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Logistics (Lots of Them)

- Problem Set 2 is due tomorrow 3/3 at 8pm. )9\5

- One page project proposal due Monday 3/7.

- Midterm next week in class — designed to be 1.5 hours
long, but I will give the full class for it.

- Closed book, mostly short-answer style questions.

- See Schedule tab for midterm study guide/practice
questions.

- | will hold additional office hours Monday 3/7 from 4-6pm
for midterm review.

- We again do not have a quiz this week due to the
upcoming midterm.



Last Time:

\ & Saw how £y sampling can be used to solve connectivity using
U\ > O(n log® n) bits of memory in a streaming setting.

- Approximate matrix multiplication via non-unifom norm-based
\AY) sampling. Analysis via outer-product view of matrix
multiplication + linearity of variance.

- Stochastic trace estimation — Hutchinson’'s method and its full
\ analysis via linearity of variance for pairwise-independent
\

‘P\" random variables. Y [A%
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Last Time:

- Saw how ¢y sampling can be used to solve connectivity using
O(nlog® n) bits of memory in a streaming setting.

- Approximate matrix multiplication via non-unifom norm-based
sampling. Analysis via outer-product view of matrix
multiplication + linearity of variance.

- Stochastic trace estimation — Hutchinson’s method and its full

analysis via linearity of variance for pairwise-independent
random variables.

Today: More applications of non-uniform and adaptive sampling to
clustering and low-rank approximation.

- The k-means++ algorithm and its analysis.

- Randomized low-rank approximation via norm-based sampling,
building on approximate matrix multiplication analysis.



k-means clustering and k-means ++



k-means Clustering

Given xi,..., X, € RY assign to clusters {C;, ..., Cx} to minimize
Z,’; >ovec, X = will3 where p; = ﬁ > xec, X is the cluster centroid.
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k-means Clustering

Given xi,..., X, € RY assign to clusters {C;, ..., Cx} to minimize
Z,’; > ovec, X = will3 where p; < ﬁ > xec, X is the cluster centroid.

Probably the most popular clustering objective in practice. But
minimizing it is surprisingly hard! O(n%+") time is the best known

for exact minimization, and assuming P ## NP, the exponential
dependences on k, d are necessary. 4



Lloyd’s Algorithm

In practice k-means clustering is almost always solved with
alternating minimization.



Lloyd’s Algorithm

In practice k-means clustering is almost always solved with

alternating minimization.

Lloyd’s Algorithm: \’\ [ERP .‘T\f)\}f s :Jéo.

1. Initialize some set of clusters {Cy,..., Cx} with centroids

Ky ey Pk
2. Reassign each datapoint x; to cluster C; where

j = argminjcpg lIXi — 5.
3. Recompute centroids ua, . ..
4. Repeat (2)-(3).

, i, to reflect the new clusters.



Lloyd’s Algorithm

In practice k-means clustering is almost always solved with
alternating minimization.

Lloyd’s Algorithm:

[_1 Initialize some set of clusters {Cy,. .., Cx} with centroids
s e ey ke
2. Reassign each datapoint x; to cluster C; where
j = argminjegy X — 13-
3. Recompute centroids pq, ..., up to reflect the new clusters.
4. Repeat (2)-(3).

Observe that the cost of the clustering can never increase.

However, if the initialization is bad, can get caught in a bad

local minimum.
e LU
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Lloyd’s Algorithm




Lloyd’s Algorithm




k-means++

k-means++: An extremely simple randomized initialization
_’\ . . . .
scheme for k-means which yields a O(log R) approximation to
the optimal clustering.



k-means++

k-means++: An extremely simple randomized initialization
scheme for k-means which yields a O(logR) approximation to
the optimal clustering. Kool Xn

- Initialize probabilities p; = 1/n for i € [n].
—_—

- Initialize list of cluster centers C = {}.
- Forj=12,...R

- Set center ¢; € {xy,...,X,} to x; with probability p;. Add ¢;

to C.

