COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 7

Logistics

- · I'll return midterms at the end of class.
- Overall the class did very well mean was a 29.75 out of 36 (\approx 83%).
- If you are not happy with your performance, message me and we can chat about it. I'm also happy to review solutions in office hours.
- I plan to release Problem Set 3 by end of this week.
- 1 page progress report on Final Project due 4/8.
- · Weekly quiz due next Tuesday at 8pm.

Summary

Randomized Linear Algebra Before Break:

- 48=<!
- Freivald's algorithm for matrix product testing.
- (AB-c) y
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Approximate matrix multiplication via norm-based sampling.
 Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Related ideas for sampling for initializing k-means clustering the k-means++ algorithm.

3

Summary

Randomized Linear Algebra Before Break:

- Freivald's algorithm for matrix product testing.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Approximate matrix multiplication via norm-based sampling.
 Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Related ideas for sampling for initializing k-means clustering the k-means++ algorithm.

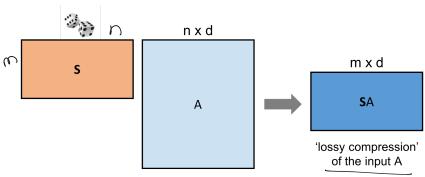
Today: Random sketching and the Johnson-Lindenstrauss lemma.

- Subspace embedding and ϵ -net arguments.
- · Application to fast over-constrained linear regression.

Linear Sketching

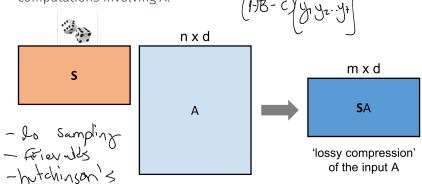
Linear Sketching

Given a large matrix $A \in \mathbb{R}^{n \times d}$, we pick a random linear transformation $S \in \mathbb{R}^{m \times n}$ and compute SA (alternatively, pick $S \in \mathbb{R}^{d \times m}$ and compute AS). Using SA we can approximate many computations involving A.



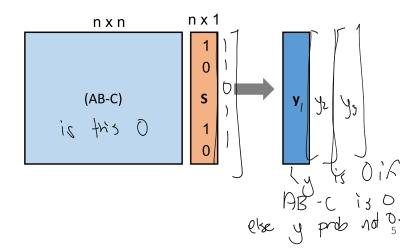
Linear Sketching

Given a large matrix $A \in \mathbb{R}^{n \times d}$, we pick a random linear transformation $S \in \mathbb{R}^{m \times n}$ and compute SA (alternatively, pick $S \in \mathbb{R}^{d \times m}$ and compute AS). Using SA we can approximate many computations involving A.

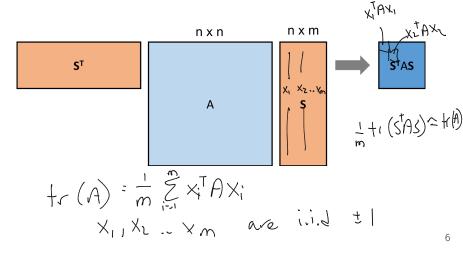


What algorithms have we seen in class that are based on linear sketching?

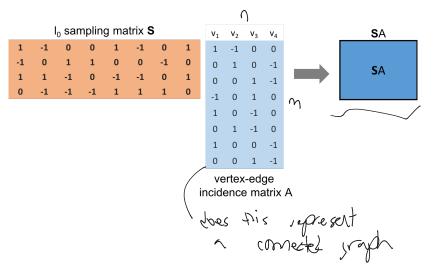
Freivald's Algorithm:



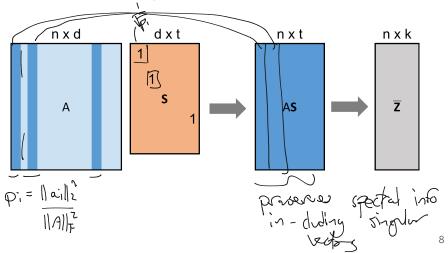
Hutchinson's Trace Estimator:



Graph Connectivity via ℓ_0 sampling:



Norm-Based Sampling for AMM/Low-Rank Approximation:



It is helpful to define general guarantees for sketches, that are useful in many problems.

