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- I'll return midterms at the end of class.

- Overall the class did very well - mean was a 29.75 out of 36
(=~ 83%).

- If you are not happy with your performance, message me

and we can chat about it. I'm also happy to review
solutions in office hours.

- | plan to release Problem Set 3 by end of this week.
- 1 page progress report on Final Project due 4/8.
- Weekly quiz due next Tuesday at 8pm.



Randomized Linear Algebra Before Break: /q C )
* Freivald's algorithm for matrix product testing. (i - C)
y

- Hutchinson’s method for trace estimation. Analysis via line
of variance for pairwise-independent random variables.

- Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.

- Application to fast randomized low-rank approximation.

- Related ideas for sampling for initializing k-means clustering -
the k-means++ algorithm.



Randomized Linear Algebra Before Break:
- Freivald’s algorithm for matrix product testing.

- Hutchinson’'s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

- Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.

- Application to fast randomized low-rank approximation.

- Related ideas for sampling for initializing k-means clustering -
the k-means++ algorithm.

Today: Random sketching and the Johnson-Lindenstrauss lemma.

- Subspace embedding and_e/—rﬁw.

- Application to fast over-constrained linear regression.




Linear Sketching



Linear Sketching

Given a large matrix A € R we pick a random linear
transformation S € R™*" and compute SA (alternatively, pick

S € R¥M and compute AS). Using SA we can approximate many
computations involving A.
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Linear Sketching

Given a large matrix A € R we pick a random linear
transformation S € R™*" and compute SA (alternatively, pick
S € R¥M and compute AS). Using SA we can approximate many

computations involving A. (%
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What algorithms have we seen in class that are based on linear
sketching? 4



Linear Sketching Examples

Freivald’s Algorithm:
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Linear Sketching Examples

Hutchinson’s Trace Estimator:
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Linear Sketching Examples

Graph Connectivity via £y sampling:
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Linear Sketching Examples

Norm-Based Sampling for AMM/Low-Rank Approximation:
\
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Subspace Embedding



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S e R™Ajs an e-subspace embedding for A € R™<¢ if, for all x € RY,

5%
O - < I < O+l (SA, = M,

le,S preserves the norm of any vector Ax in the column span of A.
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Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems. , e S b.

Definition (Subspace Embedding)
S e R™ 9 s an e-subspace embedding for A € R"<¢ if, for all x € RY,

(1= OlIAX]2 < [SAX[l2 < (1 + €)[|Ax]]2- Ax

l.e., S preserves the norm of any vector Ax in the column span of A.

b\’- col(4) € R™ col(SA) € R™
(%3
N
Z_zy( - Sy = .S‘Auc/'



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful

in many problems. F)Eq
Definition (Subspace Embedding) '
S € REZ*Ajs an e-subspace embedding for A € R"*? if, for all x € RY,

N (1= Oxla < l15Ax2 < (1 Ax: howd, By 18
S:Tn\m ~ — M ¢ fﬂ<<‘f)

l.e., S preserves the norm of any vector Ax in the column span of A.
Tons of applications. E.g,
A

- Fast linear regression (next) andgpreconditioning,

- Approximation of A's singular values.

- Approximate matrix multiplication and near optimal low-rank
SA approximation. % $Yrawsiy MY

- Compressed sensing/sparse recovery (related to £y sampling). 9




Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider A € R™9 and b € R". We seek to find an approximate
solution to the linear regression problem: 7—>
NG / O(ﬂc!
argmin ||Ax — bl|,-
XERG —_—
Let S € R™? be an ¢-subspace embedding for [A; b] € R™“*". Let
X = argmin,cga ||SAX — Sbl|,. Then we have: L
] ~ \Y e A
1A% — bll> < ~—< - min [|Ax — b|l,.
1—€ xerd
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Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider A € R™9 and b € R". We seek to find an approximate
solution to the linear regression problem:

argmin [|Ax — b|[,. pq ,:b

XERM

1

Let S € R™*9 be an e-subspace embedding for [A; b] € R"™*4+1. Let
X = argmin,cga ||SAX — Sbl|,. Then we have:

- 1 .
1A% — bll, < —— - min ||Ax — b|l>.
T—€ xerd

- Time to compute x* = argmin g |AX — b|l> is O(nd?).

