Last Week: Random sketching and subspace embedding. ((S A)(ﬂ 18x]

(' Subspace embedding from the distributional
on-Lindenstrauss lemma and an e-net argument.
- Application to fast over-constrained linear regression.

Proof of distributional JL via the Hanson-Wright inequality.

- You'll see two more applications of subspace embeddings on
the problem set, along with problems practicing the use of
e-nets and the Hanson-Wright inequality.



Last Week: Random sketching and subspace embedding.

- Subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an e-net argument.

- Application to fast over-constrained linear regression.
- Proof of distributional JL via the Hanson-Wright inequality.

- You'll see two more applications of subspace embeddings on
the problem set, along with problems practicing the use of
e-nets and the Hanson-Wright inequality.

Today:

ESubspace embedding via sampling.
-—The matrix leverage scores.

* Analysis via matrix concentration bounds.
/ Spectral graph sparsifiers. 3



Quiz Review

" Nisen's FRE)
an's PR

Consider applying linear sketching in the streaming setting. There is some
underlying matrix A € R"™ R4, initially zero. In each step you receive an update of the
form (i, j, v) which modifies A;; by adding v to it. You pick a random sketching
matrix .S € R"™ " and maintain the sketch .S A over the updates of A. Storing this
sketch requires storing only m X d entries, as opposed to n X d for storing all of A

What is the runtime reqmred to update S A to reflect a single entry update to A?
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Question 4

Not complete
Points out of 1.00
¥ Flag question

£ Edit question




Quiz Review

Question 6

Not complete
Which of the following concentration bounds can be apply to show that, for a Points out of 1.00
random x € R with i.i.d. =1 entries, and some fixed A € R™", that xT Ax is ¥ Flag question

$* Edit question

concentrated around its mean? Select all that apply.
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Subspace Embedding

S € R™" is an e-subspace embedding for A € R™*, if for all x € R,

(1 — Al <IsAxfs < 1+ Al [ISasd) = 129

m X n nxd mxd
+1/ym +1/ym *1/ym +1/ym

m +1/ym *1/Nm t1/ym +1/ym ‘
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Subspace Embedding

S € R™" is an e-subspace embedding for A € R™*, if for all x € R,

(1= OllAx]| < [[SAx]l2 < (1 + ) [|Ax]2-

mxn nxd mxd
\;\(Nb D L1/ 21w L
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A
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Last Time: If Sis a random sign matrix, and m = O %2(1/5) , then
forany A, Sis an e-subspace embedding with probability > 1 —¢.



Subspace Embedding

S € R™*" is an e-subspace embedding for A € R"*¢, if for all x € R¢,
(1= )IAX]] < ISAX[l2 < (1 + €)[|AX]|2.

m Xxn nxd mxd

Last Time: If Sis a random sign matrix, and m = O (%ZW‘S)) then
forany A, Sis an e-subspace embedding with probability > 1 —é.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc.



Problem Reformulation

For A e R™4 let A= UZV' be its SVD. U € R"*ak(4) '\ ¢ Rdxrank(4)
are orthonormal, and ¥ e Rrnk(A)xrank(4) is positive diagonal.)

nxd orthonormal  positive diagonal ~ orthonormal
o vl
o, vl
b3 VT
—| wu
A - s U i Or-1
v
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Problem Reformulation

For A€ R™ 9, let A = UZV" be its SVD. u € RMxmank(A) [y ¢ Rdxrank(A)
are orthonormal, and ¥ e RA)xrank(4) s positive d|agonal)

nxd orthonormal positive diagonal orthonormal
z VT
A =| e U B Or-1 T
Pr0av V2
- Foranyx e R?, letz = ZVx. Observe that: HAXHQ = HUZHz and
[SAt> = [ISUgl..



Problem Reformulation

For A e R™4 let A= UZV' be its SVD. U € R"*7ank(4) '\ ¢ Rdxrank(A)
are orthonormal, and ¥ e Rrnk(A)xrank(4) is positive diagonal.)

nxd

orthonormal

positive diagonal

orthonormal

vl

vl

b2 A
A =| % U Ur 01

v

- Forany x ¢ RY, let z= ¥V'x. Observe that:: |Ugl2 and
1SAy) = Sue),,

- Thus, to prove that S is an e-subspace embedding for A, it
suffices to show that it is an e-subspace embedding for U.