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

special
$$(1-\epsilon)\|AX\|_2 \leq \|SAX\|_2 \leq (1+\epsilon)\|AX\|_2. \qquad \|SAX\|_2 \approx_{\mathbf{\ell}} \|AX\|_2$$

I.e., S preserves the norm of any vector Ax in the column span of A.

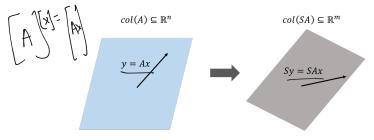
It is helpful to define general guarantees for sketches, that are useful in many problems. \bigcirc COLUMN \bigcirc \bigcirc \bigcirc .

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

$$(1-\epsilon)\|Ax\|_2 \le \|SAx\|_2 \le (1+\epsilon)\|Ax\|_2.$$

I.e., S preserves the norm of any vector Ax in the column span of A.



It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}_{\Delta}^{m \times n}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

$$(1-\epsilon)\|Ax\|_2 \leq \underbrace{\|SAx\|_2}_2 \leq (1+\epsilon)\|Ax\|_2.$$

I.e., *S* preserves the norm of any vector *Ax* in the column span of *A*. Tons of applications. E.g.,

- · Fast linear regression (next) and preconditioning,
- SA

- · Approximation of A's singular values.
- Approximate matrix multiplication and near optimal low-rank approximation.
- Compressed sensing/sparse recovery (related to ℓ_0 sampling).

Subspace Embedding Application

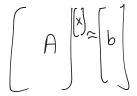
Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. We seek to find an approximate

arg min
$$\|Ax - b\|_2$$
.

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ -subspace embedding for $[A;b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{x} = \arg\min_{\mathbf{x} \in \mathbb{R}^d} \|\tilde{S} \tilde{A} \tilde{\mathbf{x}} - \tilde{S} \tilde{b}\|_2. \text{ Then we have:} \\ \|\tilde{A} \tilde{\mathbf{x}} - b\|_2 \leq \frac{1+\epsilon}{1-\epsilon} \cdot \min_{\mathbf{x} \in \mathbb{R}^d} \|A\mathbf{x} - b\|_2.$

$$\frac{\|A\tilde{x} - b\|_2}{\|A\tilde{x} - b\|_2} \le \frac{1 + \epsilon}{1 - \epsilon} \cdot \min_{x \in \mathbb{R}^d} \|Ax - b\|_2.$$



Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. We seek to find an approximate solution to the linear regression problem:

$$\underset{x \in \mathbb{R}^d}{\text{arg min } ||Ax - b||_2}.$$

A:b

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ -subspace embedding for $[A; b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. Then we have:

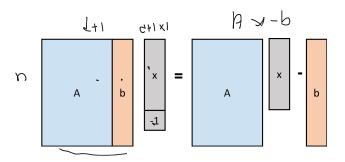
$$||A\tilde{x} - b||_2 \le \frac{1 + \epsilon}{1 - \epsilon} \cdot \min_{x \in \mathbb{R}^d} ||Ax - b||_2.$$

- Time to compute $x^* = \arg\min_{x \in \mathbb{R}^d} ||Ax b||_2$ is $O(nd^2)$.
- Time to compute \tilde{x} is just $O(md^2)$. For large n (i.e., a highly over-constrained problem) can set $m \ll n$.

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$, $\underbrace{ \left[\text{A}; \text{b} \right] \left[\text{A}; \text{b$



Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$.

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) ||Ax - b||_2 \le ||SAx - Sb||_2 \le (1 + \epsilon) ||Ax - b||_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. We have:

$$\| \underbrace{A\widetilde{x} - b} \|_{2} \leq \frac{1}{1 - \epsilon} \| SA\widetilde{x} - Sb \|_{2}$$

$$(I - \varepsilon) | A\widetilde{x} - b | | \leq \| SA\widetilde{x} - Sb \|_{2}$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. We have:

$$\|A\tilde{x} - b\|_2 \le \frac{1}{1 - \epsilon} \|\underbrace{SA\tilde{x} - Sb}\|_2 \le \frac{1}{1 - \epsilon} \cdot \|\underbrace{SA\tilde{x}^* - Sb}\|_2$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1-\epsilon)\|Ax-b\|_2 \leq \|SAx-Sb\|_2 \leq (1+\epsilon)\|Ax-b\|_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. We have:

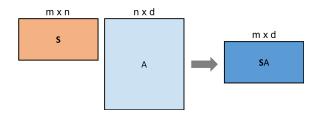
Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that $\operatorname{rank}(A) = d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ -subspace embedding for A with $\epsilon < 1$, how large must m be? **Hint:** Think about $\operatorname{rank}(SA)$ and/or the nullspace of SA.

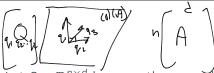
13

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that $\operatorname{rank}(A) = d$. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ -subspace embedding for A with $\epsilon < 1$, how large must m be? **Hint:** Think about $\operatorname{rank}(SA)$ and/or the nullspace of SA.



Think-Pair-Share 2: Describe how to deterministically compute a subspace embedding S with m=d and $\epsilon=0$ in $O(nd^2)$ time.



Let
$$S = Q^T$$
. $S \in \mathbb{R}^{d \times n}$ (i.e., $\underline{\underline{m} = d}$) and further, for any $x \in \mathbb{R}^d$
$$\|\underline{SAx}\|_2^2 = \|\underline{Q}^T \underline{Qy}\|_2^2$$
.

Let
$$S = Q^T$$
. $S \in \mathbb{R}^{d \times n}$ (i.e., $m = d$) and further, for any $x \in \mathbb{R}^d$

$$||SAx||_2^2 = ||Q^TQy||_2^2 = ||y||_2^2$$

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let $S = Q^T$. $S \in \mathbb{R}^{d \times n}$ (i.e., m = d) and further, for any $x \in \mathbb{R}^d$

$$||SAX||_{2}^{2} = ||Q^{T}Qy||_{2}^{2} = ||y||_{2}^{2} = ||AX||_{2}^{2}.$$

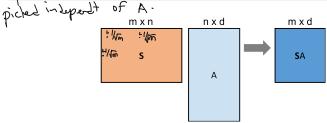
$$||Qy||_{L} : y^{T}Q^{T}Qy$$

$$= y^{T}y : ||y||_{L}^{2}$$

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

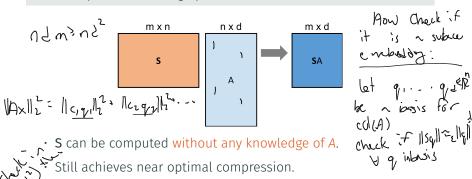
Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, S is an ϵ -subspace embedding of A.



Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, S is an ϵ -subspace embedding of A.



• Constructions where **S** is sparse or structured, allow efficient computation of **S**A (fast JL-transform, input-sparsity time algorithms) (分合き(4))

Oblivious Subspace Embedding Proof

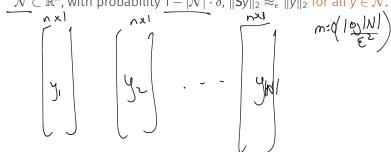
Proof Outline

/ brissim

1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times n}$ with i.i.d.

```
\pm 1/\sqrt{m} entries, for any fixed y \in \mathbb{R}^n, with probability 1 - \delta for very small \delta, (1 - \epsilon)\|y\|_2 \le \|\mathsf{S}y\|_2 \le (1 + \epsilon)\|y\|_2.
```

- 1. Distributional Johnson-Lindenstrauss: For $\underline{S} \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability $\underline{1-\delta}$ for very small δ , $(1-\epsilon)\|y\|_2 \le \|\mathbf{S}y\|_2 \le (1+\epsilon)\|y\|_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.



- 1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability $1 - \delta$ for very small δ , $(1 - \epsilon) \|y\|_2 \le \|\mathbf{S}y\|_2 \le (1 + \epsilon) \|y\|_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 - |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$. But we want $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a
 - linear subspace, i.e., an infinite set of vectors!