- Foralli € [n], let d(i) = mincec ||x; — c||3.

- Foralli e [n], let p; = d(i)/ 321, d(i).
- Let G4, ..., C, be the clusters formed by assigning each

data point to the nearest center in C = {c, ..., Cg}-



k-means++
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k-means++



k-means++
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Intuition: The adaptive sampling strategy tends to select well-spread
cluster centers.



k-means++ Intuition

Why don’t we just set ¢; to the x; with maximum
d; = mincec||x; — c||3? l.e., why do we use random sampling?
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deterministic variant can be fopjéd tliers.




k-means++ Intuition

Why don’t we just set ¢; to the x; with maximum
d; = mincec ||x; — c||3? I.e., why do we use random sampling? This
deterministic variant can be foiled by outliers.
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k-means++ Intuition

Why don’t we just set ¢; to the x; with maximum
d; = mincec ||x; — c||3? I.e., why do we use random sampling? This
deterministic variant can be fojled-y outliers.
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k-means++ Intuition

Why don’t we just set ¢; to the x; with maximum
d; = mincec ||x; — c||3? I.e., why do we use random sampling? This
deterministic variant can be foiled by outliers.
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With random sampling cluster centers are both well-spread and
representative of the dataset. 9



k-means++ Analysis

Proof Outline:

1. Let C4,...,C, the clusters corresponding to centers cq, ..., Ck

and m ., 11(Cy) be their centroids. Let Aq,..., A, be the
optimal clusters. We will show: T

ZZIIX— Hz<ZZHX—CIH2<Ologk ZZHX— 3
% =1 x€C =1 XEA; -
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k-means++ Analysis

Proof Outline:

1. Let C4,...,C, the clusters corresponding to centers ¢y, ..., Ck
and u(Gy), ..., u(Cy) be their centroids. Let Aq, ..., A, be the
optimal clusters. We will show:

ZZIIX— Hz<ZZHX—C:Hz<OIO€k ZZHX— IIZ-

i=1 X€C i=1 xeG i=1 XEA;

2. Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e,, is covered) is
at most a constant factor times the optimal cost.



k-means++ Analysis

Proof Outline:

1. Let C4,...,C, the clusters corresponding to centers ¢y, ..., Ck
and u(Gy), ..., u(Cy) be their centroids. Let Aq, ..., A, be the
optimal clusters. We will show:

ZZIIX— Hz<ZZHX—C:Hz<OIO€k ZZHX— IIZ-

i=1 X€C i=1 xeG i=1 XEA;

2. Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e,, is covered) is
at most a constant factor times the optimal cost.

3. Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.



k-means++ Analysis
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k-means++ Analysis

Proof Outline:

1. Let C4,...,C, the clusters corresponding to centers ¢y, ..., Ck

and u(Gy), ..., u(Cy) be their centroids. Let Aq, ..., A, be the
optimal clusters. We will show:

ZZIIX* \IZ<ZZ\IX*QH2<Olng ZZHX* DIz

i=1 xe( i=1 xeG =1 XEA;

2. Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

3. Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.
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k-means++ Analysis

Proof Outline:

1. Let C4,...,C, the clusters corresponding to centers ¢y, ..., Ck
and u(Gy), ..., u(Cy) be their centroids. Let Aq, ..., A, be the
optimal clusters. We will show:

ZZIIX* ) < 325 I -l < Ofogh)- ZZIIX*

i=1 xe( =1 xeC =1 XEA;

2. Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

3. Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.

. Conclude that we cover any high cost clusters with good
probability, and via a careful inductive argument that the
expected cost is O(logR) times the optimum.

DIz
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k-means++ Analysis

Proof Outline:

1.