Problem Reformulation

For A€ R™ 9, let A = UZV" be its SVD. u € RMxmank(A) [y ¢ Rdxrank(A)
are orthonormal, and ¥ e RA)xrank(4) s positive d|agonal)

nxd

orthonormal

positive diagonal

orthonormal

vl

vl

b2 A
A =| % U Ur 01

v

- Forany x € RY, let z= ¥ V'x. Observe that: ||Ax||, = ||Uv||, and
ISAll2 = [[SUV|[2.

- Thus, to prove that S is an e-subspace embedding for A, it
suffices to show that it is an e-subspace embedding for U.

- l.e, it suffices to show that for any x € R¢,

(1= )|Ux]3 < [ISUXII3 < (1+ )| Ux]l3. 7



Loewner Ordering

Suffices to show that for any x € R,

(1=e)lIxllz < ISUX]z < (1) Ix]:



Loewner Ordering

Suffices to show that for any x € R,
(-8 xTx (1t ) xT>
(1—=e)|Ix[15 < |ISUx|l3 < (1+e)Ixlls = (1—e)xTIx < x"UTSTSUx < (14-€)x"Ix.

—_— -



Loewner Ordering

_

Suffices to show that for any x € R,

(1—=e)|Ix[15 < |ISUx|l3 < (1+e)Ixlls = (1—e)xTIx < x"UTSTSUx < (14-€)x"Ix.
—

This condition is typically denoted by (1 —€)l < U'S'SU < (1+ ¢€)l.

—_— T

M =< N iff vx € R? x"Mx < x'Nx  (Loewner Order)
—_—



Loewner Ordering

S ¢ - S\AL%FA&, w"\\mié'\-d— V) UTSR\) J;“\L T
Suffices to show that for any x € R, UTU -1
(1=e)|Ixl13 < ISUX[3 < (1+e)|Ix|I5 = (1—e)x"Ix < X"UTSTSUx < (T+e)x"Ix.
This condition is typically denoted by (1 —€)l < U'S'SU < (1+ ¢€)l.

M =< N iff ¥x € R? x'Mx < x'Nx (Loewner Order)

When (1—¢)N <M =< (1+¢)N, | will write M ~, N as shorthand.
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Loewner Ordering

3. et XSSO ,

ka\,\(\)GS\D o Lx __)< R N = i\S\ '?/\5"\\‘(’XDJ of T ore
T mg\ L\ > one .

R (F18T00) 2 SRS

—Suffices to SW that for any x € RY,
(1=e)|Ixl13 < ISUX[3 < (1+e)|Ix|I5 = (1—e)x"Ix < X"UTSTSUx < (T+e)x"Ix.
This condition is typically denoted by (1 —€)l < U'S'SU < (1+ ¢€)l.
M =< N iff ¥x € R? x'Mx < x'Nx (Loewner Order)

When (1—€)N <M =< (14 €)N, I will write M =, N as shorthand.

P ®
€)l < U'STSU =< (1 + €)l is equivilant to all eigenvalues of UTSTSU
é in[1—eT+el.

(1—
lym
Q;.B.,-v\) 5= USTS\) X, r\)\ STS\)X; Wer X W A e“duw:l/
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Sampling from U

_ A=LzVT
So Far: We have an orthonormal matrix U € R"%? and we want

to sample rows so that U'S'SU ~, I. = V'O



Sampling from U

So Far: We have an orthonormal matrix U € R"%? and we want
to sample rows so that U'S’SU = le
Ing strategies?
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Leverage Score Sampling

(¢ B)
- 77 = ||U;.||% is known as the i leverage score of U.

—_—




Leverage Score Sampling

- 77 = ||U;.||% is known as the i leverage score of U.
Pi=sr= X

- LetS.j=el - \/%p, with probability p.. S €[

[ 5@



Leverage Score Sampling

- 77 = ||U;.||% is known as the i leverage score of U.
- LetS.j=el- fTT with probability p;.