- Time to compute X is just O(md?). For large n (i.e., a highly
over-constrained problem) can set m < n.



Sketched Regression Proof

. : RS :
Claim: Since S is a subspace embedding for [A; b], for all x € RY,

(1= )llAx = bll2 < [|SAX = Sb]lz < (1 + €)[|Ax — b][2.

1



Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € RY,
(a3 [ S[ALIY (v
(1—€)||Ax — bl] < ||SAX — Sb|l < (1+ €)||[Ax — b|,.
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € R,

(1= €)llAx = bll2 < [[SAX = Sb]lz < (1 + €)[|Ax = b2

12



Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € R,
(1= )llAx = bll < [[SAx = Sbllz < (1 + €)[|Ax — bl|2.

Let x* = arg min,gd ||AX — bl|2 and X = arg min,ga [|SAX — Sb|};.
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € R,

EU —€)||Ax — b||l2 < ||SAx — Sbll < (1+ €)||Ax — b][,.
g

Let x* = arg min,gd ||AX — bl|2 and X = arg min,ga [|SAX — Sb|};.

We have:

- 1 )
|AX — b||; < :HSAX — Sb||;

(- Kbl § 154K sbhe
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € R,
(1= )llAx = bll < [[SAx = Sbllz < (1 + €)[|Ax — bl|2.

Let x* = arg min,gd ||AX — bl|2 and X = arg min,ga [|SAX — Sb|};.
We have:
7

A% — blly < —11SAX— Sbll, < —— - ISAX* — Sbl
—€ ——~ —€
X 7 aryen |RAx- bl
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Sketched Regression Proof

Claim: Since S'is a\f\uvbspace embedding for [A; b], for all x € RY,

(1= e)llAx = bll2 < [|SAX = Sb]jz < (1 + €)[[Ax = b[>.

Let x* = arg min,gd ||AX — bl|2 and X = arg min,ga [|SAX — Sb|};.

- 1 1 .
A% = bll2|< ——I|SAx = Sbl2 < =— - [ISAX_Z Sbll»

T+ €
1—e€

- [JAX* = bl|2.
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Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S e R™ M anis an e-subspace embedding for A with e < 1, how large
must m be? HiatnThink about rank(SA) and/or the nullspace of SA.
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Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S e R™ M anis an e-subspace embedding for A with e < 1, how large
must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

mXxn nxd

s m xd

- |- i

Think-Pair-Share 2: Describe how to deterministically compute a
subspace embedding S with m = d and € = 0 in O(nd?) time.

13



Optimal Subspace Embedding

u“ e
St/ 8

Let Q € R"*? be an orthonormal basis for the columns of A.
¥ . .
Then any vector Ax in A's column span can be written as Qy for

——

some y € RY. e u((@) 2wl

14



Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.

Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?
T
15AX|I5 = lQ"Qy|3
— 3 BAx

14



Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?

IsAx|lz = lQ"ayl3 = Ivli3

14



Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?

ISAx(13 = llQ"ayli3 = Iyl = ||AxI3. T
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Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?
—_—
ISAX|l5 = lQ" Q5 = HY||2 = ! X3
How would you compute Q2
(VD ¥ = Qjﬂ\
Sausp

“‘3() QR

L gruwhn - $ L\'\"A
14



Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)
LetS € R™*9 be a random matrix with i.i.d. £1/v/m entries. Then if
m=0 (M) for any A € R"<9 with probability > 1— 6, S is

n e-subspace embedding of A.

?@FA\ALP“Q} of A

mXxn nxd

m x d
i, Ll
M@ s —
A

15



Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if
m=0 (M) for any A € R™9 with probability >1— 6, S is
an e-subspace embedding of A.

