A directly
rather than its left singular vectors U have worked to give a
subspace embedding?

14



Variational Characterization of Leverage Scores

For a matrix A € R"*9 with SVD A = UXV, the it leverage score is
given by 7i(A) = ||U;_.||3. Consider the maximization problem:
[AX](i)?
i(A) = max .
A = TR e

How much can a vector in A’s column span ‘spike’ at position I.

WA RGP

Can rewrite this problem as:

zlzl=1 |Uz|53

What z maximizes this value? 5



Variational Characterization of Leverage Scores

WA B[P

a,
A A A

- Remember that we want ||SAx||3 = ||Ax||3 for all x € RY.

- The leverage scores ensure that we sample all Ax with high
enough probability to well approximate ||Ax|J3.

- In fact, could prove the subspace embedding theorem by
showing that for a fixed x € RY, ||SAx||3 = ||Ax||3, and then
applying a net argument + union bound. Athough you would
lose a factor d over the optimal bound.



Leverage Score Intuition

- When q; is not spanned by the other rows of A, 7;(A) = 1.

- 7i(A) is small when many rows are similar to a;.



Leverage Score Intuition
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Spectral Graph Sparsification



Graph Sparsification

Given a graph G = (V, E), find a (weighted) subgraph G’ with many
fewer edges that approximates various properties of G

Cut Sparsifier: (Karger) For any set of nodes S,

CUT/(S,V\ S) ~% CUT(S,V\ S).

! Image taken from Nick Harvey's notes https://www.cs.ubc.ca/~nickhar/Wi5/LecturellNotes.pdf.
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https://www.cs.ubc.ca/~nickhar/W15/Lecture11Notes.pdf

The Graph Laplacian

For a graph with adjacency matrix A € {0,1}"*" and diagonal degree
matrix D € R"™™", [ = D — Ais the graph Laplacian.

X1 D A
§ 1000 0100 1100
4 0300 101 1 A3 -1 -1
X. —_
2 = | oo0-0| o101 |= 0121
0002 0110 0 -1-12
X3

L can be writtenas L = Z L,y where L, is an ‘edge Laplacian’
(u,v)eE

1100 1-100 000O0
1311]=]1100 |+ ]010-1]4+
0-12-1 0000 0000O
0-1-12 0000 0-10 1
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Laplacian Smoothness

Observation 1: For any z € R,

Mz= 3" Zlz= Y (i) -z())

(u,v)eE (u,v)eE

v(1) v(2) v(3) v(4) 1 100 v(1)
1100 v2)

0 0 O 0 v(3)

0 0 0 O v(4)

- Z'Lz measures how smoothly z varies across the graph.

- Ifze {-1,1}"is a cut indicator vector with z(i) =1fori € S and
z(i) = —1 otherwise, then z'Lz = 4 - CUT(S, V' \ S).

- So G’ with (weighted) Laplacian L’ ~, L will be a cut sparsifier,
with CUT'(S,V\ S) . CUT(S,V\ S) for all S.

- Such a G’ is called an e-spectral sparsifier of G.
21



Laplacian Factorization

Observation 2: L, = b, b} . So L = Z buybl .

(u,v)eE

o
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"I | |
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o - O

0
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0
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-1 vertex-edge
incidence matrix B

cocoo

]

—

oo oo

o A
I

That is, letting B € R™*" have rows {b] , : (u,v) € E}, L = BB.

- So if a sampling matrix S is a subspace embedding for B, then
B'STSB ~. B'B =, L. l.e., SB is the weighted vertex-edge
incidence matrix of an e-spectral sparsifier of G.

- By our results on subspace embedding, every graph G has an

e-spectral sparsifier with just O(nlogn/€®) edges. 5



Some History

- The concept of spectral sparsification was first introduced by
Spielman and Teng ‘04 in their seminal work on fast system
solvers for graph Laplacians. In this work, sparsifiers are used
as preconditioners (like in Problem Set 3).

- Spielman and Srivastava ‘08 showed how to construct
sparsifiers with O(n logn/e?) edges via effective resistance
(leverage score) sampling.

- Batson, Spielman, and Srivastava ‘08 showed how to achieve
0(n/€*) edges with a deterministic algorithm.

- Marcus, Spielman, and Srivastava “13 built on this work to give
optimal bipartite expanders with any degree and to resolve the
famous Kadison-Singer problem in functional analysis.
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