G0 =T 1Suxll = 1)
E[U'S'SU] =



Leverage Score Sampling

- 77 = ||U;.||% is known as the i leverage score of U.
- LetS.j=el- fTT with probability p;.

m
E[U'STsUl = =) E[U'S]S. ;U]
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Leverage Score Sampling

- 77 = ||U;.||% is known as the i leverage score of U.

- LetS.j=el- fTT with probability p;.

m [’Qﬁ@@( U
E[U'STSU] = :ZE@

=
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Leverage Score Sampling

- 77 = ||U;.||% is known as the i leverage score of U.

- Letp; = 72,-”:7['
- LetS.j=el- \/%p[ with probability p;.
-

3»mmus ‘5

N
E[UTS"SU] = —ZE[UTSTS U]
=1 /(—

Xm:ipk p‘: Ui 2o,

= i [ i) e v

J=1 =1 \_’/ 7 L\\)!TT]/
l 1 m

—_— U\l'_ \);)'. - Z 1 Uty = VN

m—&—’*’—" j=1 m/ —
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Matrix Concentration

U =1 AB  viav, \,Zivx
We want to show that U’S’SU is close to E[U'S'SU] = I. Need to 7
apply a matrix concentration bound. A (M) = XMQ\(IB z)

Theorem (Matrix Chernoff Bound
Consider independent symmetric random matrices

X, .., Xm € R, with X; = 0, Amax(Xi) < R and X = Y71, X;. Let
U=ER Then:— xXix%0 v x

S ) e 7Amn(M)/R
Qe @\,&*Qigummm Y~ Pminl)] < 0 {m—e>]
R QT e
Rar
5G] e
><| Gs] ~F I



Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

X1, ..oy Xm € RIX9 with X; = 0, Amax(X;) < R, and X = 31" X;. Let
M = E[X]. Then:

Pr Amax(X) > (14 €)Amax(M)] < d -

e

ge 1Amn/R
o

12



Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1, ..oy Xm € RIX9 with X; = 0, Amax(X;) < R, and X = 31" X;. Let
M = E[X]. Then:

Pr Amax(X) > (14 €)Amax(M)] < d - {

ge 1Amn/R
- L0+ 6)”6]

- In our setting, X; = U'ST S, ;U. X; = m%lu[:u[_,; with probability p;.

ﬂ& J
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1, ..oy Xm € RIX9 with X; = 0, Amax(X;) < R, and X = 31" X;. Let
M = E[X]. Then: e

ee :| Amm(M)/R

Pr Amax(X) > (1+ €)Amax(M)] < d - {(H)

. . A"
o e O AR S
- In our setting, X; = U'ST S, ;U. X; = m%lu[:u[_,; with probability p;.

- M=EKX =T =)'

T (1 N
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

X1, ..oy Xm € RIX9 with X; = 0, Amax(X;) < R, and X = 31" X;. Let
M = E[X]. Then:

‘ :| )\mm(M)/R

Pr D) 2 (14 ] < - | =S

- In our setting, X; = U'ST S, ;U. X; = m%lu[:u[_,; with probability p;.

*M=EX = T
- R= % (%@CQ“

PriUTSTSU = (1+ e)l] <d- [ TreyTe }m/d (\@\“‘
T’r[m(\)ssv)‘ l+g ¢tmld
[ e(lte) é &
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

X1, ..oy Xm € RIX9 with X; = 0, Amax(X;) < R, and X = 31" X;. Let
M = E[X]. Then:

:| )\mm(M)/R

Pr PAmax(X) = (14 €)Amax(M)] < d - {(1+ee)1+

- In our setting, X; = U'ST S, ;U. X; = m%lu[:u[_,; with probability p;.

- M=E[X] =
. R=

QT m/d —em/d
- PHUTSTSU = (14 €)] < d - [m ] <d-e<m/

12



Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1, ..oy Xm € RIX9 with X; = 0, Amax(X;) < R, and X = 31" X;. Let
M = E[X]. Then:

P Amax(X) = (14 €)Amax(M)] < d -

oo PmnM/R
—

1+ e)ite

- In our setting, X; = U'ST S, ;U. X; = m%lu[:u[_,; with probability p;.