- 1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $N \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 4. 'Discretize' this subspace by rounding to a finite set of vectors N, called an enet for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

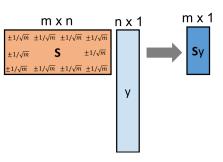
- 1. **Distributional Johnson-Lindenstrauss**: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 4. 'Discretize' this subspace by rounding to a finite set of vectors \mathcal{N} , called an ϵ -net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Remark: ϵ -nets are a key proof technique in theoretical computer science, learning theory (generalization bounds), random matrix theory, and beyond. They are a key take-away from this lecture.

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{S}y\|_2 \leq (1 + \epsilon) \|y\|_2$.

I.e., via a random matrix, we can compress any vector from \underline{n} to $\approx \underline{\log(1/\delta)/\epsilon^2}$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.



Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||Sy||_2 \leq (1 + \epsilon)||y||_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}]$$

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}]$$

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}]$$

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{S}y\|_2 \leq (1 + \epsilon) \|y\|_2$.

l.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:
$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $> 1 - \delta$, $(1 - \epsilon) \|y\|_2 \le \|Sy\|_2 \le (1 + \epsilon) \|y\|_2.$

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that *m* does not depend on *n* at all.

bit surprising maybe that
$$m$$
 does not depend on n at all.

Expectation:
$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)\right]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Var}(\mathbf{S}_{ij} \cdot y_{j})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Var}(\mathbf{S}_{ij} \cdot y_{j})$$

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||Sy||_2 \leq (1 + \epsilon)||y||_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

Example 1001:
$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \text{Var}(\mathbf{S}_{ij} \cdot y_{j})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{m} \cdot y_{j}^{2}$$

Theorem (Distributional JL)

Let $S \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon)||y||_2 \leq ||Sy||_2 \leq (1 + \epsilon)||y||_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Expectation:

tion:

$$\mathbb{E}[\|\mathbf{S}y\|_{2}^{2}] = \sum_{i=1}^{m} \mathbb{E}[\langle \mathbf{S}_{i,:}, y \rangle^{2}] = \sum_{i=1}^{m} \mathbb{E}\left[\left(\sum_{j=1}^{n} \mathbf{S}_{ij} \cdot y_{j}\right)^{2}\right]$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \text{Var}(\mathbf{S}_{ij} \cdot y_{j})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{m} \cdot y_{j}^{2} = \|y\|_{2}^{2}.$$

Restriction to Unit Ball

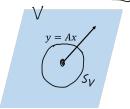
Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Restriction to Unit Ball

Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Observation: Suffices to prove $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2 = 1$ for all $y \in S_{\mathcal{V}}$ where

$$S_{\mathcal{V}} = \{ y : \underline{y \in \mathcal{V}} \text{ and } \underline{\|y\|_2 = 1} \}.$$

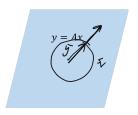


Restriction to Unit Ball

Want to show that with high probability, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Observation: Suffices to prove $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2 = 1$ for all $y \in S_{\mathcal{V}}$ where

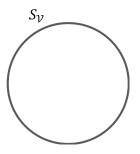
$$S_{\mathcal{V}} = \{ y : y \in \mathcal{V} \text{ and } ||y||_2 = 1 \}.$$



Proof: For any $y \in \mathcal{V}$, can write $y = ||y||_2 \cdot \overline{y}$ where $\overline{y} = y/||y||_2 \in S_{\mathcal{V}}$.

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$



Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

5/INel

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$.

$$(1 - \epsilon) \|w\|_2 \le \|Sw\|_2 \le (1 + \epsilon) \|w\|_2.$$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\overline{\mathcal{N}_{\epsilon}}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $(1 - \epsilon)||w||_2 < ||\mathbf{S}w||_2 < (1 + \epsilon)||w||_2.$

Requires
$$S \in \mathbb{R}^{m \times n}$$
 where $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right)$ $\log(1/\delta')^2$ $\log(1/\delta')^2$ $\log(1/\delta')^2$ $\log(1/\delta')^2$

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$,

$$(1 - \epsilon) \|w\|_2 \le \|Sw\|_2 \le (1 + \epsilon) \|w\|_2.$$

Requires
$$S \in \mathbb{R}^{m \times n}$$
 where $m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{d\left(\log(4/\epsilon) + \log(1/\delta)\right)}{\epsilon^2}\right) = \tilde{O}\left(\frac{d}{\epsilon^2}\right)$.