7_ Bow Cagek +F
(]é,ﬂ’\x‘né' mxn )nxd mxd ‘r\' N SVb*LU
; 0 s i S
1, | A \9—4\' ‘Vl s- &J(N‘
\‘QX”L )]1' n"ﬂﬂ/“"' T k k ~ l.0‘~3-\s 6V \
- S can be computed without any knowledge of A. c\,\u_k Ed nscI/ ey
PR
\\’\* Still achieves near optimal compression. N9 "
(’Q\J‘ - Constructions where S is sparse or structured, allow efficient

computation of SA (fast JL-transform, input-sparsity time
algorithms) dmé(~3>> N



Oblivious Subspace Embedding Proof



Proof Outline

/@/,\,us}:vw\
1. Distributional Johnson-Lindenstrauss: For S € R™*®with i.i.d.
+1/4/m entries, for any fixed y € R", with probabil |ty 1— 6 for
[
very small g, (1—e)llyll < ISyl < (T + &)yl me
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Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*9 with i.i.d.
+1/4/m entries, for any fixed y € R", with probabilityj_;ii for
very small d, (1= €)[lyll2 < [yl < (1 + €)lly]l2-

2. Via a union bound, have that for any fixed set of vectors

__J\_f_C R", with probability T— [N -6, ||Syll2 =~ ||y|l2 for ally € NV.

s 1oy N
m((lbE )

16



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*% with i.i.d.
+1/4/m entries, for any fixed y € R", with probability 1 — ¢ for
very small 6, (1= €)[lyll < ISyl < (1+ e)llyl2-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1 — [N -4, [|Sy|l2 = ||yl|l. for ally € A.

3 But we want ||Sy||, ~ [|y||> for ally = Ax with x € R%. This is a
linear subspace, i.e., an infinite set of vectors!

\3 c (\)) (VLD
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Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*% with i.i.d.
+1/4/m entries, for any fixed y € R", with probability 1 — ¢ for
very small d, (1= €)[lyll2 < [[Syll2 < (1 + €)lly]-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1 — [N -4, [|Sy|2 = ||yl|l. for ally € A.

3. But we want ||Sy||; = ||yl for all y = Ax with x € RY. This is a
linear subspace, i.e,, an infinite set of vectors! o {/,q)

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N, called aneznet for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

16



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*9 with i.i.d.
+1/4/m entries, for any fixed y € R", with probability 1 — ¢ for
very small 8, (1= €)[lylla < [[Syll2 < (1 + €)|lyll2.

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1 — [N -4, [|Sy|2 = ||yl|l. for ally € A.

3. But we want ||Sy|l> = ||yll> for all y = Ax with x € RY. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N, called an e-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark:(e—nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix

theory, and beyond. They are a key take-away from this lecture. T



Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R, with probability > 1— 4,

(1=l < lISyll2 < (T + e)llyll2-

l.e, via a random matrix, we can compress any vector from n to

~ log(1/6)/€* dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend on n at all.

mXxn
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R, with probability > 1— 4,
(T=alvlz < ISyl < (1 + &)yl

l.e., via a random matrix, we can compress any vector from n to
~ log(1/8)/€* dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend on n at all.

Expectation:

Ellsyl3] = S EIS;..y)’

ME0 | —
[: S ”j 3' [&ga)

17



Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R, with probability > 1— 4,
(1 =alyllz < ISyl < (1 + &)Iyll2-

l.e., via a random matrix, we can compress any vector from n to
~ log(1/8)/€* dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend on n at all.

. 1=
Expectation: 3

m m no ’
Elsyl] = Y E[S:..1)7] = D _E (Z S, -yj)
=1 =1 J=1
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if

m = O(log(1/5)/€?), for any fixed y € R, with probability > 1— 4,
(1 =allyll2 < ISyll2 < (1 + &)Iyll2-

l.e., via a random matrix, we can compress any vector from n to
~ log(1/8)/€* dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend onnatall._

Expectatlon
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R, with probability > 1— 4,
(T=alvllz < lIsyll2 < (1+ €)llyll2-

l.e., via a random matrix, we can compress any vector from n to
~ log(1/8)/€* dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend on n at all.