Let Gy, ..., Cg the clusters corresponding to centers ¢, ..., Cg
and u(Gy), ..., u(Cy) be their centroids. Let Aq, ..., A, be the
optimal clusters. We will show:

ZZIIX* \IZ<ZZHX*C/H2<OlO€k ZZIIX* DIz

i=1 xe( i=1 xeG =1 XEA;

2.

Prove that, in expectation, the cost corresponding to any cluster
A; that has a center ¢4, ..., ¢, selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.

Conclude that we cover any high cost clusters with good
probability, and via a careful inductive argument that the
expected cost is O(logR) times the optimum. 12



k-means++ Proof Sketch

Let X, X; be the set of uncovered and covered points respectively. %ﬁ)
Let ¢(X,) and ¢(Xc) be the current cost associated with these points, X
and ¢opr(X,) and ¢opr(X;) denote the optimal cost. <

13



k-means++ Proof Sketch

Let X, X; be the set of uncovered and covered points respectively.
Let ¢(X,) and ¢(X:) be the current cost associated with these points,
and ¢opr(Xy) and ¢opr(X.:) denote the optimal cost.

- Will argue in a few slides that E[¢(X,)] §\8¢OPT(XC)

13
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k-means++ Proof Sketch

Let X, X; be the set of uncovered and covered points respectively.
Let ¢(X,) and ¢(X:) be the current cost associated with these points,
and ¢opr(Xy) and ¢opr(X.:) denote the optimal cost.

- Will argue in a few slides that E[¢(X;)] < dopr(Xe)

- If p(X) 2a~/¢5<)ﬂLX), then

A(Xe) < Popr(Xe) < dopr(X) < 1/a- ¢(X). So

(X)) = d(X) — d(Xe) > (1—1/a) - p(X). So, we cover a new
cluster with probability:

3

| —

~ 1

w oS g

P(X)

1 =)

when « is large.

- l.e, unless our current cost is close to the optimal cost, we
cover a new cluster with high probability in each step.

13



k-means++ Analysis
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k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a
covered cluster A; is at most a constant factor times the optimal cost.
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k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a
covered cluster A; is at most a constant factor times the optimal cost.

A Useful Lemma: Let S be a set of points with centroid p(S), and letz
be any other point.

Yolx—zlE=3"

X = ()3 + 1] - |1(S) — 2I13-

XES XES
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k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a
covered cluster A; is at most a constant factor times the optimal cost.
A Useful Lemma: Let S be a set of points with centroid p(S), and letz
be any other point.

Do Ix=zI5 =D llx = w(S)3 + 18] - 1(S) — 25

XES XES
L

& Mrs)
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Ve 2o u(s)
X® o
°

Proof: 3 o [Ix —z[53 = > s [[(x = u(S)) + (u(S) — 2)II3
15



k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a
covered cluster A; is at most a constant factor times the optimal cost.
A Useful Lemma: Let S be a set of points with centroid p(S), and letz
be any other point.
yamey © 9
o=zl =D Ix = u(S)I3 + 15| - [l(S) — 25
XES xfsd/
6 ><_[sl

z e x&$

[ o _ ix =D
\.p.(S) ) Z Xed

° o R ONIEY

* <m j\@ , M(S)‘%\>
Proof: 3=, cs X = 2lI3 = 32" es (X = (S)) + (u(S) = 2|5 =
CDMHZ QN‘_ZHZ + ZMZ 15



First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set Aq,...,Ax. Let c; be
a cluster center chosen uniformly at random from A. Let

B(A) = yen lIX — cill3 and gopr(A) = 3 en X — 1(A)[I3.

E[p(A)] = 2¢0pr(A).

A

© 9 (
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First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set Aq, ..., Ag. Lenge
a cluster center chosen uniformly at random from A. Let

B(A) = yen lIX — cill3 and gopr(A) = 3 en X — 1(A)[I3.

E[p(A)] = 2¢0pr(A).