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

So Far: If we set $m = O(d/\epsilon^2)$ and pick railuoin $S \subset \mathbb{R}^2$, probability $\geq 1 - \delta$, $\|\underline{Sw}\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$. We can write:

Expansion via net vectors: For any $\underline{y} \in \mathcal{S}_{\mathcal{V}}$, we can write:

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$ $y_{\epsilon} w_0$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$
= $w_0 + c_1 \cdot e_1$ for $c_1 = \|y - w_0\|_2$ and $e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0) \qquad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= \underline{w_0} + c_1 \cdot e_1 \qquad \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$$

$$= \underline{w_0} + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \qquad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$\xi \in \mathcal{I}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0) \qquad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot e_1 \qquad \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \qquad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 \qquad \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0) \quad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot e_1 \quad \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \quad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 \quad \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in S_{\mathcal{V}}$, we can write:

$$y = w_0 + (y - w_0) \qquad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot e_1 \qquad \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \qquad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 \qquad \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots$$

For all i, have $c_i \leq \epsilon^i$.

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$.

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$\|Sy\|_2 = \|Sw_0 + c_1Sw_1 + c_2Sw_2 + \dots\|_2$$

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$||Sy||_{2} = ||Sw_{0} + \underline{c_{1}}Sw_{1} + c_{2}Sw_{2} + \dots ||_{2}$$

$$\leq ||Sw_{0}||_{2} + \underline{c_{1}}||Sw_{1}||_{2} + c_{2}||Sw_{2}||_{2} + \dots$$

$$\leq ||+|| \xi + || \xi(|+||\xi|) + || \xi^{2}(|+|\xi|) + \dots$$

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$\begin{split} \| \mathsf{S}y \|_2 &= \| \mathsf{S}w_0 + c_1 \mathsf{S}w_1 + c_2 \mathsf{S}w_2 + \dots \|_2 \\ &\leq \| \mathsf{S}w_0 \|_2 + c_1 \| \mathsf{S}w_1 \|_2 + c_2 \| \mathsf{S}w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ &\text{(since via the union bound, } \| \mathsf{S}w \|_2 \approx \| w \|_2 \text{ for all } w \in \mathcal{N}_\epsilon) \end{split}$$

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \ldots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$||Sy||_{2} = ||Sw_{0} + c_{1}Sw_{1} + c_{2}Sw_{2} + \dots ||_{2}$$

$$\leq ||Sw_{0}||_{2} + c_{1}||Sw_{1}||_{2} + c_{2}||Sw_{2}||_{2} + \dots$$

$$\leq (1 + \epsilon) + \epsilon(1 + \epsilon) + \epsilon^{2}(1 + \epsilon) + \dots$$
(since via the union bound, $||Sw||_{2} \approx ||w||_{2}$ for all $w \in \mathcal{N}_{\epsilon}$)

(since via the union bound,
$$\|\mathbf{S}w\|_2 \approx \|w\|_2$$
 for all $w \in \mathcal{N}_{\epsilon}$)

$$\leq \frac{1+\epsilon}{1-\epsilon} \approx 1+2\epsilon$$

Have written
$$y \in S_{\mathcal{V}}$$
 as $\underline{y} = w_0 + \underline{c_1w_1 + c_2w_2} + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:
$$\|\underline{Sy}\|_2 = \|Sw_0 + c_1Sw_1 + c_2Sw_2 + \dots\|_2 \qquad (-\varepsilon)^{-\epsilon}\|\underline{Sy}\| \le \|\underline{Sw_0}\|_2 + \underline{c_1}\|\underline{Sw_1}\|_2 + c_2\|\underline{Sw_2}\|_2 + \dots$$

$$\leq (1+\epsilon) + \epsilon(1+\epsilon) + \epsilon^2(1+\epsilon) + \dots$$

$$||\mathbf{S}\mathbf{w}_0||^2 + ||\mathbf{S}\mathbf{w}_1||^2 + c_2 ||\mathbf{S}\mathbf{w}_2||^2 + \dots$$