Expectation:
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R, with probability > 1— 4,
(T=alvllz < lIsyll2 < (1+ €)llyll2-

l.e., via a random matrix, we can compress any vector from n to
~ log(1/8)/€* dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend on n at all.

Expectation:

E[[syI5] = Y El(S,. ) 1=) E (Z Si -yj)
=1 =1 j=1
=D var(S;-y)

i=1 j=1

m n ,I
=3 =i ,
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Restriction to Unit Ball

Want to show that with high probability, ||Sy||> = |ly||. for all
y € {Ax:x e R} le, forally € V, where Vis A’s column span.

18



Restriction to Unit Ball

Want to show that with high probability, ||Sy||> = |ly||. for all
y € {Ax:x e R} le, forally € V, where V is A’s column span.

Observation: Suffices to prove ||Sy||> =, |ly|l. = 1for ally € Sy, where

Sy={y:yeVandly|, =1}
-_ —_— = ——
V

y = Ax

Sy

18



Restriction to Unit Ball

Want to show that with high probability, ||Sy||> = |ly||. for all
y € {Ax:x e R} le, forally € V, where V is A’s column span.

Observation: Suffices to prove ||Sy||> =, |ly|l. = 1for ally € Sy, where

Sy={y:yeVandly|, =1}

Proof: Forany y € V, can write y = ||y||> - ¥ where y = y/|ly|l> € Sy.

(=) <IsFl<(+e) =

Nsgl, Ml
(1=¢) - yll2 S,@!!Mb <Q@Q+e)-lyl =
“ 1S5 '“j“lH L — < < 18
Y (1=l < lIsyll < (0 + )yl

:I{S:j 1B



Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N, C Sy with
IN| = (%)d such that, for all y € Sy,

min [ly — wl|; <e.

min [y —wlz < e

Sy

19



Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N, C Sy with
IN| = (g)d such that, for ally € Sy,
= min [ly — w|; < e.
min [y —wlz < e

eV
Ne < Su_o
C/J “\
L) R
/| \
‘H?\‘;‘J\*_‘ " g :m \ )|
Qﬁiﬁﬂ}( T Z;ﬂ \s z'
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Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N, C Sy with
IN| = (%)d such that, for all y € Sy,

min [ly — wl|; <e.

min [y —wlz < e

{/)NL/
By the distributional JL lemma, if we set ¢’ = - (ﬁ)d then, via a
union bound, with probability at least 1—¢" - [Ne| =14, for

all w e N,
(1=e)lwll2 < [ISwll2 < (T + €)[[wl]2.

-

19



Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N, C Sy with
IN| = (%)d such that, for all y € Sy,

min [ly — wl|; <e.

min [y —wlz < e

By the distributional JL lemma, if we set ¢’ = - (ﬁ)d then, via a
union bound, with probability at least 1—¢" - [Ne| =14, for

lLwe N,
(T=e)lwllz < ISwll2 < (1 + ¢)[[wl[2.

Requires S € R™*" where ] l)
m—o () NIDERNE 6
oy (119 + 41 (11e)

€2
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Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N, C Sy with
IN| = (%)d such that, for all y € Sy,

min [ly — wl|; <e.

min [y —wlz < e

By the distributional JL lemma, if we set ¢’ = - (ﬁ)d then, via a
union bound, with probability at least 1—¢" - [Ne| =14, for
lwe N,

(1= alwlla < lSwllz < (1 + ) f[wl>-
Requires S € R™*" where gzﬁf \é g

<log(1/5/> <d 0g(4 + log 1/5)2(5(%).

O é‘)‘ ,03() /J)>
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Proof Via e-net

So Far: If we set m = O(d/€?) and pick random S € R™*", then with
probability > 1—4, ||Sw]||; = ||w|, for allw € A.