Blp(a) = 3 |1T| S Jlar - a2
/S

a1€A aEeA
—~—

16



First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set Aq,...,Ax. Let c; be
a cluster center chosen uniformly at random from A. Let

B(A) = ea llX — ailld and gopr(A) = 3, cn X — (A) |2
E[p(A)] = 2¢0pr(A).

a1 EA

1
- S [lar- ||)+|A o — u(A)[2]
_ e a1EA Ay EA
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First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set Aq,...,Ax. Let c; be
a cluster center chosen uniformly at random from A. Let

B(A) = ea llX — ailld and gopr(A) = 3, cn X — (A) |2
E[p(A)] = 2¢0pr(A).

Elp(A ]*ZH > llar—al?

a1€A aEeA
1
TZ > [llaz = u(A)3 + 1AL llar = u(A)]3]
a1€A aEA
Z llar — p(A)|I5 + Z la; — u(A)13
aEA aEA

16



First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set Aq,...,Ax. Let c; be
a cluster center chosen uniformly at random from A. Let

B(A) = ea llX — ailld and gopr(A) = 3, cn X — (A) |2
E[p(A)] = 2¢0pr(A).

Elp(A ]*ZH > llar—al?

a1€A aEeA

T D> lllaz = (A3 + 1Al lar = p(A)|3]
a1 €A aEA
= Z llar — p(A)|I5 + Z la; — u(A)13
a1€A a,EA
= 2¢opr(A).

16



Future Cluster Bounds

Lemma
Let A be some cluster in the optimal cluster set Ay, ..., Ax. Let
C1,...,Cj—1 be our current set of cluster centers. If we add a random

cer@om A, chosen with probability proportional to
d(a) = mini€{1,..,7j_1} lla— C,'||§ then

——

d(m> E[¢(A)] < 8¢orr(A).
Z 4

aeh
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Future Cluster Bounds

Lemma
Let A be some cluster in the optimal cluster set Ay, ..., Ax. Let
C1,...,Cj—1 be our current set of cluster centers. If we add a random

center ¢; from A, chosen with probability proportional to
d(a) = mini€{1,..,7j_1} lla— C,'||§ then

E[¢(A)] < 8dopr(A).

E[p(A)] = > ZaeA Z min(d(a2),llaz — as2)

a1€A aEA
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Future Cluster Bounds

Lemma
Let A be some cluster in the optimal cluster set Ay, ..., Ax. Let
C1,...,Cj—1 be our current set of cluster centers. If we add a random

center ¢; from A, chosen with probability proportional to
d(a) = mini€{1 ,,,,, j—1} lla— C,'||§ then

E[¢(A)] < 8dopr(A).

Blo@)] = 3 <2+ 3 min(d(aa), o: — anl)

a €A GGA @ EA

By triangle inequality, for any center ¢;, O, ; &  ang P@"%
Jan = cilf < (o - c||z+uafa1uz)2§2||afc,-||5+zuafa1u§ S0

A \'\'vy\)’”\ b < 2d( )+ 2”0 1‘2{”% C/o N
= d(A)
di=lei &I)L < Ula-ai }llJf 2 [la- Ot;n)l a 17

dla) €l - eulldt



Future Cluster Bounds

Lemma
Let A be some cluster in the optimal cluster set Ay, ..., Ax. Let
C1,...,Cj—1 be our current set of cluster centers. If we add a random

center ¢; from A, chosen with probability proportional to
d(a) = miniep,...j—1y la — cill5 then

E[¢(A)] < 8dopr(A).

E[p(A ]_ZZ d me ) llaz — arlf2)

a1€A aEA
By triangle inequality, for any center ¢;, o) O,
las =il < (la = cillz + lla = anll2)? < 2lla = ll3 +2l|a - a3 So
d(a;) < 2d(a) +2||a — a4)3.

