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Logistics (Lots of Them)

- Problem Set 2 is due tomorrow 3/3 at 8pm.
- One page project proposal due Monday 3/7.

- Midterm next week in class - designed to be 1.5 hours
long, but I will give the full class for it.

- Closed book, mostly short-answer style questions.

- See Schedule tab for midterm study guide/practice
questions.

- | will hold additional office hours Monday 3/7 from 4-6pm
for midterm review.

- We again do not have a quiz this week due to the
upcoming midterm.



Last Time:

- Saw how £y sampling can be used to solve connectivity using
O(nlog® n) bits of memory in a streaming setting.

- Approximate matrix multiplication via non-unifom norm-based
sampling. Analysis via outer-product view of matrix
multiplication + linearity of variance.

- Stochastic trace estimation — Hutchinson’'s method and its full
analysis via linearity of variance for pairwise-independent
random variables.

Today: More applications of non-uniform and adaptive sampling to
clustering and low-rank approximation.

- The k-means++ algorithm and its analysis.

- Randomized low-rank approximation via norm-based sampling,
building on approximate matrix multiplication analysis.



k-means clustering and k-means ++



k-means Clustering

Given xa, ..., X, € RY, assign to clusters {G,...,Ck} to minimize
ZL > ovec X = will3 where p; = |g—‘ > _xec X is the cluster centroid.
1
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Probably the most popular clustering objective in practice. But
minimizing it is surprisingly hard! O(n+") time is the best known
for exact minimization, and assuming P # NP, the exponential
dependences on k, d are necessary.



Lloyd’s Algorithm

In practice k-means clustering is almost always solved with
alternating minimization.

Lloyd’s Algorithm:

1. Initialize some set of clusters {C,..., Cx} with centroids

Hy -« ey M
2. Reassign each datapoint x; to cluster C; where
j=argminepy X — 3.
3. Recompute centroids pun, ..., u, to reflect the new clusters.
4. Repeat (2)-(3).

Observe that the cost of the clustering can never increase.
However, if the initialization is bad, can get caught in a bad
local minimum.



Lloyd’s Algorithm




k-means++

k-means++: An extremely simple randomized initialization
scheme for k-means which yields a O(log k) approximation to
the optimal clustering.

- Initialize probabilities p; = 1/n for i € [n].
- Initialize list of cluster centers C = {}.
- Forj=1,2,...R
- Set center ¢; € {Xy,..., Xy} to x; with probability p;. Add ¢;
to C.
- Foralli € [n], let d(i) = mincec ||x; — clf2.
- Forallie [n], let p; =d(i)/ >, d(i).
- Let Gy,...,C, be the clusters formed by assigning each
data point to the nearest center in C = {cy, ..., Cp}.



k-means++

Intuition: The adaptive sampling strategy tends to select well-spread
cluster centers.
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k-means++ Intuition

Why don’t we just set ¢; to the x; with maximum
d; = mincec||x; — c||3? l.e., why do we use random sampling? This
deterministic variant can be foiled by outliers.
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With random sampling cluster centers are both well-spread and
representative of the dataset.



k-means++ Analysis

Proof Outline:

1. Let Cy,...,Cg the clusters corresponding to centers ¢y, ..., Ck
and u(Gy), ..., 1(Cy) be their centroids. Let Aq, ..., A, be the
optimal clusters. We will show:

ZZIIX— H2<ZZHX_C||2<O logR) - ZZIIX— DlIz-

i=1 xeC i=1 xe( =1 XEA;

2. Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

3. Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.
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k-means++ Analysis
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k-means++ Analysis

Proof Outline:

1.

Let Cy,...,Cg the clusters corresponding to centers ¢q,...,Ck
and u(G), ..., u(Cg) be their centroids. Let Aq, ..., A be the
optimal clusters. We will show:

ZZIIX—M(C H2<ZZ”X—CH2<O logk) - ZZIIX— I3

i=1 xeC i=1 xe( i=1 XEA;

2.

Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.

Conclude that we cover any high cost clusters with good
probability, and via a careful inductive argument that the
expected cost is O(logR) times the optimum. 12



k-means++ Proof Sketch

Let X, X, be the set of uncovered and covered points respectively.
Let ¢(X,) and ¢(X:) be the current cost associated with these points,
and ¢opr(Xy) and ¢opr(Xc) denote the optimal cost.

°
C,
Y
)
O

- Will argue in a few slides that E[¢(AX,)] < ¢opr(Xe) 13



k-means++ Analysis
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k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a
covered cluster A; is at most a constant factor times the optimal cost.
A Useful Lemma: Let S be a set of points with centroid u(S), and let z
be any other point.

Dok =23 =" llx = w3 + 15| - [1(S) — 25

XES XES

Proof: 37, cs [Ix = 2[I7 = 32,es I (x = 1(S)) + (u(S) = 2)II7 =
Doves X = m(S)E + Xes 11(S) — 23 + 3oyes 20x = 1(S), u(S) — 2) 15



First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set Aq,...,Ax. Let c; be
a cluster center chosen uniformly at random from A. Let

B(A) = Yoyen IX = cill? and dopr(A) = 3oyeq X — n(A)13-

E[p(A)] = 2¢0pr(A).