- M=EX = - oy (819)

FR= cd-e 7 s g
. m/d o &

< PHUTSTSU = (1+€)] < d- [W} <d.e—cm/d

- Ifwesetm=0 (\%) we have Pr{U'S’SU = (1+¢€)l] < 4.
m= (U ) ”




Subpace Embedding via Sampling

Theorem (Subspacg Emw;g:/m Lee/&(ﬂge %Eore Sampling)
For any A € R"*? with left singular vector matrix U, let

7 = ||U;:|3 and p; = %= Let S € R™" have S,
independently set to \% - el with probability p;.

mp;

Then, if m =0 ((“L(zd/‘s)) with probability >1— 6, S is an

&

e-subspace embedding for A.

13



Subpace Embedding via Sampling

+E—’:+_\€‘M J [\r«\ N~ ]
1y

Theorem (Subspac Em@ed ing via Leverage Score Sampling)
For any A € R"™? with left stngular vector matrix U, let

7 = ||U;.|l3 and p; = ZT Let S € R™" have g S,

independently set to \/T - el with probability p;.

Then, if m =0 (dl%(zd/‘s)) with probability >1— 6, S is an
e-subspace embedding for A.

Matches oblivious random projection up to the logd factor.
’\

- dH l“b A)

_/

-
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Leverage Score Intuition



Check-In

Check-in Question: Would row-norm sampling from A directly
rather than its left singular vectors U have worked to give a
subspac%embedding? d

14




Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the i" leverage score is

given by 7(A) = ||U;.|12.
- -

15



Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the i" leverage score is
given by 7;(A) = ||U;..||3. Consider the maximization problem:

2

max [AX](I) .
e (A3
—

How much can a vector in A’s column span ‘spike’ at position I.

= ) H H H

|
I

15



Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the i" leverage score is
given by 7;(A) = ||U;..||3. Consider the maximization problem:

max AA0)° Px U-Z

xebA [|AX]3

How much can a vector in A’s cgfumh span ‘spike’ at position I.

WA 7RD R

|
I

Can rewrite this problem ak;

[Uz] (i)’

max >
z|zl=1 ||Uz]||3
—_—— _

15



Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the i" leverage score is
given by 7;(A) = ||U;..||3. Consider the maximization problem:

2
max [AX](I) .
rew A3

How much can a vector in A’s column span ‘spike’ at position I.

WA RR R

|
I

Can rewrite this problem as:

[UZ](’.)2 _ [UZ]([)Z.

zlzl=1 ||Uz|3

15



Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the i" leverage score is
given by 7;(A) = ||U;..||3. Consider the maximization problem:

o ()

vew [AX3

How much can a vector in A’s column span ‘spike’ at position I.

WA RR R

Jij 3
A A 3 2=
Can rewrite this problem as: <\);): ),U_* (v 3 @

VA _

zlzl=1 ||Uz|)3

What& maximizes this value? -, 2)

15
L e



Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the i" leverage score is
given by 7;(A) = ||U;..||3. Consider the maximization problem:

0
((A) = max .
T8 = e K

—_—
How much can a vector in A’s column span ‘spike’ at position I.

WA RR R

|
I

Can rewrite this problem as:

vy _ Ay : “\)(,?”’L\

zlzl=1 ||Uz|3

What z maximizes this value? i



Variational Characterization of Leverage Scores

¥ SU(D )? - EN_OJL:‘/\
VRS o [AX](i) (RS
W3\X& " e o i
T~ %‘q\\
AN ] ] nax{v=kndl
s /k k@ - H H H ok

N - SERRNT Y ¥

I 3 \)r‘«\' X VI

A _— A A

- Remember that we want ||SAx||3 ~ ||Ax||3 for all x € RY.

The leverage scores ensure that we sample all Ax with high
enough probability to well approximate ||Ax||2.

- In fact, could prove the subspace embedding theorem by
showing that for a fixed x € RY, ||SAx||3 ~ ||Ax||3, and then
applying a net argument + union bound. Athough you would

lose a factor d over the optimal bound. 16
_ =



Leverage Score Intuition

- When a; is not spanned by the{)ther rows of A, 7i(A) = 1.
-t (9x>(‘> <
TR
) Al

X
- O
-
D
7(
—se C O

17



Leverage Score Intuition

- When g; is not spanned by the other rows of A, 7;(A) = 1.

- 7i(A) is small when many rows are similar to a;.