20



Proof Via e-net

So Far: If we set m = O(d/€?) and pick random S € R™*", then with

probability = 1o, sl ~« |l foraltwe N 3> [l MJ Yy
Expansion via net vectors: For any y € Sy, we can write: €3,
T

y=wo+ (VY —Wp) for wg € N,
—_— =/

<E_ y Wo



Proof Via e-net

So Far: If we set m = O(d/€?) and pick random S € R™*", then with
probability > 1—4, ||Sw]||; = ||w|, for allw € A.

Expansion via net vectors: For any y € Sy, we can write:

y=wo+ (VY —Wp) for wg € N,

_ ) iy _ Y —Wo
= W -l-i & forci = |[ly — woll> and e =Ty =wlh €
‘e e

creq 0

Y,
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Proof Via e-net

So Far: If we set m = O(d/€?) and pick random S € R™*", then with
probability > 1—4, ||Sw]||; = ||w|, for allw € A.

Expansion via net vectors: For any y € Sy, we can write:

y=wo+ (VY —Wp) for wg € N,
-~ b

P

- W
=wo+Goer forei=|y-wol,ande = 2" €5
- ly — woll2
=W+ Cr- W+ G- (e —wy) for wy € N,
A = st
4 L
‘e
w1
€1

20



Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 6, ||Sw]|, ~. ||w]|, for all w € N,.

Expansion via net vectors: For any y € Sy, we can write:

v= Wo + (Y — Wo) for wg € N,

V=W
=wo+c-e;  forc = |ly—wol; and e1:m€5v
:W0+C1'WW+C1'(w) for wy € NV,
- B - e — Wy
=Wo+C-wi+c-e forc, = |ler—w, and ez_mesv
Wo E 1 — W1l|2
—_— S—
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 6, ||Sw]|, ~. ||w]|, for all w € N,.

Expansion via net vectors: For any y € Sy, we can write:

V= Wo + (Y — Wo) for wy € N,

=Wo+ (-
= Wqo + Cq -
= Wq + Cq -

=Wo+C-

Yy —Wp
e1 for C1 - ||y—Wo||2 and 81 :m ESV
Wy + Cq - (€1 — wy) for wy € N,
e —w
Wi+ C e, forc,=c¢r-|ler —wl, and ezzmesv
1T W1l|12

Wi+ C- Wy +C3- W3+ ...
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 6, ||Sw]|, ~. ||w]|, for all w € N,.

Expansion via net vectors: For any y € Sy, we can write:

y=wo+ (Vy— W) for wy € N,
Yy —Wp

=wo+c-e;  forc = |ly—wol; and e1:m€5v
=W+ C1-W1+Cr- (€1 — wy) forws € Ne
e — Wy
=Wo+C-Wi+G-e forc=c-|er—wl,and ez:mesv
1 — Wall2
=Wo+C-Wi+C-Wy+C3-Ww3+... _’\‘[
For all i, have ¢; < €. ZL
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Proof Via e-net

Have written y € Sy, as y = Wg + Giwq + oW, + ... where
Wo, Wq, . .. E/\[E, and ¢ < e
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Proof Via e-net

Have written y € Sy, as y = Wg + Giwq + oW, + ... where
Wo, Wy, ... € N, and ¢; < € By trniangle inequality:

ISYll2 = [ISwo + ¢1Swq + &Swa + ... ||z
— v_-/_/—\__
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Proof Via e-net

Have written y € Sy, as y = Wg + Giwq + oW, + ... where
Wo, Wy, ... € N, and ¢; < €. By triangle inequality:
HS)/HZ = HSWO —‘r_CJSWq + CSwy + ... H2
< ||SW0H2 + C1||SW1||2 + CzHSWsz +...
- B

l

slrg el b -
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Proof Via e-net

Have written y € Sy, as y = Wg + Giwq + oW, + ... where
Wo, W1, ... € N, and ¢; < €. By triangle inequality:
ISYll2 = [ISwo + ¢1Swq + &Swa + ... ||z
< ||Swo||2 + c1||Swall2 + c2l|Swallz + . ..
<O+ )+e(l+e)+(T+e€)+...
(since via the union bound, ||Sw|; = ||wl|; for allw € N)
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Proof Via e-net