B = Y - 3l — sl .

a1€A aeA

‘"



Future Cluster Bounds

Lemma
Let A be some cluster in the optimal cluster set Aq,...,Ax. Let
C1,...,Cj—1 be our current set of cluster centers. If we add a random

center ¢; from A, chosen with probability proportional to
d(a) = miniegs,... i1y lla — i3 then

E[o(A)] < 8popr(A).

E[p(A)] =) me ) llaz — ail3)
Z nd

a1€A a,EA
By triangle inequality, for any center ¢,
lar —cillz < (la = cill2 + la — anll2)* < 2fla — ¢l + 2[la — a3 So

d(ar) < 2d(a) +2]la - ar 3.
Averaging over all a € A, d(a1) < % 22,4 d(A) + 1 Yaea lla — a3



Future Cluster Bounds

Combine: E[o( ) =2 0ea % Y ea Min(d(ay), llaz; — ail[3)
and d(aﬁ) < \A\ deA ( ) ‘72‘ ZaeA HCI - 01“% to get

A a—a
E[¢ Z LaacA \"Y Z Ha2 G1H2 Z ZaeA H 1H2 Z d a2
|A| ar€A ZGGA (A) aEA a €A aEA
= Z > llaz — all3 < 8opr(A).

a1€EA aEA

Upshot: At each step that we cover a cluster A from the optimal
clustering, the expected cost is, in expectation, within a constant
factor of the optimal cost for that cluster.



Randomized Low-Rank approximation



Low-rank Approximation

Consider a matrix A € R"*9. We would like to compute an optimal
low-rank approximation of A. l.e,, for kR < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZTAllf = min ||A—ZZ"A|r.
2:777=|

Why is rank(ZZ'A) < k?

nxd nx k nxd
Z’A
A = V4
Why does it suffice to consider low-rank approximations of this 19

farm? Eor anv R with rank(R) — kb lat 7 £ %Xk ha an arthonarmal



Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd + nk?) time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities pq, ..., p, with p; = ”\T\;\TII\!%'
- Select iy, ..., it € [n] independently, according to the

distribution Pr[ij = k] = pi, for sample size t > k.
. — 1.5t 1 .

- Let Z € R"™*F consist of the top k left singular vectors of C.

Looks like approximate matrix multiplication! In fact, will use that
CC’ is a good approximation to the matrix product AA”.

20



Sampling Based Algorithm

nxd nxt nxKk

N
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Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with
= f samples outputs Z € R"** satisfying with probability at
least 1—0:

51 4112 : TAll2 2
|A—ZZ'AI < min (1A - ZZ'Al} + 2€ljAl12

Key Idea: By the approximate matrix multiplication result from last

class, applied to the matrix product AAT, with probability > 1 — 6,
447 = €CTll < = Al - [Tl = Il

Since CC" is close to AAT, the top eigenvectors of these matrices (i.e.

the top left singular vectors of A and C will not be too different.) So Z

can be used in place of the top left singular vectors of A to give a

near optimal approximation.
2



Formal Analysis

Let Z, € R"*F contain the top left singular vectors of A - i.e.
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B —ZZ"B||# = tr(BB") — tr(Z'BB'Z).
Claim 2: If [|AAT — CCT||r < ﬁHAH%, then for any orthonormal
Z € R™k tr(ZT(AAT — CCTYZ) < €A%
Proof from claims:
IC—ZZ'C|? < ||C - 2.ZIC|2 = tr(Z'cC'Z) > tr(Z1cC’Z,)
— tr(Z' AATZ) > tr(ZTAATZ,) — 2¢||A|2
= |A-ZZ A2 < |A - Z.ZIAIR + 26| Al

23



Formal Analysis

Claim 2: If |AAT — CCT||F < ﬁHA 2 then for any orthonormal
Z € R™K tr(ZT(AAT — CCTYZ) < €| AlI%.

Suffices to show that for any symmetric B € R"*" and any
orthonormal Z € R, tr(Z'BZ) < V/k - ||B||f.

tr(Z'Bz) = Z 2/Bz;

< Z Ai( (By Courant-Fischer theorem)

<W‘ZA B)2 < vVk- Z/\ = VR-||Bllr.

2%



More Advanced Techniques

Norm based sampling gives an additive error approximation,
A —ZZ AllE < mingzr,_ A — ZZTA|12 + 2¢| A2

- Ideally, we would like a relative error approximation,
1A~ ZZ'Al} < (1+ €) - ming i, |A — ZZ'A|1%.

- This can be achieved with more advanced non-uniform
sampling techniques, based on leverage scores or
adaptive sampling.

- Also possible using Johnson-Lindenstrauss type random
projection.

25



Adaptive Sampling

Given an input matrix A € R"*? and rank parameter
k < min(n,d).

- Initialize probabilities p; = 1/n for i € [n].
- Initialize list of columns C = {} and orthonormal matrix
V=0.
- Forj=1,2,...t
- Setacolumn¢ e {A.1,...,A n} to A ; with probability p;
and add ¢ to C.

- Let V € R™/ have orthonormal columns spanning the
columns in C.

‘ A i—WIA. |12
- Forallie|[n], letp; = W'

- Return the top k left singular values of AV € Rt

26



Adaptive Sampling
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