Averaging over all a € A, d(aq) < \A\ ZOGA d(&y + 2 a7 2aealla — a3
—_— 17



Future Cluster Bounds

cOmbm{E[O Al =0 ca f&b Y a,ea Min(d(az), la; — ai3)
A
and d(ay) < \A\ > aen d(®) + \A| ZGEA |la — aq]]5 to get:
—

Z ZaeA Z s — ar]2 + Z ZaeA la— a1||2 Z d(a )

€A azeA aeA ZUGA as eA

18



Future Cluster Bounds

Combine: B[o(4)] = X, o4 =45y Ty min(e(@). o2 )
and d(ay) < \A\ > aend(A) + \A| ZaeA |la — aq]]5 to get:

> ||a a1||
Z la; — a5 + Z ach 2

azGA \ a; EA Za A

= |ZZ||02 a5

a1€AaEA

18



Future Cluster Bounds

Combine: E[o( ) =2 gen Z 7S ea MN(d(a2), a; — ai3)
and d(a) < \A\ > aen d(A) + \A| ZaeA la —aq]|3 to get:

Elo()] = |A| <Z e 2 Z llaz — a1l + Z Zaf:A o~ 01”2 Z d(a )
a €A aeA azeA a1€A UeA a,EA
1Al X:A X:A la; — a1l < 8“0PT( ).
Q\ZbGPJr (&

18



Future Cluster Bounds

Combine: E[O( =2 0en z 7+ Paea Min(d(a2), llaz — anll3)
and d(a) < Z d(A) + \A| ZGGA la — aif3 to get:

d(A) Y aealla— a1||2
B < (z ) S or -+ 3 Bl 5 g
|A| €A ZOEA (A) ClzGA €A ZUGA a,€A
= Z > llaz — aill3 < 8dopr(A).
a1 €A ayeA

Upshot: At each step that we cover a cluster A from the optimal
clustering, the expected cost is, in expectation, within a constant
factor of the optimal cost for that cluster.

18



Randomized Low-Rank approximation



Low-rank Approximation

Consider a matrix A € R"<9. We would like to compute an optimal
low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

ZT”-Z-:I |A—2Z"Alle = min ||A~2ZZ'A].

% ’or)lhormm\

22 s A P&‘JU}Y\\N O 7' P
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Low-rank Approximation

Consider a matrix A € R"<9. We would like to compute an optimal
low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

1A F — min [)A— ZZ'Al|r
7:717=I

Why is rank(ZZ'A) < k?
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Low-rank Approximation

Consider a matrix A € R™*9. We would like to compute an optimal
low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A = ZZTAllf = min ||A—ZZ"A|r.
Z:.77=I

Why is rank(ZZ'A) < k?

I<.
nxd nxk A xd

Z’A
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Low-rank Approximation

Consider a matrix A € R"<9. We would like to compute an optimal
low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZ"Allr = min ||A—ZZ"A|r.
E=——N 7:777=I

NA-B\l¢

i TA) < p? o N ¥

Why is rank(ZZ'A) < R? Bkl 1

Why does it suffice to consider low-rank approximations of this
form?
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Low-rank Approximation

Consider a matrix A € R"<9. We would like to compute an optimal
low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZ"Allr = min ||A—ZZ"A|r.
2:7'7=I —_—
‘ 3
Why is rank(ZZTA) < k? M K
MN

Why does it suffyce to consider low-rank approximations of this
form? For any B with rank(B) = R, let Z € R"** be an orthonor
basis for B's column span. Then ||A — ZZ"A||r < ||A — B]|r. So A

min ||A — ZZ'Allf = min_ A = Bl
2:777=I| B:r
Q
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Low-rank Approximation

Consider a matrix A € R"<9. We would like to compute an optimal

low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

|A—ZZ"Allr = min ||A—ZZ"A|r.
2:7'7=I
Why is rank(ZZ'A) < k?