$$\leq (1+\epsilon) + \epsilon(1+\epsilon) + \epsilon^2(1+\epsilon) + \dots$$

(since via the union bound, $\|\mathbf{S}w\|_2 \approx \|\mathbf{w}\|_2$ for all $\mathbf{w} \in \mathcal{N}_{\epsilon}$)

$$\leq \frac{1+\epsilon}{1+\epsilon} \approx 1+2\epsilon$$

$$\leq \frac{1+\epsilon}{1-\epsilon} \approx 1+2\epsilon$$
 Similarly, can prove that $\|\mathbf{S}y\|_2 \geq 1-2\epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

• There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{\epsilon}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$. \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{\epsilon}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{\epsilon}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|\mathbf{y}\|_2$.
 - \implies **S** $\in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for *A*.

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- · Initialize $\mathcal{N}_{\epsilon} = \{\}.$
- While there exists $v \in S_{\mathcal{V}}$ where $\min_{w \in \mathcal{N}_{\epsilon}} \|v w\|_2 > \epsilon$, pick an arbitrary such v and $\overline{\text{let }} \mathcal{N}_{\epsilon} := \mathcal{N}_{\epsilon} \cup \{v\}$.

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{a}$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w \in \mathcal{N}_{\epsilon}} \|y - w\|_2 \le \epsilon.$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

· Initialize $\mathcal{N}_{\epsilon} = \{\}$.

While there exists $v \in S_{\mathcal{V}}$ where $\min_{w \in \mathcal{N}_{\epsilon}} \|v - w\|_2 > \epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon} := \mathcal{N}_{\epsilon} \cup \{v\}$.

If the algorithm terminates in T steps, we have $|\mathcal{N}_{\epsilon}| \leq T$ and \mathcal{N}_{ϵ} is a valid ϵ -net.

How large is the net constructed by our theoretical algorithm?

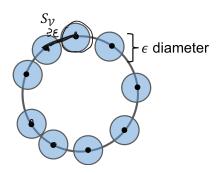
How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $\|w - w'\|_2 > \epsilon$, or we would have not added both to the net.

How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $||w - w'||_2 > \epsilon$, or we would have not added both to the net.

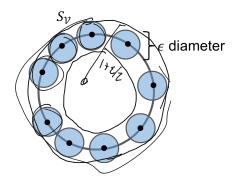
Thus, we can place an $\epsilon/2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.



How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $||w - w'||_2 > \epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon/2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.



Note that all these balls lie within the ball of radius $(1 + \epsilon/2)$.

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

In d dimensions, the radius r ball has volume $c_d \cdot \underline{r}^d$, where c_d is a constant that depends on d but not r.

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

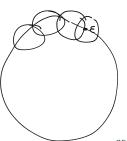
In d dimensions, the radius r ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$|\mathcal{N}_{\epsilon}| \leq \frac{(1+\epsilon/2)^{d}}{(\epsilon/2)^{d}} \leq \left(\frac{4}{\epsilon}\right)^{d}.$$

$$\left(\frac{4}{\epsilon}\right)^{d-1}$$

$$3\epsilon$$



We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius $(1 + \epsilon/2)$.

In d dimensions, the radius r ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

$$|\mathcal{N}_{\epsilon}| \leq \frac{(1+\epsilon/2)^d}{(\epsilon/2)^d} \leq \left(\frac{4}{\epsilon}\right)^d.$$

Remark: We never actually construct an ϵ -net. We just use the fact that one exists (the output of this theoretical algorithm) in our subspace embedding proof.

Distributional JL Lemma Proof	

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

• Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of $\mathbf{S} y$ is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).

squared Gaussins, X-Borred ranhon variable

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let S ∈ R^{m×n} have i.i.d. Gaussian entries. Observe that each entry of Sy is distributed as N(0, ||y||₂), and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
 Write ||Sy||₂ = ∑_{i=1}^m ∑_{j=1}ⁿ ∑_{k=1}ⁿ S_{i,j}S_{i,k}y_jy_k and prove
- Write $\|\mathbf{S}y\|_2^2 = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of $\mathbf{S}y$ is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
- Write $\|\mathbf{S}y\|_2^2 = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).
- Apply the Hanson-Wright inequality an exponential $X \cap X$ concentration inequality for random quadratic forms.
- This inequality comes up in a lot of places, including in the tight analysis of Hutchinson's trace estimator.