17



Leverage Score Intuition
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Leverage Score Intuition
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Leverage Score

20 40 60 80

Leverage scores are a ‘smooth’ indicator of cluster structure.
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Leverage Score Intuition

Leverage Score

14

o°
o

o

o
o
G

g b D T P e

- Leverage scores are a ‘'smooth’ indicator of cluster structure.

- Very high leverage scores tend to correspond to outliers -

original motivation for use in statistics.

18



Leverage Score Intuition

Leverage Score

o°
o

o
o
G

o

g b D T R FE T

- Leverage scores are a ‘'smooth’ indicator of cluster structure.

- Very high leverage scores tend to correspond to outliers -

original motivation for use in statistics.

- When used as sampling probabilities, give a more ‘balanced

sample’ than uniform sampling.
18



Leverage Score Intuition

Leverage Score

o°

o
o
G

O

&
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..

o

20 40 60 80

- Leverage scores are a ‘'smooth’ indicator of cluster structure.

-[ Very high leverage scores tend to correspond to outliers -

original motivation for use in statistics.

- When used as sampling probabilities, give a more ‘balanced

sample’ than uniform sampling.
18



Spectral Graph Sparsification



Graph Sparsification

Given a graph G = (V,E), find a (weighted) subgraph G’ with many
fewer edges that approximates various properties of G.”

! Image taken from Nick Harvey's notes https://www.cs.ubc.ca/~nickhar/W15/LecturellNotes.pdf.

19



Graph Sparsification

Given a graph G = (V,E), find a (weighted) subgraph G’ with many
fewer edges that

\

Cut Sparsifier: (Karger) For any set of nodes S,

CUT’EE\M) ~ CUT(S,%).

! Image taken from Nick Harvey's notes https://www.cs.ubc.ca/~nickhar/W15/LecturellNotes.pdf.

19



The Graph Laplacian

For a graph with adjacency matrix A € {0,1}"*" and diagonal degree

matrix D € R™" L =D — Ais the graph Laplacian.

¥
sz 7\)(4 =)
X

o w0

D A

000 0100 1100

300 1011 | _[-13-1-1

o20| (o101 [T [O0-12-1

002 0110 0-1-12
N~ -

20



The Graph Laplacian

For a graph with adjacency matrix A € {0,1}"*" and diagonal degree
matrix D € R™" L =D — Ais the graph Laplacian.

l Xs

OO o —

D A

000 0100 1100
300 1011 _|13-1-1
0201 o101 ]~ |0-1241
002 0110 0-1-12

L can be written as L = Z L,y where L, is an ‘edge Laplacian’

L\A
Lo A
Lo

oo
1

—_—

anN

a O

N

(u,v)eE

1-100 0000
4100 |+ |0L0-1]4
0000O 0000
0000 0-10 ]
—
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Laplacian Smoothness

Observation 1: For any z € RY,

T T
7'z = 7'y vz
—_— Z.\ u,\/_

(u,v)eE
El) ¥2) e —?(a)l 1-100 )
L J|-1.L00 32
0000 36
0 00O Ra)
e L
BV 2l %(u}%(v) s

21



Laplacian Smoothness

Observation 1: For any z € R, , {fhrea of 3 acless ey k)
z= Y luz= Y (20 -z()".

(u,v)et (u,v)eE

v(1) v(2) v(3) v(4) 1 - 1 0 O v(1)
1100 vi2)

O O O O v(3)

0 00O via)
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Laplacian Smoothness

Observation 1: For any z € RY,

0 Jiz= 3 = Y (@) - 2G)

(u,v)eE (uyv)ee T
v(1) v(2) v(3) v(4) 1 '1 0 O v(1)
EYGN) 3c\‘\> 1100 v2)
O O O 0 v(3)
O O 0 0 v(4)
Uy)®

- Z'Lz measures how smoothly z varies across the graph.

21



Laplacian Smoothness

Observation 1: For any z € RY,

Zllz= Z ZTLu,\/ZZ Z (Z(I)_Z(/))Z

(u,v)eE (u,v)eE

v(1) v(2) v(3) v(4) 1 - 1 0 O v(1)
1100 vi2)

O O O 0 v(3)

0 00O via)

- Z'Lz measures how smoothly z varies across the graph.