Why does it suffice to consider low-rank approximations of this

form? For any B with rank(B) = R, let Z € R"** be an orthonormal
basis for B's column span. Then ||A — ZZ"A||r < ||A — B||r. SO

min ||A — ZZ'Allf = min_ A = Bl
2:777=I| B:r

How would one compute the optimal basis Z7?
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Low-rank Approximation

1A~

Consider a matrix A € R"<9. We would like to compute an optimal
low-rank approximation of A. l.e,, for k < min(n, d) we would like to
find Z € R™* with orthonormal columns satisfying:

:z:-m\\ve |A = ZZ'Allr = min [|A - ZZ7A|lr. )
-4 o) (o ("

Why is rank(ZZTA) < k? QSM&/{P
)(v_jﬁ

Why does it suffice to consider low-rank approximations of this
form? For any B with rank(B) = R, let Z € R"** be an orthonormal

basis for B's column span. Then ||A — ZZ"A||r < ||A — B]|r. So Y‘)HT _
min ||A — ZZ"Al|r = min_|A-8 L 7

Z:ZTIZ:/” le= Barank H I Ve V!

e

How would one compute the optimal basis Z? Computethe top R
left singular vectors of A, which requires Ognd2 time, or time
for a high accuracy g@proxmaUﬁthh an iterative metho d S

SRANEAY



Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in

ond +n) time. nd") 3 SE

20



Sampling Based Algorithm

Linear Time Low-Rank Approximation:

Fix samplmg probabilities pq,...,p, with p; = “fg"l‘z‘g. /
— L7F

"\L,\L\\

We will analysis a simple non-uniform sampling based algorithm for
6\ Select iy, ..., It € [n] independently, according to the
distribution Pr[i; = k] = py, for sample size t > k.

low-rank approximation, that gives a near optimal solution in
-t

O(nd + nk?) time.
- L.P..

- Let Z € R"™** consist of the top k left singular vectors of C.

20



Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd + nk?) time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p1,...,p, with p; = 1A, H‘Z‘Z. [}O! [ﬁ*j

- Selectiy, ..., i € [n] independently, according to the
distribution Pr[i; = k] = py, for sample size t > k.
. _ 1 t 1

- Let Z € R"™** consist of the top k left singular vectors of C.

Looks like approximate matrix multiplication! In fact, will use that
CC’ is a good approximation to the matrix product AAT.

20



Sampling Based Algorithm

nxd

>
((’\IYOOOQOO
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Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with

= f samples outputs Z € R"*F satisfying with probability at
leas 1—4:
NP
IA—ZZ A2 < mm ||A ZZTA|} + 2¢| A%
— TzZzm

Q
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Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with

= f samples outputs Z € R"*F satisfying with probability at
least 1—4:

=T .
A—ZZ All2 < min ||A—=ZZ"A||2 + 2¢||Al|%.
[ ”F—Z:ZTZ:/” lIF + 2¢llAllF

Key Idea: By the approximate matrix multiplication result from last
class, applied to the matrix product AAT, with probability > 1 — 6,

IAAT — CCTlr < —= - [|Allr - AT]lF =
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Sampling Based Algorithm Approximation Bound

Theorem Uy\é " Siapu <L alunns

The linear time low-rank approximation algorithm run with

= 62_” - samples outputs Z € R"*F satisfying with probability at
feast 1— 6;

\ e
- a4 1A~ZZ'AIR < min A~ 2Z'Al% + 26] Al

Key Idea: By the approximate matrix multiplication result from last
class, applied to the matrix product AAT, with probability > 1—§,

AAT — CCTllr < - JIAlIF - |AT]IF =

| fw\(,((y‘.)<k. A IA[lF - [JAT] VE
Since CC" is close to AAT, the top eigenvectors of these matrices (i.e.
the top left singular vectors of A and C will not be too different.) So.Z
can be used in place of the top left singular vectors of A to give a

near optimal approximation.