Have written y € Sy, as y = Wg + Giwq + oW, + ... where

Wo, Wy, ... € N, and ¢; < €. By triangle inequality: ‘

‘|SZ”2 = HSWO + ¢1Swq 4+ 6&Swy + ... H2 ﬁ_’
< ||Swo||2 + c1||Swall2 + c2l|Swallz + . .. V_/_'?-/-\
d*f.)(‘*i, tg '\n,)

<O+ +e(l+e)+(1+€)+...
(since via the union bound, ||Sw|; = ||wl|; for allw € N)

<1—|—e
~1—c¢

~ 14 2¢
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Proof Via e-net

Have written y € Sy, as y = wy +OWr+ Wy + ... where
Wo,Ws, ... € N., and ¢; < €. By triangle inequality:

Wo T CGiwy ¢ - b} ” o <(1+
HSsz — [ISwo + CiSWy+ 0Sws . o (- €) - H\Slﬂ\ﬁj)
S ISwollo + ISz + oIS + -
W <O+ +e(T+e)+(1+e)+...
(since via the union bound, ||Sw|; = ||wl|; for allw € N)
< 1T 1y
T—e€
Similarly, can prove that ||Sy||, > 1— 2¢, giving, for ally € Sy,
(and hence ally € V): [t le
X3 I

1—2¢ 2 S 2 1 2e 2.
( vl < | )</H ]|5u(\a;}L +)||Hsyg ol ¢ < (1))l
“‘S l\’L “S\/\)o + 5( Ws)”

el el T Sl Y _eh
D sy 7



Full Argument

- There exists an e-net NV. over the unit ball in A’s column
span, Sy with V] < (4)%
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Full Argument

- There exists an e-net NV. over the unit ball in A’s column
span, Sy with V] < (4)%

- By distributional JL, form = 0 w . with
probability > 1— 6, for all w e A, ||Sw]|> ~c ||w]>.
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Full Argument

- There exists an e-net NV. over the unit ball in A’s column
span, Sy with V] < (4)%

- By distributional JL, form = 0 w>, with
probability > 1— 6, for all w e A, ||Sw]|> ~c ||w]>.
= forally € Sy, [|Syl2 = ||y|l2-
— forally e V, i.e, forall y = Ax for x € RY,
1SYll2 e [Iyll2-
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Full Argument

- There exists an e-net NV. over the unit ball in A’s column
span, Sy with V] < (4)%

- By distributional JL, form = 0 w>, with
probability > 1— 6, for all w e A, ||Sw]|> ~c ||w]>.
= forally € Sy, [Syll2 =e [|Yl]2-

— forally e V, i.e, forall y = Ax for x € RY,
1Syll2 = [Iyll2-

= S e R™is an e-subspace embedding for A.
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy, with |N,| = (g)d
such that, for all y € Sy,

~—_

i — <e.
min Iy —wllz <
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy, with |N,| = (g)d
such that, for all y € Sy,
' _ <e.
min Iy —wllz <

Theoretical algorithm for constructing N.:

- Initialize N, = {}.
- While there exists v € Sy, where mingen. ||V — wl); > ¢, pick an

arbitrary such vand let N; := N. U {v}.
\

—
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy, with |N,| = (g)d
such that, for all y € Sy,
' _ <e.
min Iy —wllz <

Theoretical algorithm for constructing N.:

- Initialize N, = {}.

While there exists v € Sy where minyen, ||V — w|; > ¢, pick an
arbitrary such vand let N := N, U {v}.

If the algorithm terminates i@e have IN.| < Tand N, is a
valid e-net.

23



Net Construction

How large is the net constructed by our theoretical algorithm?
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w’ € .. We must have ||w vv "Il > ¢, or we would have
not added both to the net.
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w’ € N.. We must have |[jw — /||, > ¢, or we would have
not added both to the net.