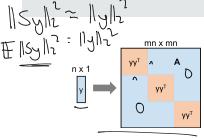
Theorem (Hanson-Wright Inequality)

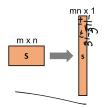
Let $\mathbf{x} \in \mathbb{R}^n$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$, $\mathbb{E}_{\mathbf{x}} \mathsf{T} A \mathbf{x} = \frac{1}{2} \mathsf{T} A \mathbf{x} = \frac{1}{2$

Theorem (Hanson-Wright Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$,

$$\Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x} - \operatorname{tr}(A)\right| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

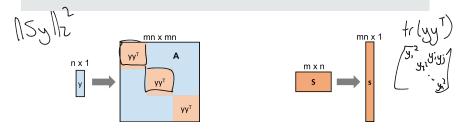




Theorem (Hanson-Wright Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$,

$$\Pr[\left|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A)\right| \geq t] \leq 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

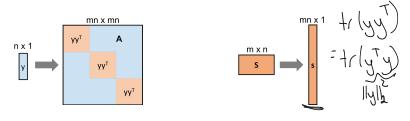


Observe that
$$\underline{\mathbf{s}^T A \mathbf{s}} = \underbrace{\sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k}_{\mathbf{s} = \mathbf{s}_{i,k} \mathbf{s}_$$

Theorem (Hanson-Wright Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$,

$$\Pr[\left|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A)\right| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$



Observe that
$$\mathbf{s}^T A \mathbf{s} = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k = \|\mathbf{S} y\|_2^2$$
 and that
$$\operatorname{tr}(A) = m \cdot \operatorname{tr}(y y^T) = m \cdot \|y\|_2^2.$$

$$\Pr[\left| \frac{\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1}{\|\mathbf{S}\mathbf{y}\|_{2}^{2}} \right| \ge \epsilon] = \Pr[\left|\mathbf{s}^{\mathsf{T}}A\mathbf{s} - 1\right| \ge \epsilon]$$

Let
$$\mathbf{x} = \sqrt{m} \cdot \mathbf{s}$$
, so \mathbf{x} has i.i.d. ± 1 entries. Assume w.l.o.g. that $\|y\|_2 = 1$.
$$\Pr[\big| \|\mathbf{S}y\|_2^2 - 1 \big| \ge \epsilon] = \Pr[\big| \mathbf{s}^T A \mathbf{s} - 1 \big| \ge \epsilon]$$
$$= \Pr[\big| \mathbf{x}^T A \mathbf{x} - m \big| \ge \epsilon m]$$

$$\Pr[|\|\mathbf{S}y\|_{2}^{2} - 1| \geq \epsilon] = \Pr[|\mathbf{s}^{T}A\mathbf{s} - 1| \geq \epsilon]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - m| \geq \epsilon m]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - \text{tr}(A)| \geq \epsilon m]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - \text{tr}(A)| \geq \epsilon m]$$

$$\begin{aligned} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2}-1\right| \geq \epsilon] &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-\operatorname{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}^{2}}\right\}\right). \end{aligned}$$

$$\Pr[|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1| \geq \epsilon] = \Pr[|\mathbf{s}^{T}A\mathbf{s} - 1| \geq \epsilon]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - m| \geq \epsilon m]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - \operatorname{tr}(A)| \geq \epsilon m]$$

$$\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right).$$

$$\|A\|_{F}^{2} = m \cdot \|\mathbf{y}\mathbf{y}^{T}\|_{F}^{2} - \|\mathbf{y}\|_{2}^{2} \cdot m$$

$$\|\mathbf{y}\|_{F}^{2} \cdot \|\mathbf{y}\|_{F}^{2}$$

$$\|\mathbf{y}\|_{F}^{2} \cdot \|\mathbf{y}\|_{F}^{2}$$

$$\begin{split} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2}-1\right| &\geq \epsilon] = \Pr[\left|\mathbf{s}^{T}A\mathbf{s}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-\operatorname{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c\cdot\min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}},\frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{split}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2$$