- Ifze€ {—=1,1}"is a cut indicator vector with¥(i) = 1 fori € S and
¥(i) = —1 otherwise, then z'Lz = 4 - CUT(S, V\ S).

(L) -20)) = (1-E)T =

21



Laplacian Smoothness

Observation 1: For any z € RY,

z= Y lz= Y (i) -z())

(u,v)eE (u,v)eE

v(1) v(2) v(3) v(4) 1 '1 0 O v(1)
1100 vi2)

O O O 0 v(3)

0000 via)

- 7Lz measures how smoothly z varies across the graph.

- Ifze {-1,1}"is a cut indicator vector with v(i) = 1fori € S and
v(i) = —1 otherwise, then z'Lz = 4 - CUT(S, V'\ S).

- So G’ with (weighted) Laplacian L’ ~, L will be a cut sparsifier,
with CUT/(S,S\ T) ~ CUT(S.S\ T) for all S.

({’i) [/ A/__L;é (H%i/ 21



Laplacian Smoothness

Observation 1: For any z € RY,

z= Y lz= Y (i) -z())

(u,v)et (u,v)eE
v(1) v(2) v(3) v(4) 1 '1 0 O v(1)
'1 1 0 O v(2)
< \ﬂc 0000 v3)
SR 0000 [|w
L C

o &

- 7Lz measures how smoothly z varies across the graph.

- Ifze {-1,1}"is a cut indicator vector with v(i) = 1fori € S and
v(i) = —1 otherwise, then z'Lz = 4 - CUT(S, V'\ S).

- So G’ with (weighted) Laplacian L’ ~, L will be a cut sparsifier,
with CUT'(S,S\ T) ~ CUT(S,S\ T) for all S.

- Such a_G’ is called an e-spectral sparsifier of G.
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Laplacian Factorization

Observation 2: L, , = by vbu v wﬁ‘a\/ L = ? L(A
Y

WD
(\
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Laplacian Factorization

Observation 2: L, = by ,b] . So L = Z buybl .

(UV)EE ——
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Laplacian Factorization

Observation 2: L, = by bl . So L = Z buybl .

(u,v)eE
00O00O0 0 I010_1|
010-1]-= - J
0000 0
0-10 1 -1

That is, letting B € R™*" have rows {b/, : (u,v) € E}, L = B'B.
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Laplacian Factorization

Observation 2: L, = by bl . So L = Z buybl .

(uv)et 1 -1 0 0

cTEo_—J

0 0 1 -1

D000 0107104 Lo
010-1]= = o 1 1 o
0000 0 o o 4 a
0-10 1 -1 vertex-edge

incidence matrix B

That is, letting B € R™" have rows {b] , : (u,v) € E}, L = B'B.
: s=D0°
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Laplacian Factorization

Observation 2: L, = by bl . So L = Z bu.vb

e (EmeE

Qd \S (:TV\U' 30 uv)e 1 — -

S Lo 0 1 0 1
I 5 s 4
Wt (hood] [0]Groq) e
R N "] s
(;\l © 0000 0 o 0 1 1
\\/ 0-101 -1 \ertgx:edge
o ANV 2 0 MB

That is, letting B € R™*" have rows {b/, : (u,v) € E}, L = B'B.

-_So if a sampling matrix S is a subspace embedding for B, then
EEﬁTéTSB ~. B'B ~, L. l.e, SB is the weighted vertex-edge
incidence matrix of an e-spectral sparsifier of G.

- By our results on subspace embedding, every graph G has an

e-spectral sparsifier with just O(nlogn/e?) edges. ”



Some History

- The concept of spectral sparsification yas first introduced by
Spielman and Teng ‘04 in their semina\fwork on fast system
solvers for graph Laplacians. In this work, sparsifiers are used
as preconditioners (like in Problem Set 3).

- Spielman and Srivastava ‘08 showed how to construct
sparsifiers with O(n logn/e?*) edges via effective resistance
(leverage score) sampling.

-[E?atson, Spielman, and Srivastava ‘08 showed how to achieve
0]

(n/€’) edges with a deterministic algorithm.
TE—

- Marcus, Spielman, and Srivastava ‘13 built on this work to give
optimal bipartite expanders with any degree and to resolve the
famous Kadison-Singer problem in functional analysis.

-
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