€

I1A]I7-
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Formal Analysis

Let Z, € R™** contain the top left singular vectors of A - i.e.
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.
- - —_— T

23



Formal Analysis

Let Z, € R™*F contain the top left singular vectors of A - i.e
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,

B ZZTB = tr(BB BB") —tr(Z'BB'Z).
F

1(([@/ 22 2)(® 2 gﬂ

1-(38) - v(%z'{f) 4r(%9 B2l + 4 (%%‘E%
(& C\\(. = & —)/M\J




Formal Analysis

Let Z, € R™** contain the top left singular vectors of A - i.e.
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B — 2Z"B||? = tr(BB") — tr(Z'BB'Z).
Pe——
Claim 2: If ||AAT — CCT|lF < ﬁ\\AH% then for any orthonormal

Z € R [tr(ZT(AAT — CCT)Z)|§ €|l A%

1 (@BAR) e FeTe)
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Formal Analysis

Let Z, € R™** contain the top left singular vectors of A - i.e.
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,

|B — 2Z"B||? = tr(BB") — tr(Z'BB'Z).
Claim 2: If ||AAT — CCT|lF < ﬁ\\AH% then for any orthonormal
7 € R™R tr(ZT(AAT — CCTYZ) < €||A|1%

Proof from claims:
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Formal Analysis

Let Z, € R™*F contain the top left singular vectors of A -
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B — 2Z"B||? = tr(BB") — tr(Z'BB'Z).

Claim 2: If ||AAT — CCT|lF < ﬁHAH% then for any orthonormal
7 € ROk tr(ZT(AAT — CCNY2) < €|Al1Z - TS
Proofi:grrg{claims: fﬁPJ“ e P %(V \@M\i; \ Lq\r/ o* \7\

IS

IC—ZZ'C|? < ||C - 2,Z°C|? = tr(Z'cC'Z) > tr(ZlcC'z,)
tl<s D4 (3T 2)

sd
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Formal Analysis

Let Z, € R™*F contain the top left singular vectors of A -
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,

|B — 2Z"B||? = tr(BB") — tr(Z'BB'Z).

Claim 2: If [|[AAT — CCT||F < < ||A||2, then for an orthonormal

; | ”FF 7 17 y o y Q\P\Q
Z € Rk _tr(ZT(AAT — CCTYZ) < €| AlI2. \% S\ o )
Proof from claims: X(\% / /k(kﬂc“

IC—ZZ'c|? < ||C - 2,Z'C|? = tr(Z'cC'Z) > tr(ZlcC'z,)
— tr(Z' AATZ) > tr(Z1AATZ,) — 2¢]|Al12
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Formal Analysis

Let Z, € R™** contain the top left singular vectors of A - i.e.
Z, = argmin ||A — ZZ"A||2. Similarly, Z = argmin ||C — ZZ'C||2.

Claim 1: For any orthonormal Z € R"** and any matrix B,
|B — 2Z"B||? = tr(BB") — tr(Z'BB'Z).
Claim 2: If [|AAT — F< ﬁHAH% then for any orthonormal
7 € R™k tr(ZT(AAT — CCTYZ) < €||A|1
—_—
Proof from claims:
IC—ZZ'c|? < ||C - 2,Z'C|? = tr(Z'cC'Z) > tr(ZlcC'z,)
— tr(Z' AATZ) > tr(Z1AATZ,) — 2¢]|Al12
— A~ ZZ Al} < ||A~ Z.ZIA? + 2] A2

e A
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Formal Analysis

Claim 2: If JAAT — CCT||F < LEHAH%, then for any orthonormal
Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.
— /

_
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Formal Analysis

Claim 2: If JAAT — CCT||F < ﬁ]\AH%, then for any orthonormal
Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.
D —

Suffices to show that for any symmetric B € R™" and any
orthonormal Z € R™*, tr(Z'82) < V& - ||B]|r. &* PRl
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Formal Analysis

Claim 2: If JAAT — CCT||F < ﬁ]\AH%, then for any orthonormal

Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.