$$\Pr[|\|\mathbf{S}y\|_{2}^{2} - 1| \geq \epsilon] = \Pr[|\mathbf{s}^{T}A\mathbf{s} - 1| \geq \epsilon]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - m| \geq \epsilon m]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x} - \text{tr}(A)| \geq \epsilon m]$$

$$\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right).$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

$$\begin{aligned} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1\right| &\geq \epsilon] = \Pr[\left|\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - 1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \text{tr}(\mathbf{A})\right| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|\mathbf{A}\|_{F}^{2}}, \frac{\epsilon m}{\|\mathbf{A}\|_{2}}\right\}\right). \end{aligned}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

 $||A||_2 =$

$$\begin{aligned} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1\right| &\geq \epsilon] = \Pr[\left|\mathbf{x}^{T}A\mathbf{x} - 1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x} - m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x} - \text{tr}(A)\right| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{aligned}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

 $||A||_2 = ||yy^T||_2$

$$\begin{split} \Pr[\|\mathbf{S}y\|_{2}^{2}-1| \geq \epsilon] &= \Pr[|\mathbf{s}^{T}A\mathbf{s}-1| \geq \epsilon] \\ &= \Pr[|\mathbf{x}^{T}A\mathbf{x}-m| \geq \epsilon m] \\ &= \Pr[|\mathbf{x}^{T}A\mathbf{x}-\mathrm{tr}(A)| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \\ \|A\|_{F}^{2} &= m \cdot \|yy^{T}\|_{F}^{2} &= m \cdot \|y\|_{2}^{2} &= m \\ \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{split}$$

$$\begin{aligned} \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{aligned}$$

$$\begin{aligned} \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{aligned}$$

$$\begin{aligned} \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{aligned}$$

$$\begin{aligned} \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{aligned}$$

$$\begin{aligned} \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{aligned}$$

$$\begin{aligned} \|A\|_{2} &= \|yy^{T}\|_{2} &= \|y\|_{2}^{2} &= 1 \end{aligned}$$

$$\Pr[|\|\mathbf{S}y\|_{2}^{2}-1| \geq \epsilon] = \Pr[|\mathbf{s}^{T}A\mathbf{s}-1| \geq \epsilon]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x}-m| \geq \epsilon m]$$

$$= \Pr[|\mathbf{x}^{T}A\mathbf{x}-\operatorname{tr}(A)| \geq \epsilon m]$$

$$\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right).$$

$$\|A\|_{F}^{2} = m \cdot \|yy^{T}\|_{F}^{2} = m \cdot \|y\|_{2}^{2} = m$$

$$\|A\|_{2} = \|yy^{T}\|_{2} = \|y\|_{2} = 1$$

$$\Pr[\|\mathbf{S}y\|_{2}^{2}-1| \geq \epsilon] \leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{m}, \frac{\epsilon m}{1}\right\}\right) = 2 \exp(-c\epsilon^{2}m)$$

$$\begin{aligned} \Pr[||\mathbf{S}\mathbf{y}||_{2}^{2} - 1| \geq \epsilon] &= \Pr[|\mathbf{s}^{\mathsf{T}} A \mathbf{s} - 1| \geq \epsilon] \\ &= \Pr[|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - m| \geq \epsilon m] \\ &= \Pr[|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A)| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{aligned}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

$$||A||_2 = ||yy^T||_2 = ||y||_2 = 1$$

$$\begin{split} \|A\|_F^2 &= m \cdot \|yy^T\|_F^2 = m \cdot \|y\|_2^2 = m \\ \|A\|_2 &= \|yy^T\|_2 = \|y\|_2 = 1 \\ \Pr[\|\mathbf{S}y\|_2^2 - 1| \ge \epsilon] \le 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^2}{m}, \frac{\epsilon m}{1}\right\}\right) = 2 \exp(-c\epsilon^2 m) \end{split}$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, $\Pr[\left|\|\mathbf{S}y\|_2^2 - 1\right| \ge \epsilon] \le \delta$, giving the distributional JL lemma.

Questions?