Thus, we can place an ¢/2 radius ball around each w € A, and none
of these balls will intersect.
Sy
>
€ diameter
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w’ € N.. We must have |[jw — /||, > ¢, or we would have
not added both to the net.

Thus, we can place an ¢/2 radius ball around each w € A, and none
of these balls will intersect.

diameter

Note that all these balls lie within the ball of radius (1 + ¢/2). 24



Volume Argument

We have M disjoint balls with radius €/2, lying within a ball of
radius (14 €/2). T
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Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (1+ €/2).

In d dimensions, the radius r ball has volume ¢, Iﬁ where ¢,
is a constant that depends on d but not r.
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Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (1+ €/2).

In d dimensions, the radius r ball has volume ¢4 - r4, where ¢4
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:
¢l

(2! _ (8’
Wi < (1)
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Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (1+ €/2).

In d dimensions, the radius r ball has volume ¢4 - r4, where ¢4
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:
T4+¢€/2)0  /4\°

IN,| < w <(=2) .

(e/2)° ¢

Remark: We never actually construct an e-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.

25



Distributional JL Lemma Proof



Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let S € R™*" have i.i.d. Gaussian entries. Observe that each
entry of Sy is distributed as N(0, ||y||3), and give a proof via
concentration of independent ChiSquared random variables

(see 514 slides). Z K (\\)L
6

S'Z/\) t—u/z,l G\c\,v\;&\‘ vy ) x—ff—v ¢ §
m‘A)MN\ Vv M,(; Nl?\a_.
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Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let S € R™*" have i.i.d. Gaussian entries. Observe that each
entry of Sy is distributed as N(0, ||y||3), and give a proof via
concentration of independent Chi-Squared random variables
(see 514 slides). /C,‘_’/Kj,i

* Write ||5y||2 =i 12/ 12 ke 151SiRY Yk and prove
concentration oOf this sum, even though the terms are not all
independent of each other (only pairwise independent within
one row).

26



Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let S € R™*" have i.i.d. Gaussian entries. Observe that each
entry of Sy is distributed as N(0, ||y||3), and give a proof via
concentration of independent Chi-Squared random variables
(see 514 slides).

- Write [[Sy[l3 = 321 301, Yo5o: SijSikyjye and prove
concentration of this sum, even though the terms are not all
independent of each other (only pairwise independent within
one row).

T
- Apply the Hanson-Wright inequality — an exponential )< ﬁx
concentration mequality for random quadratic forms.

- [This inequality comes up in a lot of places, including in the tight
analysis of Hutchinson's trace estimator.
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Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)
Let x € R" be a vector of i.i.d. random =1 values. For any matrix

AER”X”: Exrﬂx _‘,((@ \\(\)ﬂ
l.
tz t
Pri|x"Ax — tr(A)| > t] < 2 ex ( C- mm{ = })
[pax — )] = 9 < 2exp 1412 TAT,

A% < ix“ ] iﬁ
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Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let x € R" be a vector of i.i.d. random =1 values. For any matrix
A E RHXH

i t
Pr{|x"Ax — tr(A)| > t] < 2exp (—c-min{, })
PrpAx = tr(A)] = 1 AT TAT:

\\SVQ\\LL = g

1 Iy 1
\S l\ j s mn x mn mn x,
El :j ! nx1 g AD mxn 20
‘ ’ W' III- s
= 0 )
Yy
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Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let x € R" be a vector of i.i.d. random =1 values. For any matrix
A E RHXH

. i t
Pr{|x"Ax — tr(A)| > t] < 2exp (—c-mm{, })
! @] =1 AT TAT,

mgﬁ\f

nx1 W A 311 '3)
- yy'