Suffices to show that for any symmetric B € R"*", and any
orthonormal Z € R"™* tr(Z'BZ) < vk - ||B||F.

tr(Z'BZ) = ZZTBZ,
1£1
¥ j@ \Y%‘.}}*
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Formal Analysis

Claim 2: If JAAT — CCT||F < ﬁ]\AH%, then for any orthonormal

Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.

Suffices to show that for any symmetric B € R"*", and any
orthonormal Z € R"™* tr(Z'BZ) < vk - ||B||F.

\%&M &?g

z\\T 2, DN (@}

tr(Z'BZ) = Z 2IBz;

< ZA,«(B) (By Courant-Fischer theorem)
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Formal Analysis

Claim 2: If JAAT — CCT||F < ﬁ]\AH%, then for any orthonormal
Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.

Suffices to show that for any symmetric B € R"*", and any
orthonormal Z € R"™* tr(Z'BZ) < vk - ||B||F.

tr(Z'BZ) = Z 2IBz;

< ZA (By Courant-Fischer theorem)
'&(‘m/ =1
L
<VEk- [ Yo N(BY

@ NEYW 2%



Formal Analysis

Claim 2: If JAAT — CCT||F < ﬁ]\AH%, then for any orthonormal

Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.

Suffices to show that for any symmetric B € R"*", and any
orthonormal Z € R"™* tr(Z'BZ) < vk - ||B||F.

tr(Z'BZ) = Z 2IBz;

Bl 7By

gZA,«(B) (By Courant-Fischer theorem) §>\ g)

R n
D> OX(BZ < VR[> N(B)
i=1 =
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Formal Analysis

Claim 2: If JAAT — CCT||F < ﬁ]\AH%, then for any orthonormal
Z € R™k tr(ZT(AAT — €CTYZ) < €||All2.
’_’—/’\

Suffices to show that for any symmetric B € R"*", and any
orthonormal Z € R"™* tr(Z'BZ) < vk - ||B||F.

|

ZTBZ Z ZTBZ, /\C )\‘.\ (6§ ﬂz |‘
\ |
Nl®)
<\ 7\7 <Z>\ (By our\snt Fischer theorem)
e

/\'L
s\u\ RSN Z/\ BY < VE- |3 A(B) = VE- 8]
( SWW’% i=1 i=1

( b»UC\/:ﬁ 2%



More Advanced Techniques

|
E‘L
Norm based sampling gives an additive error approximation,
——T .
|A —ZZ A2 < Minggr, 1A — ZZA|2 + 2€[|A[ 12
—— T~ =
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More Advanced Techniques

Norm based sampling gives an additive error approximation,
|A—ZZ'All2 < minzzrz |A — ZZ7A|12 + 2¢[|A[12

- Ideally, we would like a relative error approximation,
|A—ZZ'AJ2 < (1+€) - minzzrz |A — 227712
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More Advanced Techniques

Norm based sampling gives an additive error approximation,
|A—ZZ'All2 < mingzrz |A — ZZ7A|12 + 2¢€[|A[12

- Ideally, we would like a relative error approximation,

A= ZZAR (e minggr | A~ 22741

- This can be achieved with more advanced non-uniform
sampling techniques, based on leverage scores or
adaptive sampling.

- Also possible using Johnson-Lindenstrauss type random
projection.
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Adaptive Sampling

Given an input matrix A € R"*9 and )rank parameter
k < min(n, d). 18:l
l\A\\]:L
- Initialize probabilities p; = 4M for i € [n].

- Initialize list of columns C = {} and orthonormal matrix

V=0.
- Forj=1,2,...t
- Setacolumn ¢ € {A.1,..., A} to A ; with probability p;
@\ _and add ¢ to C.
-LLet V € R have orthonormal columns spanning the
columnsin C.
- Forallie[n], let p; :@%W.

- Return the top_k left singular values of AV € R"*%.

26



Adaptive Sampling
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