Observe that sTAs = 32", >0 S0 1 S jSiwyjvr = [|Sy|I3 and that
D - -
tr(A N =

~—
<

=m-tr(y

l
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Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let x € R" be a vector of i.i.d. random =1 values. For any matrix
A€ RN e

i t
Pr{|x"Ax — tr(A)| > t] < 2exp (—c-min{, })
! @] =1 AT TAT,

mn x mn mnx 1 _\_( k\é\g

n1 -—) W' Iil - ‘\( 6 j>
W' H\\J)\\i

_—

Observe that sTAs = 32", >0 S0 1 S jSiyivr = [ISyII and that

tr() = m- ") = m- Iy ;



Distributional JL via Wright Inequality

Letx = v/m-s,sox hasi.i.d. +1entries. Assume w.Lo.g. that ||y, = 1.

— _~—
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.

PrI[ISyl2 — 1| = ¢] = Pr[|s’As — 1| > ¢]

—_———
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Distributional JL via Wright Inequality

Letx = v/m-s, so x has i.id. +1entries. Assume w.Lo.g. that ||y, = 1.
Pr[ISy|3 — 1| > €] = Pr|s"As — 1| > ¢] Yo Bz l\jhf
= Pr|x"Ax — m| > em] M
= Pr[|x"Ax — tr(A)| > em]

——
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Distributional JL via Wright Inequality

Let x = v/m-s, sox has i.i.d. £1entries. Assume w.L.o.g. that [ly[, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]

= Pr|x"Ax — m| > em]

= Pr[|x"Ax — tr(A)| > em]

<2exp [ —c-min em)’ <m
= 1412 Tl S )
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

/?\\\\539 < 2exp <c~ min {(Em)2 em }) .

IAIIE " 11A]l2

it = o Myl = I o
1\

|L\j_\‘/‘} al j\\; mc&é“‘s M
)
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

[ (em)> em })
< 2exp <C~mm{ , .
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

[ (em)> em })
<2exp <C~mm{ , .
AN " 11All2

A2 =m- |y = m - |ly|H=m
—_— AN
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

(em) em
IAlIF ° HA||2

JAIE = m- [y = m- I = m
IAlL = / #)

<2exp <c~ min
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

[ (em)> em })
<2exp <C~mm{ , .
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Distributional JL via Wright Inequality

Letx = v/m-s, so x has i.id. +1entries. Assume w.Lo.g. that ||y, = 1.

PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr{|x"Ax — m| > em]
= Pr[|xTAx —tr(A)| > em]

§2exp —C- mm %é}
[AIE=m-llyyllF=m-|yll5=m

1All2 = llyy™ll2 = Hyllz =1

[\mnli maXx Imxly - g(m)
- xD )

H‘j\\ﬁ |l ’*\“* I 3\3., ) Il‘gﬁ <5’X>
lenl “j\j @{L,l ]:)“7, <j @> HjH7 28



Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.id. &1 entries. Assume w.L.o.g. that ||y|, = 1.
PrI[ISyl2 — 1| = ¢] = Pr[|sTAs — 1| > ¢]
= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

[ (em)> em })
<2exp <C~mm{ , .
IALI? " 1A]12
—

IAIIE = m - [lyyTlIz = m - Iyl = m

A= 2
em - W\
1Al = 17l = Iyl =1 = c €

2
PrI[lISyl3 — 1] = < 2exp (—c~ min {(6’”) ﬂ}) _ 2exp(—cem)

-— —_—— .,
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Distributional JL via Wright Inequality

Letx = v/m-s, so x has i.id. +1entries. Assume w.Lo.g. that ||y, = 1.

—1| > ¢ = Pr|sTAs — 1| > ]

= Pr|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

< 2exp <C’ min {(6,2”|)2 ’ HEArIrI)z }>

JAIR = m- [y = m- ] = WMLQ
Al = 1557l = Iyl =1 0o gD
PrI|liSvIZ — 1| > €] < 2exp (_c. min {(62)27 62”}) — 2exp(—ce?m)

If we setm =0 (mg(éﬂ) Pr{|[ISyll3 — 1| > €] < 4, giving the
distributional JL lemma. =
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Questions?
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